Beispiel #1
0
/* pass zero in check_rpl if no needed selector RPL checking for 
   non-conforming segments */
void BX_CPU_C::check_cs(bx_descriptor_t *descriptor, Bit16u cs_raw, Bit8u check_rpl, Bit8u check_cpl)
{
  // descriptor AR byte must indicate code segment else #GP(selector)
  if (descriptor->valid==0 || descriptor->segment==0 ||
          IS_DATA_SEGMENT(descriptor->type))
  {
    BX_ERROR(("check_cs: not a valid code segment !"));
    exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
  }

#if BX_SUPPORT_X86_64
  if (descriptor->u.segment.l)
  {
    if (! BX_CPU_THIS_PTR efer.lma) {
      BX_PANIC(("check_cs: attempt to jump to long mode without enabling EFER.LMA !"));
    }

    if (descriptor->u.segment.d_b) {
      BX_ERROR(("check_cs: Both L and D bits enabled for segment descriptor !"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }
  }
#endif

  // if non-conforming, code segment descriptor DPL must = CPL else #GP(selector)
  if (IS_CODE_SEGMENT_NON_CONFORMING(descriptor->type)) {
    if (descriptor->dpl != check_cpl) {
      BX_ERROR(("check_cs: non-conforming code seg descriptor dpl != cpl"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

    /* RPL of destination selector must be <= CPL else #GP(selector) */
    if (check_rpl > check_cpl) {
      BX_ERROR(("check_cs: non-conforming code seg selector rpl > cpl"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }
  }
  // if conforming, then code segment descriptor DPL must <= CPL else #GP(selector)
  else {
    if (descriptor->dpl > check_cpl) {
      BX_ERROR(("check_cs: conforming code seg descriptor dpl > cpl"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }
  }

  // code segment must be present else #NP(selector)
  if (! descriptor->p) {
    BX_ERROR(("check_cs: code segment not present !"));
    exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
  }
}
Beispiel #2
0
void BX_CPU_C::task_switch_load_selector(bx_segment_reg_t *seg,
                 bx_selector_t *selector, Bit16u raw_selector, Bit8u cs_rpl)
{
  bx_descriptor_t descriptor;
  Bit32u dword1, dword2;

  // NULL selector is OK, will leave cache invalid
  if ((raw_selector & 0xfffc) != 0)
  {
    bx_bool good = fetch_raw_descriptor2(selector, &dword1, &dword2);
    if (!good) {
      BX_ERROR(("task_switch(%s): bad selector fetch !", strseg(seg)));
      exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
    }

    parse_descriptor(dword1, dword2, &descriptor);

    /* AR byte must indicate data or readable code segment else #TS(selector) */
    if (descriptor.segment==0 || (IS_CODE_SEGMENT(descriptor.type) &&
        IS_CODE_SEGMENT_READABLE(descriptor.type) == 0))
    {
      BX_ERROR(("task_switch(%s): not data or readable code !", strseg(seg)));
      exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
    }

    /* If data or non-conforming code, then both the RPL and the CPL
     * must be less than or equal to DPL in AR byte else #GP(selector) */
    if (IS_DATA_SEGMENT(descriptor.type) ||
        IS_CODE_SEGMENT_NON_CONFORMING(descriptor.type))
    {
      if ((selector->rpl > descriptor.dpl) || (cs_rpl > descriptor.dpl)) {
        BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg)));
        exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
      }
    }

    if (! IS_PRESENT(descriptor)) {
      BX_ERROR(("task_switch(%s): descriptor not present !", strseg(seg)));
      exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0);
    }

    // All checks pass, fill in shadow cache
    seg->cache = descriptor;
  }
}
Beispiel #3
0
void BX_CPU_C::long_mode_int(Bit8u vector, unsigned soft_int, bx_bool push_error, Bit16u error_code)
{
  bx_descriptor_t gate_descriptor, cs_descriptor;
  bx_selector_t cs_selector;

  // interrupt vector must be within IDT table limits,
  // else #GP(vector*8 + 2 + EXT)
  if ((vector*16 + 15) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(long mode): vector must be within IDT table limits, IDT.limit = 0x%x", BX_CPU_THIS_PTR idtr.limit));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  Bit64u desctmp1 = system_read_qword(BX_CPU_THIS_PTR idtr.base + vector*16);
  Bit64u desctmp2 = system_read_qword(BX_CPU_THIS_PTR idtr.base + vector*16 + 8);

  if (desctmp2 & BX_CONST64(0x00001F0000000000)) {
    BX_ERROR(("interrupt(long mode): IDT entry extended attributes DWORD4 TYPE != 0"));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  Bit32u dword1 = GET32L(desctmp1);
  Bit32u dword2 = GET32H(desctmp1);
  Bit32u dword3 = GET32L(desctmp2);

  parse_descriptor(dword1, dword2, &gate_descriptor);

  if ((gate_descriptor.valid==0) || gate_descriptor.segment)
  {
    BX_ERROR(("interrupt(long mode): gate descriptor is not valid sys seg"));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // descriptor AR byte must indicate interrupt gate, trap gate,
  // or task gate, else #GP(vector*8 + 2 + EXT)
  if (gate_descriptor.type != BX_386_INTERRUPT_GATE &&
      gate_descriptor.type != BX_386_TRAP_GATE)
  {
    BX_ERROR(("interrupt(long mode): unsupported gate type %u",
        (unsigned) gate_descriptor.type));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // if software interrupt, then gate descripor DPL must be >= CPL,
  // else #GP(vector * 8 + 2 + EXT)
  if (soft_int && gate_descriptor.dpl < CPL)
  {
    BX_ERROR(("interrupt(long mode): soft_int && gate.dpl < CPL"));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // Gate must be present, else #NP(vector * 8 + 2 + EXT)
  if (! IS_PRESENT(gate_descriptor)) {
    BX_ERROR(("interrupt(long mode): gate.p == 0"));
    exception(BX_NP_EXCEPTION, vector*8 + 2);
  }

  Bit16u gate_dest_selector = gate_descriptor.u.gate.dest_selector;
  Bit64u gate_dest_offset   = ((Bit64u)dword3 << 32) |
                       gate_descriptor.u.gate.dest_offset;

  unsigned ist = gate_descriptor.u.gate.param_count & 0x7;

  // examine CS selector and descriptor given in gate descriptor
  // selector must be non-null else #GP(EXT)
  if ((gate_dest_selector & 0xfffc) == 0) {
    BX_ERROR(("int_trap_gate(long mode): selector null"));
    exception(BX_GP_EXCEPTION, 0);
  }

  parse_selector(gate_dest_selector, &cs_selector);

  // selector must be within its descriptor table limits
  // else #GP(selector+EXT)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // descriptor AR byte must indicate code seg
  // and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) ||
      cs_descriptor.dpl > CPL)
  {
    BX_ERROR(("interrupt(long mode): not accessible or not code segment"));
    exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
  }

  // check that it's a 64 bit segment
  if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b)
  {
    BX_ERROR(("interrupt(long mode): must be 64 bit segment"));
    exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
  }

  // segment must be present, else #NP(selector + EXT)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("interrupt(long mode): segment not present"));
    exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc);
  }
 
  Bit64u RSP_for_cpl_x;

  Bit64u old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
  Bit64u old_RIP = RIP;
  Bit64u old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
  Bit64u old_RSP = RSP;

  // if code segment is non-conforming and DPL < CPL then
  // INTERRUPT TO INNER PRIVILEGE:
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl < CPL)
  {
    BX_DEBUG(("interrupt(long mode): INTERRUPT TO INNER PRIVILEGE"));

    // check selector and descriptor for new stack in current TSS
    if (ist > 0) {
      BX_DEBUG(("interrupt(long mode): trap to IST, vector = %d", ist));
      RSP_for_cpl_x = get_RSP_from_TSS(ist+3);
    }
    else {
      RSP_for_cpl_x = get_RSP_from_TSS(cs_descriptor.dpl);
    }

    // align stack
    RSP_for_cpl_x &= BX_CONST64(0xfffffffffffffff0);

    // push old stack long pointer onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x -  8, cs_descriptor.dpl, old_SS);
    write_new_stack_qword_64(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP);
    write_new_stack_qword_64(RSP_for_cpl_x - 24, cs_descriptor.dpl, read_eflags());
    // push long pointer to return address onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_CS);
    write_new_stack_qword_64(RSP_for_cpl_x - 40, cs_descriptor.dpl, old_RIP);
    RSP_for_cpl_x -= 40;

    if (push_error) {
      RSP_for_cpl_x -= 8;
      write_new_stack_qword_64(RSP_for_cpl_x, cs_descriptor.dpl, error_code);
    }

