REB_R N_debug(REBFRM *frame_) { PARAM(1, value); REBVAL *value = ARG(value); if (IS_VOID(value)) { // // e.g. just `>> debug` and [enter] in the console. Ideally this // would shift the REPL into a mode where all commands issued were // assumed to be in the debug dialect, similar to Ren Garden's // modalities like `debug>>`. // Debug_Fmt("Sorry, there is no debug>> 'mode' yet in the console."); goto modify_with_confidence; } if (IS_INTEGER(value) || IS_FRAME(value) || IS_FUNCTION(value)) { REBFRM *frame; // We pass TRUE here to account for an extra stack level... the one // added by DEBUG itself, which presumably should not count. // if (!(frame = Frame_For_Stack_Level(&HG_Stack_Level, value, TRUE))) fail (Error_Invalid_Arg(value)); Val_Init_Block(D_OUT, Make_Where_For_Frame(frame)); return R_OUT; } assert(IS_BLOCK(value)); Debug_Fmt( "Sorry, but the `debug [...]` dialect is not defined yet.\n" "Change the stack level (integer!, frame!, function!)\n" "Or try out these commands:\n" "\n" " BREAKPOINT, RESUME, BACKTRACE\n" ); modify_with_confidence: Debug_Fmt( "(Note: Ren-C is 'modify-with-confidence'...so just because a debug\n" "feature you want isn't implemented doesn't mean you can't add it!)\n" ); return R_BLANK; }
// // Reduce_Any_Array_Throws: C // // Reduce array from the index position specified in the value. // // If `into` then splice into the existing `out`. Otherwise, overwrite the // `out` with all values collected from the stack, into an array matching the // type of the input. So [1 + 1 2 + 2] => [3 4], and 1/+/1/2/+/2 => 3/4 // REBOOL Reduce_Any_Array_Throws( REBVAL *out, REBVAL *any_array, REBOOL into ) { REBDSP dsp_orig = DSP; Reb_Enumerator e; PUSH_SAFE_ENUMERATOR(&e, any_array); // REDUCE-ing could disrupt any-array while (NOT_END(e.value)) { UPDATE_EXPRESSION_START(&e); // informs the error delivery better REBVAL reduced; DO_NEXT_REFETCH_MAY_THROW(&reduced, &e, DO_FLAG_NORMAL); if (THROWN(&reduced)) { *out = reduced; DS_DROP_TO(dsp_orig); DROP_SAFE_ENUMERATOR(&e); return TRUE; } if (IS_VOID(&reduced)) { // // !!