    // load CS:RIP (guaranteed to be in 64 bit mode)
    branch_far64(&cs_selector, &cs_descriptor, gate_dest_offset, cs_descriptor.dpl);

    // set up null SS descriptor
    load_null_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], cs_descriptor.dpl);
  }
  else if(IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl==CPL) 
  {
    // if code segment is conforming OR code segment DPL = CPL then
    // INTERRUPT TO SAME PRIVILEGE LEVEL:

    BX_DEBUG(("interrupt(long mode): INTERRUPT TO SAME PRIVILEGE"));

    // check selector and descriptor for new stack in current TSS
    if (ist > 0) {
      BX_DEBUG(("interrupt(long mode): trap to IST, vector = %d", ist));
      RSP_for_cpl_x = get_RSP_from_TSS(ist+3);
    }
    else {
      RSP_for_cpl_x = RSP;
    }

    // align stack
    RSP_for_cpl_x &= BX_CONST64(0xfffffffffffffff0);

    // push flags onto stack
    // push current CS selector onto stack
    // push return offset onto stack
    write_new_stack_qword_64(RSP_for_cpl_x - 8,  cs_descriptor.dpl, old_SS);
    write_new_stack_qword_64(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP);
    write_new_stack_qword_64(RSP_for_cpl_x - 24, cs_descriptor.dpl, read_eflags());
    // push long pointer to return address onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_CS);
    write_new_stack_qword_64(RSP_for_cpl_x - 40, cs_descriptor.dpl, old_RIP);
    RSP_for_cpl_x -= 40;

    if (push_error) {
      RSP_for_cpl_x -= 8;
      write_new_stack_qword_64(RSP_for_cpl_x, cs_descriptor.dpl, error_code);
    }

    // set the RPL field of CS to CPL
    branch_far64(&cs_selector, &cs_descriptor, gate_dest_offset, CPL);
  }
  else {
    BX_ERROR(("interrupt(long mode): bad descriptor type %u (CS.DPL=%u CPL=%u)",
      (unsigned) cs_descriptor.type, (unsigned) cs_descriptor.dpl, (unsigned) CPL));
    exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
  }

  RSP = RSP_for_cpl_x;

  // if interrupt gate then set IF to 0
  if (!(gate_descriptor.type & 1)) // even is int-gate
    BX_CPU_THIS_PTR clear_IF();
  BX_CPU_THIS_PTR clear_TF();
//BX_CPU_THIS_PTR clear_VM(); // VM is clear in long mode
  BX_CPU_THIS_PTR clear_RF();
  BX_CPU_THIS_PTR clear_NT();
}
Beispiel #4
0
void BX_CPU_C::protected_mode_int(Bit8u vector, unsigned soft_int, bx_bool push_error, Bit16u error_code)
{
  bx_descriptor_t gate_descriptor, cs_descriptor;
  bx_selector_t cs_selector;

  Bit16u raw_tss_selector;
  bx_selector_t   tss_selector;
  bx_descriptor_t tss_descriptor;

  Bit16u gate_dest_selector;
  Bit32u gate_dest_offset;

  // interrupt vector must be within IDT table limits,
  // else #GP(vector*8 + 2 + EXT)
  if ((vector*8 + 7) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(): vector must be within IDT table limits, IDT.limit = 0x%x", BX_CPU_THIS_PTR idtr.limit));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  Bit64u desctmp = system_read_qword(BX_CPU_THIS_PTR idtr.base + vector*8);

  Bit32u dword1 = GET32L(desctmp);
  Bit32u dword2 = GET32H(desctmp);

  parse_descriptor(dword1, dword2, &gate_descriptor);

  if ((gate_descriptor.valid==0) || gate_descriptor.segment) {
    BX_ERROR(("interrupt(): gate descriptor is not valid sys seg (vector=0x%02x)", vector));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // descriptor AR byte must indicate interrupt gate, trap gate,
  // or task gate, else #GP(vector*8 + 2 + EXT)
  switch (gate_descriptor.type) {
  case BX_TASK_GATE:
  case BX_286_INTERRUPT_GATE:
  case BX_286_TRAP_GATE:
  case BX_386_INTERRUPT_GATE:
  case BX_386_TRAP_GATE:
    break;
  default:
    BX_ERROR(("interrupt(): gate.type(%u) != {5,6,7,14,15}",
      (unsigned) gate_descriptor.type));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // if software interrupt, then gate descripor DPL must be >= CPL,
  // else #GP(vector * 8 + 2 + EXT)
  if (soft_int && gate_descriptor.dpl < CPL) {
    BX_ERROR(("interrupt(): soft_int && (gate.dpl < CPL)"));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // Gate must be present, else #NP(vector * 8 + 2 + EXT)
  if (! IS_PRESENT(gate_descriptor)) {
    BX_ERROR(("interrupt(): gate not present"));
    exception(BX_NP_EXCEPTION, vector*8 + 2);
  }

  switch (gate_descriptor.type) {
  case BX_TASK_GATE:
    // examine selector to TSS, given in task gate descriptor
    raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
    parse_selector(raw_tss_selector, &tss_selector);

    // must specify global in the local/global bit,
    //      else #GP(TSS selector)
    if (tss_selector.ti) {
      BX_ERROR(("interrupt(): tss_selector.ti=1 from gate descriptor - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // index must be within GDT limits, else #TS(TSS selector)
    fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION);

    parse_descriptor(dword1, dword2, &tss_descriptor);

    // AR byte must specify available TSS,
    //   else #GP(TSS selector)
    if (tss_descriptor.valid==0 || tss_descriptor.segment) {
      BX_ERROR(("interrupt(): TSS selector points to invalid or bad TSS - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
        tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)
    {
      BX_ERROR(("interrupt(): TSS selector points to bad TSS - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // TSS must be present, else #NP(TSS selector)
    if (! IS_PRESENT(tss_descriptor)) {
      BX_ERROR(("interrupt(): TSS descriptor.p == 0"));
      exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // switch tasks with nesting to TSS
    task_switch(0, &tss_selector, &tss_descriptor,
                    BX_TASK_FROM_INT, dword1, dword2);

    RSP_SPECULATIVE;

    // if interrupt was caused by fault with error code
    //   stack limits must allow push of 2 more bytes, else #SS(0)
    // push error code onto stack

    if (push_error) {
      if (tss_descriptor.type >= 9) // TSS386
        push_32(error_code);
      else
        push_16(error_code);
    }

    // instruction pointer must be in CS limit, else #GP(0)
    if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
      BX_ERROR(("interrupt(): EIP > CS.limit"));
      exception(BX_GP_EXCEPTION, 0);
    }

    RSP_COMMIT;

    return;

  case BX_286_INTERRUPT_GATE:
  case BX_286_TRAP_GATE:
  case BX_386_INTERRUPT_GATE:
  case BX_386_TRAP_GATE:
    gate_dest_selector = gate_descriptor.u.gate.dest_selector;
    gate_dest_offset   = gate_descriptor.u.gate.dest_offset;

    // examine CS selector and descriptor given in gate descriptor
    // selector must be non-null else #GP(EXT)
    if ((gate_dest_selector & 0xfffc) == 0) {
      BX_ERROR(("int_trap_gate(): selector null"));
      exception(BX_GP_EXCEPTION, 0);
    }

    parse_selector(gate_dest_selector, &cs_selector);

    // selector must be within its descriptor table limits
    // else #GP(selector+EXT)
    fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
    parse_descriptor(dword1, dword2, &cs_descriptor);

    // descriptor AR byte must indicate code seg
    // and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
    if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
        IS_DATA_SEGMENT(cs_descriptor.type) ||
        cs_descriptor.dpl > CPL)
    {
      BX_ERROR(("interrupt(): not accessible or not code segment cs=0x%04x", cs_selector.value));
      exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
    }

    // segment must be present, else #NP(selector + EXT)
    if (! IS_PRESENT(cs_descriptor)) {
      BX_ERROR(("interrupt(): segment not present"));
      exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc);
    }

    // if code segment is non-conforming and DPL < CPL then
    // INTERRUPT TO INNER PRIVILEGE
    if(IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl < CPL)
    {
      Bit16u old_SS, old_CS, SS_for_cpl_x;
      Bit32u ESP_for_cpl_x, old_EIP, old_ESP;
      bx_descriptor_t ss_descriptor;
      bx_selector_t   ss_selector;
      int is_v8086_mode = v8086_mode();

      BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE"));

      // check selector and descriptor for new stack in current TSS
      get_SS_ESP_from_TSS(cs_descriptor.dpl,
                              &SS_for_cpl_x, &ESP_for_cpl_x);

      if (is_v8086_mode && cs_descriptor.dpl != 0) {
        // if code segment DPL != 0 then #GP(new code segment selector)
        BX_ERROR(("interrupt(): code segment DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl));
        exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
      }

      // Selector must be non-null else #TS(EXT)
      if ((SS_for_cpl_x & 0xfffc) == 0) {
        BX_ERROR(("interrupt(): SS selector null"));
        exception(BX_TS_EXCEPTION, 0); /* TS(ext) */
      }

      // selector index must be within its descriptor table limits
      // else #TS(SS selector + EXT)
      parse_selector(SS_for_cpl_x, &ss_selector);
      // fetch 2 dwords of descriptor; call handles out of limits checks
      fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
      parse_descriptor(dword1, dword2, &ss_descriptor);

      // selector rpl must = dpl of code segment,
      // else #TS(SS selector + ext)
      if (ss_selector.rpl != cs_descriptor.dpl) {
        BX_ERROR(("interrupt(): SS.rpl != CS.dpl"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // stack seg DPL must = DPL of code segment,
      // else #TS(SS selector + ext)
      if (ss_descriptor.dpl != cs_descriptor.dpl) {
        BX_ERROR(("interrupt(): SS.dpl != CS.dpl"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // descriptor must indicate writable data segment,
      // else #TS(SS selector + EXT)
      if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
           IS_CODE_SEGMENT(ss_descriptor.type) ||
          !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
      {
        BX_ERROR(("interrupt(): SS is not writable data segment"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // seg must be present, else #SS(SS selector + ext)
      if (! IS_PRESENT(ss_descriptor)) {
        BX_ERROR(("interrupt(): SS not present"));
        exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // IP must be within CS segment boundaries, else #GP(0)
      if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
        BX_ERROR(("interrupt(): gate EIP > CS.limit"));
        exception(BX_GP_EXCEPTION, 0);
      }

      old_ESP = ESP;
      old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
      old_EIP = EIP;
      old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;

      // Prepare new stack segment
      bx_segment_reg_t new_stack;
      new_stack.selector = ss_selector;
      new_stack.cache = ss_descriptor;
      new_stack.selector.rpl = cs_descriptor.dpl;
      // add cpl to the selector value
      new_stack.selector.value = (0xfffc & new_stack.selector.value) |
        new_stack.selector.rpl;

      if (ss_descriptor.u.segment.d_b) {
        Bit32u temp_ESP = ESP_for_cpl_x;

        if (is_v8086_mode)
        {
          if (gate_descriptor.type>=14) { // 386 int/trap gate
            write_new_stack_dword_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_ESP -= 16;
          }
          else {
            write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-6, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-8, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_ESP -= 8;
          }
        }

        if (gate_descriptor.type>=14) { // 386 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_dword_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl, old_SS);
          write_new_stack_dword_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl, old_ESP);
          write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl, read_eflags());
          write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl, old_CS);
          write_new_stack_dword_32(&new_stack, temp_ESP-20, cs_descriptor.dpl, old_EIP);
          temp_ESP -= 20;

          if (push_error) {
            temp_ESP -= 4;
            write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code);
          }
        }
        else {                          // 286 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_word_32(&new_stack, temp_ESP-2,  cs_descriptor.dpl, old_SS);
          write_new_stack_word_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl, (Bit16u) old_ESP);
          write_new_stack_word_32(&new_stack, temp_ESP-6,  cs_descriptor.dpl, (Bit16u) read_eflags());
          write_new_stack_word_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl, old_CS);
          write_new_stack_word_32(&new_stack, temp_ESP-10, cs_descriptor.dpl, (Bit16u) old_EIP);
          temp_ESP -= 10;

          if (push_error) {
            temp_ESP -= 2;
            write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code);
          }
        }

        ESP = temp_ESP;
      }
      else {
        Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

        if (is_v8086_mode)
        {
          if (gate_descriptor.type>=14) { // 386 int/trap gate
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_SP -= 16;
          }
          else {
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_SP -= 8;
          }
        }

        if (gate_descriptor.type>=14) { // 386 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl, old_SS);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl, old_ESP);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl, read_eflags());
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl, old_CS);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-20), cs_descriptor.dpl, old_EIP);
          temp_SP -= 20;

          if (push_error) {
            temp_SP -= 4;
            write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code);
          }
        }
        else {                          // 286 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2),  cs_descriptor.dpl, old_SS);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl, (Bit16u) old_ESP);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6),  cs_descriptor.dpl, (Bit16u) read_eflags());
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl, old_CS);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-10), cs_descriptor.dpl, (Bit16u) old_EIP);
          temp_SP -= 10;

          if (push_error) {
            temp_SP -= 2;
            write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code);
          }
        }

        SP = temp_SP;
      }

      // load new CS:eIP values from gate
      // set CPL to new code segment DPL
      // set RPL of CS to CPL
      load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);

      // load new SS:eSP values from TSS
      load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

      if (is_v8086_mode)
      {
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0;
      }
    }
    else
    {
      BX_DEBUG(("interrupt(): INTERRUPT TO SAME PRIVILEGE"));

      if (v8086_mode() && (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl != 0)) {
        // if code segment DPL != 0 then #GP(new code segment selector)
        BX_ERROR(("interrupt(): code segment conforming or DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl));
        exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
      }

      // EIP must be in CS limit else #GP(0)
      if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
        BX_ERROR(("interrupt(): IP > CS descriptor limit"));
        exception(BX_GP_EXCEPTION, 0);
      }

      // push flags onto stack
      // push current CS selector onto stack
      // push return offset onto stack
      if (gate_descriptor.type >= 14) { // 386 gate
        push_32(read_eflags());
        push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
        push_32(EIP);
        if (push_error)
          push_32(error_code);
      }
      else { // 286 gate
        push_16((Bit16u) read_eflags());
        push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
        push_16(IP);
        if (push_error)
          push_16(error_code);
      }

      // load CS:IP from gate
      // load CS descriptor
      // set the RPL field of CS to CPL
      load_cs(&cs_selector, &cs_descriptor, CPL);
    }

    EIP = gate_dest_offset;

    // if interrupt gate then set IF to 0
    if (!(gate_descriptor.type & 1)) // even is int-gate
      BX_CPU_THIS_PTR clear_IF();
    BX_CPU_THIS_PTR clear_TF();
    BX_CPU_THIS_PTR clear_NT();
    BX_CPU_THIS_PTR clear_VM();
    BX_CPU_THIS_PTR clear_RF();
    return;

  default:
    BX_PANIC(("bad descriptor type in interrupt()!"));
    break;
  }
}
Beispiel #5
0
void BX_CPU_C::task_switch(bx_selector_t *tss_selector,
                 bx_descriptor_t *tss_descriptor, unsigned source,
                 Bit32u dword1, Bit32u dword2)
{
  Bit32u obase32; // base address of old TSS
  Bit32u nbase32; // base address of new TSS
  Bit32u temp32, newCR3;
  Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
         raw_fs_selector, raw_gs_selector, raw_ldt_selector;
  Bit16u temp16, trap_word;
  bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
                fs_selector, gs_selector, ldt_selector;
  bx_descriptor_t cs_descriptor, ss_descriptor, ldt_descriptor;
  Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
  Bit32u newEAX, newECX, newEDX, newEBX;
  Bit32u newESP, newEBP, newESI, newEDI;
  Bit32u newEFLAGS, newEIP;

  BX_DEBUG(("TASKING: ENTER"));

  invalidate_prefetch_q();

  // Discard any traps and inhibits for new context; traps will
  // resume upon return.
  BX_CPU_THIS_PTR debug_trap = 0;
  BX_CPU_THIS_PTR inhibit_mask = 0;

  // STEP 1: The following checks are made before calling task_switch(),
  //         for JMP & CALL only. These checks are NOT made for exceptions,
  //         interrupts & IRET.
  //
  //   1) TSS DPL must be >= CPL
  //   2) TSS DPL must be >= TSS selector RPL
  //   3) TSS descriptor is not busy.

  // TSS must be present, else #NP(TSS selector)
  if (tss_descriptor->p==0) {
    BX_ERROR(("task_switch: TSS descriptor is not present !"));
    exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0);
  }

  // STEP 2: The processor performs limit-checking on the target TSS
  //         to verify that the TSS limit is greater than or equal
  //         to 67h (2Bh for 16-bit TSS).

  // Gather info about old TSS
  if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
    old_TSS_max = 0x29;
  }
  else {
    old_TSS_max = 0x5F;
  }
  // Gather info about new TSS
  if (tss_descriptor->type <= 3) { // {1,3}
    new_TSS_max = 0x2B;
  }
  else { // tss_descriptor->type = {9,11}
    new_TSS_max = 0x67;
  }

  obase32 = (Bit32u) BX_CPU_THIS_PTR tr.cache.u.system.base;        // old TSS.base
  old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled;
  nbase32 = (Bit32u) tss_descriptor->u.system.base;                 // new TSS.base
  new_TSS_limit = tss_descriptor->u.system.limit_scaled;

  // TSS must have valid limit, else #TS(TSS selector)
  if (tss_selector->ti || tss_descriptor->valid==0 ||
      new_TSS_limit < new_TSS_max)
  {
    BX_ERROR(("task_switch(): new TSS limit < %d", new_TSS_max));
    exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
  }

  if (old_TSS_limit < old_TSS_max) {
    BX_ERROR(("task_switch(): old TSS limit < %d", old_TSS_max));
    exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
  }

  if (obase32 == nbase32) {
    BX_INFO(("TASK SWITCH: switching to the same TSS !"));
  }

  // Check that old TSS, new TSS, and all segment descriptors
  // used in the task switch are paged in.
  if (BX_CPU_THIS_PTR cr0.get_PG())
  {
    dtranslate_linear(obase32, 0, BX_WRITE); // new TSS
    dtranslate_linear(obase32 + old_TSS_max, 0, BX_WRITE);
    dtranslate_linear(nbase32, 0, BX_READ);  // old TSS
    dtranslate_linear(nbase32 + new_TSS_max, 0, BX_READ);

    // ??? Humm, we check the new TSS region with READ above,
    // but sometimes we need to write the link field in that
    // region.  We also sometimes update other fields, perhaps
    // we need to WRITE check them here also, so that we keep
    // the written state consistent (ie, we don't encounter a
    // page fault in the middle).

    if (source == BX_TASK_FROM_CALL_OR_INT)
    {
      dtranslate_linear(nbase32,     0, BX_WRITE);
      dtranslate_linear(nbase32 + 2, 0, BX_WRITE);
    }
  }

  // Privilege and busy checks done in CALL, JUMP, INT, IRET

  // STEP 3: Save the current task state in the TSS. Up to this point,
  //         any exception that occurs aborts the task switch without
  //         changing the processor state.

  /* save current machine state in old task's TSS */

  Bit32u oldEFLAGS = read_eflags();

  /* if moving to busy task, clear NT bit */
  if (tss_descriptor->type == BX_SYS_SEGMENT_BUSY_286_TSS ||
      tss_descriptor->type == BX_SYS_SEGMENT_BUSY_386_TSS)
  {
    oldEFLAGS &= ~EFlagsNTMask;
  }

  if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
    temp16 = IP; access_write_linear(Bit32u(obase32 + 14), 2, 0, &temp16);
    temp16 = oldEFLAGS; access_write_linear(Bit32u(obase32 + 16), 2, 0, &temp16);
    temp16 = AX; access_write_linear(Bit32u(obase32 + 18), 2, 0, &temp16);
    temp16 = CX; access_write_linear(Bit32u(obase32 + 20), 2, 0, &temp16);
    temp16 = DX; access_write_linear(Bit32u(obase32 + 22), 2, 0, &temp16);
    temp16 = BX; access_write_linear(Bit32u(obase32 + 24), 2, 0, &temp16);
    temp16 = SP; access_write_linear(Bit32u(obase32 + 26), 2, 0, &temp16);
    temp16 = BP; access_write_linear(Bit32u(obase32 + 28), 2, 0, &temp16);
    temp16 = SI; access_write_linear(Bit32u(obase32 + 30), 2, 0, &temp16);
    temp16 = DI; access_write_linear(Bit32u(obase32 + 32), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
                 access_write_linear(Bit32u(obase32 + 34), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
                 access_write_linear(Bit32u(obase32 + 36), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
                 access_write_linear(Bit32u(obase32 + 38), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
                 access_write_linear(Bit32u(obase32 + 40), 2, 0, &temp16);
  }
  else {
    temp32 = EIP; access_write_linear(Bit32u(obase32 + 0x20), 4, 0, &temp32);
    temp32 = oldEFLAGS; access_write_linear(Bit32u(obase32 + 0x24), 4, 0, &temp32);
    temp32 = EAX; access_write_linear(Bit32u(obase32 + 0x28), 4, 0, &temp32);
    temp32 = ECX; access_write_linear(Bit32u(obase32 + 0x2c), 4, 0, &temp32);
    temp32 = EDX; access_write_linear(Bit32u(obase32 + 0x30), 4, 0, &temp32);
    temp32 = EBX; access_write_linear(Bit32u(obase32 + 0x34), 4, 0, &temp32);
    temp32 = ESP; access_write_linear(Bit32u(obase32 + 0x38), 4, 0, &temp32);
    temp32 = EBP; access_write_linear(Bit32u(obase32 + 0x3c), 4, 0, &temp32);
    temp32 = ESI; access_write_linear(Bit32u(obase32 + 0x40), 4, 0, &temp32);
    temp32 = EDI; access_write_linear(Bit32u(obase32 + 0x44), 4, 0, &temp32);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
                  access_write_linear(Bit32u(obase32 + 0x48), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
                  access_write_linear(Bit32u(obase32 + 0x4c), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
                  access_write_linear(Bit32u(obase32 + 0x50), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
                  access_write_linear(Bit32u(obase32 + 0x54), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
                  access_write_linear(Bit32u(obase32 + 0x58), 2, 0, &temp16);
    temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
                  access_write_linear(Bit32u(obase32 + 0x5c), 2, 0, &temp16);
  }

  // effect on link field of new task
  if (source == BX_TASK_FROM_CALL_OR_INT)
  {
    // set to selector of old task's TSS
    temp16 = BX_CPU_THIS_PTR tr.selector.value;
    access_write_linear(nbase32, 2, 0, &temp16);
  }

  // STEP 4: The new-task state is loaded from the TSS

  if (tss_descriptor->type <= 3) {
    access_read_linear(Bit32u(nbase32 + 14), 2, 0, BX_READ, &temp16);
      newEIP = temp16; // zero out upper word
    access_read_linear(Bit32u(nbase32 + 16), 2, 0, BX_READ, &temp16);
      newEFLAGS = temp16;

    // incoming TSS is 16bit:
    //   - upper word of general registers is set to 0xFFFF
    //   - upper word of eflags is zero'd
    //   - FS, GS are zero'd
    //   - upper word of eIP is zero'd
    access_read_linear(Bit32u(nbase32 + 18), 2, 0, BX_READ, &temp16);
      newEAX = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 20), 2, 0, BX_READ, &temp16);
      newECX = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 22), 2, 0, BX_READ, &temp16);
      newEDX = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 24), 2, 0, BX_READ, &temp16);
      newEBX = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 26), 2, 0, BX_READ, &temp16);
      newESP = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 28), 2, 0, BX_READ, &temp16);
      newEBP = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 30), 2, 0, BX_READ, &temp16);
      newESI = 0xffff0000 | temp16;
    access_read_linear(Bit32u(nbase32 + 32), 2, 0, BX_READ, &temp16);
      newEDI = 0xffff0000 | temp16;

    access_read_linear(Bit32u(nbase32 + 34), 2, 0, BX_READ, &raw_es_selector);
    access_read_linear(Bit32u(nbase32 + 36), 2, 0, BX_READ, &raw_cs_selector);
    access_read_linear(Bit32u(nbase32 + 38), 2, 0, BX_READ, &raw_ss_selector);
    access_read_linear(Bit32u(nbase32 + 40), 2, 0, BX_READ, &raw_ds_selector);
    access_read_linear(Bit32u(nbase32 + 42), 2, 0, BX_READ, &raw_ldt_selector);

    raw_fs_selector = 0; // use a NULL selector
    raw_gs_selector = 0; // use a NULL selector
    // No CR3 change for 286 task switch
    newCR3 = 0;   // keep compiler happy (not used)
    trap_word = 0; // keep compiler happy (not used)
  }
  else {
    if (BX_CPU_THIS_PTR cr0.get_PG())
      access_read_linear(Bit32u(nbase32 + 0x1c), 4, 0, BX_READ, &newCR3);
    else
      newCR3 = 0;   // keep compiler happy (not used)
    access_read_linear(Bit32u(nbase32 + 0x20), 4, 0, BX_READ, &newEIP);
    access_read_linear(Bit32u(nbase32 + 0x24), 4, 0, BX_READ, &newEFLAGS);
    access_read_linear(Bit32u(nbase32 + 0x28), 4, 0, BX_READ, &newEAX);
    access_read_linear(Bit32u(nbase32 + 0x2c), 4, 0, BX_READ, &newECX);
    access_read_linear(Bit32u(nbase32 + 0x30), 4, 0, BX_READ, &newEDX);
    access_read_linear(Bit32u(nbase32 + 0x34), 4, 0, BX_READ, &newEBX);
    access_read_linear(Bit32u(nbase32 + 0x38), 4, 0, BX_READ, &newESP);
    access_read_linear(Bit32u(nbase32 + 0x3c), 4, 0, BX_READ, &newEBP);
    access_read_linear(Bit32u(nbase32 + 0x40), 4, 0, BX_READ, &newESI);
    access_read_linear(Bit32u(nbase32 + 0x44), 4, 0, BX_READ, &newEDI);
    access_read_linear(Bit32u(nbase32 + 0x48), 2, 0, BX_READ, &raw_es_selector);
    access_read_linear(Bit32u(nbase32 + 0x4c), 2, 0, BX_READ, &raw_cs_selector);
    access_read_linear(Bit32u(nbase32 + 0x50), 2, 0, BX_READ, &raw_ss_selector);
    access_read_linear(Bit32u(nbase32 + 0x54), 2, 0, BX_READ, &raw_ds_selector);
    access_read_linear(Bit32u(nbase32 + 0x58), 2, 0, BX_READ, &raw_fs_selector);
    access_read_linear(Bit32u(nbase32 + 0x5c), 2, 0, BX_READ, &raw_gs_selector);
    access_read_linear(Bit32u(nbase32 + 0x60), 2, 0, BX_READ, &raw_ldt_selector);
    access_read_linear(Bit32u(nbase32 + 0x64), 2, 0, BX_READ, &trap_word);
  }

  // Step 5: If CALL, interrupt, or JMP, set busy flag in new task's
  //         TSS descriptor.  If IRET, leave set.

  if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_CALL_OR_INT)
  {
    // set the new task's busy bit
    Bit32u laddr = (Bit32u)(BX_CPU_THIS_PTR gdtr.base) + (tss_selector->index<<3) + 4;
    access_read_linear(laddr, 4, 0, BX_READ, &dword2);
    dword2 |= 0x200;
    access_write_linear(laddr, 4, 0, &dword2);
  }

  // Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
  //         otherwise leave set.

  // effect on Busy bit of old task
  if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_IRET) {
    // Bit is cleared
    Bit32u laddr = (Bit32u) BX_CPU_THIS_PTR gdtr.base + (BX_CPU_THIS_PTR tr.selector.index<<3) + 4;
    access_read_linear(laddr, 4, 0, BX_READ, &temp32);
    temp32 &= ~0x200;
    access_write_linear(laddr, 4, 0, &temp32);
  }

  //
  // Commit point.  At this point, we commit to the new
  // context.  If an unrecoverable error occurs in further
  // processing, we complete the task switch without performing
  // additional access and segment availablility checks and
  // generate the appropriate exception prior to beginning
  // execution of the new task.
  //

  // Step 7: Load the task register with the segment selector and
  //        descriptor for the new task TSS.

  BX_CPU_THIS_PTR tr.selector = *tss_selector;
  BX_CPU_THIS_PTR tr.cache    = *tss_descriptor;
  BX_CPU_THIS_PTR tr.cache.type |= 2; // mark TSS in TR as busy

  // Step 8: Set TS flag in the CR0 image stored in the new task TSS.
  BX_CPU_THIS_PTR cr0.set_TS(1);

  // Task switch clears LE/L3/L2/L1/L0 in DR7
  BX_CPU_THIS_PTR dr7 &= ~0x00000155;

  // Step 9: If call or interrupt, set the NT flag in the eflags
  //         image stored in new task's TSS.  If IRET or JMP,
  //         NT is restored from new TSS eflags image. (no change)

  // effect on NT flag of new task
  if (source == BX_TASK_FROM_CALL_OR_INT) {
    newEFLAGS |= EFlagsNTMask; // NT flag is set
  }

  // Step 10: Load the new task (dynamic) state from new TSS.
  //          Any errors associated with loading and qualification of
  //          segment descriptors in this step occur in the new task's
  //          context.  State loaded here includes LDTR, CR3,
  //          EFLAGS, EIP, general purpose registers, and segment
  //          descriptor parts of the segment registers.

  if ((tss_descriptor->type >= 9) && BX_CPU_THIS_PTR cr0.get_PG()) {
    // change CR3 only if it actually modified
    if (newCR3 != BX_CPU_THIS_PTR cr3) {
      SetCR3(newCR3); // Tell paging unit about new cr3 value
      BX_DEBUG (("task_switch changing CR3 to 0x" FMT_PHY_ADDRX, newCR3));
      BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_TASKSWITCH, newCR3);
    }
  }

  BX_CPU_THIS_PTR prev_rip = EIP = newEIP;

  EAX = newEAX;
  ECX = newECX;
  EDX = newEDX;
  EBX = newEBX;
  ESP = newESP;
  EBP = newEBP;
  ESI = newESI;
  EDI = newEDI;

  writeEFlags(newEFLAGS, EFlagsValidMask);

  // Fill in selectors for all segment registers.  If errors
  // occur later, the selectors will at least be loaded.
  parse_selector(raw_cs_selector, &cs_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
  parse_selector(raw_ds_selector, &ds_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
  parse_selector(raw_es_selector, &es_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
  parse_selector(raw_ss_selector, &ss_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
  parse_selector(raw_fs_selector, &fs_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
  parse_selector(raw_gs_selector, &gs_selector);
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;

  parse_selector(raw_ldt_selector, &ldt_selector);
  BX_CPU_THIS_PTR ldtr.selector = ldt_selector;

  // Start out with invalid descriptor caches, fill in
  // with values only as they are validated.
  BX_CPU_THIS_PTR ldtr.cache.valid = 0;
  BX_CPU_THIS_PTR ldtr.cache.u.system.limit = 0;
  BX_CPU_THIS_PTR ldtr.cache.u.system.limit_scaled = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
  BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;

  // LDTR
  if (ldt_selector.ti) {
    // LDT selector must be in GDT
    BX_INFO(("task_switch(exception after commit point): bad LDT selector TI=1"));
    exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
  }

  if ((raw_ldt_selector & 0xfffc) != 0) {
    bx_bool good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
    if (!good) {
      BX_ERROR(("task_switch(exception after commit point): bad LDT fetch"));
      exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
    }

    parse_descriptor(dword1, dword2, &ldt_descriptor);

    // LDT selector of new task is valid, else #TS(new task's LDT)
    if (ldt_descriptor.valid==0 ||
        ldt_descriptor.type!=BX_SYS_SEGMENT_LDT ||
        ldt_descriptor.segment)
    {
      BX_ERROR(("task_switch(exception after commit point): bad LDT segment"));
      exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
    }

    // LDT of new task is present in memory, else #TS(new tasks's LDT)
    if (! IS_PRESENT(ldt_descriptor)) {
      BX_ERROR(("task_switch(exception after commit point): LDT not present"));
      exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0);
    }

    // All checks pass, fill in LDTR shadow cache
    BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
  }
  else {
    // NULL LDT selector is OK, leave cache invalid
  }

  if (v8086_mode()) {
    // load seg regs as 8086 registers
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
    load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
  }
  else {

    // SS
    if ((raw_ss_selector & 0xfffc) != 0)
    {
      bx_bool good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
      if (!good) {
        BX_ERROR(("task_switch(exception after commit point): bad SS fetch"));
        exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
      }

      parse_descriptor(dword1, dword2, &ss_descriptor);
      // SS selector must be within its descriptor table limits else #TS(SS)
      // SS descriptor AR byte must must indicate writable data segment,
      // else #TS(SS)
      if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
           IS_CODE_SEGMENT(ss_descriptor.type) ||
          !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
      {
        BX_ERROR(("task_switch(exception after commit point): SS not valid or writeable segment"));
        exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
      }

      //
      // Stack segment is present in memory, else #SS(new stack segment)
      //
      if (! IS_PRESENT(ss_descriptor)) {
        BX_ERROR(("task_switch(exception after commit point): SS not present"));
        exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
      }

      // Stack segment DPL matches CS.RPL, else #TS(new stack segment)
      if (ss_descriptor.dpl != cs_selector.rpl) {
        BX_ERROR(("task_switch(exception after commit point): SS.rpl != CS.RPL"));
        exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
      }

      // Stack segment DPL matches selector RPL, else #TS(new stack segment)
      if (ss_descriptor.dpl != ss_selector.rpl) {
        BX_ERROR(("task_switch(exception after commit point): SS.dpl != SS.rpl"));
        exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
      }

      // All checks pass, fill in shadow cache
      BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor;
    }
    else {
      // SS selector is valid, else #TS(new stack segment)
      BX_ERROR(("task_switch(exception after commit point): SS NULL"));
      exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
    }

    // if new selector is not null then perform following checks:
    //    index must be within its descriptor table limits else #TS(selector)
    //    AR byte must indicate data or readable code else #TS(selector)
    //    if data or non-conforming code then:
    //      DPL must be >= CPL else #TS(selector)
    //      DPL must be >= RPL else #TS(selector)
    //    AR byte must indicate PRESENT else #NP(selector)
    //    load cache with new segment descriptor and set valid bit

    // CS
    if ((raw_cs_selector & 0xfffc) != 0) {
      bx_bool good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
      if (!good) {
        BX_ERROR(("task_switch(exception after commit point): bad CS fetch"));
        exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
      }

      parse_descriptor(dword1, dword2, &cs_descriptor);

      // CS descriptor AR byte must indicate code segment else #TS(CS)
      if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
          IS_DATA_SEGMENT(cs_descriptor.type))
      {
        BX_ERROR(("task_switch(exception after commit point): CS not valid executable seg"));
        exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
      }

      // if non-conforming then DPL must equal selector RPL else #TS(CS)
      if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) &&
          cs_descriptor.dpl != cs_selector.rpl)
      {
        BX_ERROR(("task_switch(exception after commit point): non-conforming: CS.dpl!=CS.RPL"));
        exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
      }

      // if conforming then DPL must be <= selector RPL else #TS(CS)
      if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) &&
          cs_descriptor.dpl > cs_selector.rpl)
      {
        BX_ERROR(("task_switch(exception after commit point): conforming: CS.dpl>RPL"));
        exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
      }

      // Code segment is present in memory, else #NP(new code segment)
      if (! IS_PRESENT(cs_descriptor)) {
        BX_ERROR(("task_switch(exception after commit point): CS.p==0"));
        exception(BX_NP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
      }

      // All checks pass, fill in shadow cache
      BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor;
    }
    else {
      // If new cs selector is null #TS(CS)
      BX_ERROR(("task_switch(exception after commit point): CS NULL"));
      exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0);
    }

#if BX_SUPPORT_ICACHE
    BX_CPU_THIS_PTR updateFetchModeMask();
#endif

#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
    handleAlignmentCheck(); // task switch, CPL was modified
#endif

    task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
        &ds_selector, raw_ds_selector, cs_selector.rpl);
    task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
        &es_selector, raw_es_selector, cs_selector.rpl);
    task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
        &fs_selector, raw_fs_selector, cs_selector.rpl);
    task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
        &gs_selector, raw_gs_selector, cs_selector.rpl);
  }

  if ((tss_descriptor->type>=9) && (trap_word & 0x1)) {
    BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6
    BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
    BX_INFO(("task_switch: T bit set in new TSS"));
  }

  //
  // Step 14: Begin execution of new task.
  //
  BX_DEBUG(("TASKING: LEAVE"));
}
Beispiel #6
0
BX_CPU_C::call_gate64(bx_selector_t *gate_selector)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2, dword3;
  bx_descriptor_t cs_descriptor;
  bx_descriptor_t gate_descriptor;

  // examine code segment selector in call gate descriptor
  BX_DEBUG(("call_gate64: CALL 64bit call gate"));

  fetch_raw_descriptor_64(gate_selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &gate_descriptor);

  Bit16u dest_selector = gate_descriptor.u.gate.dest_selector;
  // selector must not be null else #GP(0)
  if ((dest_selector & 0xfffc) == 0) {
    BX_ERROR(("call_gate64: selector in gate null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(dest_selector, &cs_selector);
  // selector must be within its descriptor table limits,
  //   else #GP(code segment selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // find the RIP in the gate_descriptor
  Bit64u new_RIP = gate_descriptor.u.gate.dest_offset;
  new_RIP |= ((Bit64u)dword3 << 32);

  // AR byte of selected descriptor must indicate code segment,
  //   else #GP(code segment selector)
  // DPL of selected descriptor must be <= CPL,
  // else #GP(code segment selector)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) ||
      cs_descriptor.dpl > CPL)
  {
    BX_ERROR(("call_gate64: selected descriptor is not code"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
  }

  // In long mode, only 64-bit call gates are allowed, and they must point
  // to 64-bit code segments, else #GP(selector)
  if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b)
  {
    BX_ERROR(("call_gate64: not 64-bit code segment in call gate 64"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
  }

  // code segment must be present else #NP(selector)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("call_gate64: code segment not present !"));
    exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0);
  }

  Bit64u old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
  Bit64u old_RIP = RIP;

  // CALL GATE TO MORE PRIVILEGE
  // if non-conforming code segment and DPL < CPL then
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
  {
    Bit64u RSP_for_cpl_x;

    BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

    // get new RSP for new privilege level from TSS
    get_RSP_from_TSS(cs_descriptor.dpl, &RSP_for_cpl_x);

    Bit64u old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
    Bit64u old_RSP = RSP;

    if (! IsCanonical(RSP_for_cpl_x)) {
      // #SS(selector) when changing priviledge level
      BX_ERROR(("call_gate64: canonical address failure %08x%08x",
         GET32H(RSP_for_cpl_x), GET32L(RSP_for_cpl_x)));
      exception(BX_SS_EXCEPTION, old_SS & 0xfffc, 0);
    }

    // push old stack long pointer onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x -  8, cs_descriptor.dpl, old_SS);
    write_new_stack_qword_64(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP);
    // push long pointer to return address onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x - 24, cs_descriptor.dpl, old_CS);
    write_new_stack_qword_64(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_RIP);
    RSP_for_cpl_x -= 32;

    // prepare new stack null SS selector
    bx_selector_t ss_selector;
    bx_descriptor_t ss_descriptor;

    // set up a null descriptor
    parse_selector(0, &ss_selector);
    parse_descriptor(0, 0, &ss_descriptor);

    // load CS:RIP (guaranteed to be in 64 bit mode)
    branch_far64(&cs_selector, &cs_descriptor, new_RIP, cs_descriptor.dpl);

    // set up null SS descriptor
    load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);
    RSP = RSP_for_cpl_x;
  }
  else
  {
    BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

    // push to 64-bit stack, switch to long64 guaranteed
    write_new_stack_qword_64(RSP -  8, CPL, old_CS);
    write_new_stack_qword_64(RSP - 16, CPL, old_RIP);
    RSP -= 16;

    // load CS:RIP (guaranteed to be in 64 bit mode)
    branch_far64(&cs_selector, &cs_descriptor, new_RIP, CPL);
  }
}
Beispiel #7
0
BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2;
  bx_descriptor_t cs_descriptor;

  /* new cs selector must not be null, else #GP(0) */
  if ((cs_raw & 0xfffc) == 0) {
    BX_ERROR(("call_protected: CS selector null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(cs_raw, &cs_selector);
  // check new CS selector index within its descriptor limits,
  // else #GP(new CS selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // examine AR byte of selected descriptor for various legal values
  if (cs_descriptor.valid==0) {
    BX_ERROR(("call_protected: invalid CS descriptor"));
    exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
  }

  if (cs_descriptor.segment)   // normal segment
  {
    check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL);

#if BX_SUPPORT_X86_64
    if (i->os64L()) {
      // push return address onto stack (CS padded to 64bits)
      push_64((Bit64u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_64(RIP);
    }
    else
#endif
    if (i->os32L()) {
      // push return address onto stack (CS padded to 32bits)
      push_32((Bit32u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_32(EIP);
    }
    else {
      // push return address onto stack
      push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_16(IP);
    }

    // load code segment descriptor into CS cache
    // load CS with new code segment selector
    // set RPL of CS to CPL
    branch_far64(&cs_selector, &cs_descriptor, disp, CPL);

    return;
  }
  else { // gate & special segment
    bx_descriptor_t  gate_descriptor = cs_descriptor;
    bx_selector_t    gate_selector = cs_selector;
    Bit32u new_EIP;
    Bit16u dest_selector;
    Bit16u          raw_tss_selector;
    bx_selector_t   tss_selector;
    bx_descriptor_t tss_descriptor;
    Bit32u temp_eIP;

    // descriptor DPL must be >= CPL else #GP(gate selector)
    if (gate_descriptor.dpl < CPL) {
      BX_ERROR(("call_protected: descriptor.dpl < CPL"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

    // descriptor DPL must be >= gate selector RPL else #GP(gate selector)
    if (gate_descriptor.dpl < gate_selector.rpl) {
      BX_ERROR(("call_protected: descriptor.dpl < selector.rpl"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

#if BX_SUPPORT_X86_64
    if (long_mode()) {
      // call gate type is higher priority than non-present bit check
      if (gate_descriptor.type != BX_386_CALL_GATE) {
        BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type));
        exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
      }
    }
    else
#endif
    {
      switch (gate_descriptor.type) {
        case BX_SYS_SEGMENT_AVAIL_286_TSS:
        case BX_SYS_SEGMENT_AVAIL_386_TSS:
        case BX_TASK_GATE:
        case BX_286_CALL_GATE:
        case BX_386_CALL_GATE:
          break;
        default:
          BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type));
          exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
      }
    }

    // gate descriptor must be present else #NP(gate selector)
    if (! IS_PRESENT(gate_descriptor)) {
      BX_ERROR(("call_protected: gate not present"));
      exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

#if BX_SUPPORT_X86_64
    if (long_mode()) {
      call_gate64(&gate_selector);
      return;
    }
#endif

    switch (gate_descriptor.type) {
      case BX_SYS_SEGMENT_AVAIL_286_TSS:
      case BX_SYS_SEGMENT_AVAIL_386_TSS:

        if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS)
          BX_DEBUG(("call_protected: 16bit available TSS"));
        else
          BX_DEBUG(("call_protected: 32bit available TSS"));

        // SWITCH_TASKS _without_ nesting to TSS
        task_switch(&gate_selector, &gate_descriptor,
          BX_TASK_FROM_CALL_OR_INT, dword1, dword2);

        // EIP must be in code seg limit, else #GP(0)
        if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
          BX_ERROR(("call_protected: EIP not within CS limits"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
        return;

      case BX_TASK_GATE:
        // examine selector to TSS, given in Task Gate descriptor
        // must specify global in the local/global bit else #TS(TSS selector)
        raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
        parse_selector(raw_tss_selector, &tss_selector);

        if (tss_selector.ti) {
          BX_ERROR(("call_protected: tss_selector.ti=1"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // index must be within GDT limits else #TS(TSS selector)
        fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION);

        parse_descriptor(dword1, dword2, &tss_descriptor);

        // descriptor AR byte must specify available TSS
        //   else #GP(TSS selector)
        if (tss_descriptor.valid==0 || tss_descriptor.segment) {
          BX_ERROR(("call_protected: TSS selector points to bad TSS"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }
        if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
            tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)
        {
          BX_ERROR(("call_protected: TSS selector points to bad TSS"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // task state segment must be present, else #NP(tss selector)
        if (! IS_PRESENT(tss_descriptor)) {
          BX_ERROR(("call_protected: task descriptor.p == 0"));
          exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // SWITCH_TASKS without nesting to TSS
        task_switch(&tss_selector, &tss_descriptor,
                    BX_TASK_FROM_CALL_OR_INT, dword1, dword2);

        // EIP must be within code segment limit, else #TS(0)
        if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
          temp_eIP = EIP;
        else
          temp_eIP =  IP;

        if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled)
        {
          BX_ERROR(("call_protected: EIP > CS.limit"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
        return;

      case BX_286_CALL_GATE:
      case BX_386_CALL_GATE:
        // examine code segment selector in call gate descriptor
        BX_DEBUG(("call_protected: call gate"));
        dest_selector = gate_descriptor.u.gate.dest_selector;
        new_EIP       = gate_descriptor.u.gate.dest_offset;

        // selector must not be null else #GP(0)
        if ((dest_selector & 0xfffc) == 0) {
          BX_ERROR(("call_protected: selector in gate null"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }

        parse_selector(dest_selector, &cs_selector);
        // selector must be within its descriptor table limits,
        //   else #GP(code segment selector)
        fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
        parse_descriptor(dword1, dword2, &cs_descriptor);

        // AR byte of selected descriptor must indicate code segment,
        //   else #GP(code segment selector)
        // DPL of selected descriptor must be <= CPL,
        // else #GP(code segment selector)
        if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
            IS_DATA_SEGMENT(cs_descriptor.type) ||
            cs_descriptor.dpl > CPL)
        {
          BX_ERROR(("call_protected: selected descriptor is not code"));
          exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
        }

        // code segment must be present else #NP(selector)
        if (! IS_PRESENT(cs_descriptor)) {
          BX_ERROR(("call_protected: code segment not present !"));
          exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0);
        }

        // CALL GATE TO MORE PRIVILEGE
        // if non-conforming code segment and DPL < CPL then
        if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
        {
          Bit16u SS_for_cpl_x;
          Bit32u ESP_for_cpl_x;
          bx_selector_t   ss_selector;
          bx_descriptor_t ss_descriptor;
          Bit16u   return_SS, return_CS;
          Bit32u   return_ESP, return_EIP;
          Bit16u   parameter_word[32];
          Bit32u   parameter_dword[32];

          BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

          // get new SS selector for new privilege level from TSS
          get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);

          // check selector & descriptor for new SS:
          // selector must not be null, else #TS(0)
          if ((SS_for_cpl_x & 0xfffc) == 0) {
            BX_ERROR(("call_protected: new SS null"));
            exception(BX_TS_EXCEPTION, 0, 0);
          }

          // selector index must be within its descriptor table limits,
          //   else #TS(SS selector)
          parse_selector(SS_for_cpl_x, &ss_selector);
          fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
          parse_descriptor(dword1, dword2, &ss_descriptor);

          // selector's RPL must equal DPL of code segment,
          //   else #TS(SS selector)
          if (ss_selector.rpl != cs_descriptor.dpl) {
            BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // stack segment DPL must equal DPL of code segment,
          //   else #TS(SS selector)
          if (ss_descriptor.dpl != cs_descriptor.dpl) {
            BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // descriptor must indicate writable data segment,
          //   else #TS(SS selector)
          if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
               IS_CODE_SEGMENT(ss_descriptor.type) ||
              !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
          {
            BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // segment must be present, else #SS(SS selector)
          if (! IS_PRESENT(ss_descriptor)) {
            BX_ERROR(("call_protected: ss descriptor not present"));
            exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // get word count from call gate, mask to 5 bits
          unsigned param_count = gate_descriptor.u.gate.param_count & 0x1f;

          // save return SS:eSP to be pushed on new stack
          return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
          if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
            return_ESP = ESP;
          else
            return_ESP =  SP;

          // save return CS:eIP to be pushed on new stack
          return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
          if (cs_descriptor.u.segment.d_b)
            return_EIP = EIP;
          else
            return_EIP = IP;

          if (gate_descriptor.type==BX_286_CALL_GATE) {
            for (unsigned i=0; i<param_count; i++) {
              parameter_word[i] = read_virtual_word(BX_SEG_REG_SS, return_ESP + i*2);
            }
          }
          else {
            for (unsigned i=0; i<param_count; i++) {
              parameter_dword[i] = read_virtual_dword(BX_SEG_REG_SS, return_ESP + i*4);
            }
          }

          // Prepare new stack segment
          bx_segment_reg_t new_stack;
          new_stack.selector = ss_selector;
          new_stack.cache = ss_descriptor;
          new_stack.selector.rpl = cs_descriptor.dpl;
          // add cpl to the selector value
          new_stack.selector.value = (0xfffc & new_stack.selector.value) |
            new_stack.selector.rpl;

          /* load new SS:SP value from TSS */
          if (ss_descriptor.u.segment.d_b) {
            Bit32u temp_ESP = ESP_for_cpl_x;

            // push pointer of old stack onto new stack
            if (gate_descriptor.type==BX_386_CALL_GATE) {
              write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
              write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
              temp_ESP -= 8;

              for (unsigned i=param_count; i>0; i--) {
                temp_ESP -= 4;
                write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_dword[i-1]);
              }
              // push return address onto new stack
              write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
              write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
              temp_ESP -= 8;
            }
            else {
              write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
              write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
              temp_ESP -= 4;

              for (unsigned i=param_count; i>0; i--) {
                temp_ESP -= 2;
                write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_word[i-1]);
              }
              // push return address onto new stack
              write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
              write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
              temp_ESP -= 4;
            }

            ESP = temp_ESP;
          }
          else {
            Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

            // push pointer of old stack onto new stack
            if (gate_descriptor.type==BX_386_CALL_GATE) {
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
              temp_SP -= 8;

              for (unsigned i=param_count; i>0; i--) {
                temp_SP -= 4;
                write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_dword[i-1]);
              }
              // push return address onto new stack
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
              temp_SP -= 8;
            }
            else {
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
              temp_SP -= 4;

              for (unsigned i=param_count; i>0; i--) {
                temp_SP -= 2;
                write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_word[i-1]);
              }
              // push return address onto new stack
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
              temp_SP -= 4;
            }

            SP = temp_SP;
          }

          // new eIP must be in code segment limit else #GP(0)
          if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
            BX_ERROR(("call_protected: EIP not within CS limits"));
            exception(BX_GP_EXCEPTION, 0, 0);
          }

          /* load SS descriptor */
          load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

          /* load new CS:IP value from gate */
          /* load CS descriptor */
          /* set CPL to stack segment DPL */
          /* set RPL of CS to CPL */
          load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
          EIP = new_EIP;
        }
        else   // CALL GATE TO SAME PRIVILEGE
        {
          BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

          if (gate_descriptor.type == BX_386_CALL_GATE) {
            // call gate 32bit, push return address onto stack
            push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
            push_32(EIP);
          }
          else {
            // call gate 16bit, push return address onto stack
            push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
            push_16(IP);
          }

          // load CS:EIP from gate
          // load code segment descriptor into CS register
          // set RPL of CS to CPL
          branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
        }
        return;

      default: // can't get here
        BX_PANIC(("call_protected: gate type %u unsupported", (unsigned) cs_descriptor.type));
        exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }
  }
}
Beispiel #8
0
void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate(bx_descriptor_t *gate_descriptor)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2;
  bx_descriptor_t cs_descriptor;

  // examine code segment selector in call gate descriptor
  BX_DEBUG(("call_protected: call gate"));

  Bit16u dest_selector = gate_descriptor->u.gate.dest_selector;
  Bit32u new_EIP       = gate_descriptor->u.gate.dest_offset;

  // selector must not be null else #GP(0)
  if ((dest_selector & 0xfffc) == 0) {
    BX_ERROR(("call_protected: selector in gate null"));
    exception(BX_GP_EXCEPTION, 0);
  }

  parse_selector(dest_selector, &cs_selector);
  // selector must be within its descriptor table limits,
  //   else #GP(code segment selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // AR byte of selected descriptor must indicate code segment,
  //   else #GP(code segment selector)
  // DPL of selected descriptor must be <= CPL,
  // else #GP(code segment selector)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL)
  {
    BX_ERROR(("call_protected: selected descriptor is not code"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc);
  }

  // code segment must be present else #NP(selector)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("call_protected: code segment not present !"));
    exception(BX_NP_EXCEPTION, dest_selector & 0xfffc);
  }

  // CALL GATE TO MORE PRIVILEGE
  // if non-conforming code segment and DPL < CPL then
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
  {
    Bit16u SS_for_cpl_x;
    Bit32u ESP_for_cpl_x;
    bx_selector_t   ss_selector;
    bx_descriptor_t ss_descriptor;
    Bit16u   return_SS, return_CS;
    Bit32u   return_ESP, return_EIP;

    BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

    // get new SS selector for new privilege level from TSS
    get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);

    // check selector & descriptor for new SS:
    // selector must not be null, else #TS(0)
    if ((SS_for_cpl_x & 0xfffc) == 0) {
      BX_ERROR(("call_protected: new SS null"));
      exception(BX_TS_EXCEPTION, 0);
    }

    // selector index must be within its descriptor table limits,
    //   else #TS(SS selector)
    parse_selector(SS_for_cpl_x, &ss_selector);
    fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
    parse_descriptor(dword1, dword2, &ss_descriptor);

    // selector's RPL must equal DPL of code segment,
    //   else #TS(SS selector)
    if (ss_selector.rpl != cs_descriptor.dpl) {
      BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // stack segment DPL must equal DPL of code segment,
    //   else #TS(SS selector)
    if (ss_descriptor.dpl != cs_descriptor.dpl) {
      BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // descriptor must indicate writable data segment,
    //   else #TS(SS selector)
    if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
        IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
    {
      BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // segment must be present, else #SS(SS selector)
    if (! IS_PRESENT(ss_descriptor)) {
      BX_ERROR(("call_protected: ss descriptor not present"));
      exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // get word count from call gate, mask to 5 bits
    unsigned param_count = gate_descriptor->u.gate.param_count & 0x1f;

    // save return SS:eSP to be pushed on new stack
    return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
    if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
      return_ESP = ESP;
    else
      return_ESP =  SP;

    // save return CS:eIP to be pushed on new stack
    return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
    if (cs_descriptor.u.segment.d_b)
      return_EIP = EIP;
    else
      return_EIP = IP;

    // Prepare new stack segment
    bx_segment_reg_t new_stack;
    new_stack.selector = ss_selector;
    new_stack.cache = ss_descriptor;
    new_stack.selector.rpl = cs_descriptor.dpl;
    // add cpl to the selector value
    new_stack.selector.value = (0xfffc & new_stack.selector.value) |
    new_stack.selector.rpl;

    /* load new SS:SP value from TSS */
    if (ss_descriptor.u.segment.d_b) {
      Bit32u temp_ESP = ESP_for_cpl_x;

      // push pointer of old stack onto new stack
      if (gate_descriptor->type==BX_386_CALL_GATE) {
        write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
        write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
        temp_ESP -= 8;

        for (unsigned n=param_count; n>0; n--) {
          temp_ESP -= 4;
          Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
          write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
        write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
        temp_ESP -= 8;
      }
      else {
        write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
        write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
        temp_ESP -= 4;

        for (unsigned n=param_count; n>0; n--) {
          temp_ESP -= 2;
          Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
          write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
        write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
        temp_ESP -= 4;
      }

      ESP = temp_ESP;
    }
    else {
      Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

      // push pointer of old stack onto new stack
      if (gate_descriptor->type==BX_386_CALL_GATE) {
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
        temp_SP -= 8;

        for (unsigned n=param_count; n>0; n--) {
          temp_SP -= 4;
          Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
          write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
        temp_SP -= 8;
      }
      else {
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
        temp_SP -= 4;

        for (unsigned n=param_count; n>0; n--) {
          temp_SP -= 2;
          Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
          write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
        temp_SP -= 4;
      }

      SP = temp_SP;
    }

    // new eIP must be in code segment limit else #GP(0)
    if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
      BX_ERROR(("call_protected: EIP not within CS limits"));
      exception(BX_GP_EXCEPTION, 0);
    }

    /* load SS descriptor */
    load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

    /* load new CS:IP value from gate */
    /* load CS descriptor */
    /* set CPL to stack segment DPL */
    /* set RPL of CS to CPL */
    load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
    EIP = new_EIP;
  }
  else   // CALL GATE TO SAME PRIVILEGE
  {
    BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

    if (gate_descriptor->type == BX_386_CALL_GATE) {
      // call gate 32bit, push return address onto stack
      push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_32(EIP);
    }
    else {
      // call gate 16bit, push return address onto stack
      push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_16(IP);
    }

    // load CS:EIP from gate
    // load code segment descriptor into CS register
    // set RPL of CS to CPL
    branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
  }
}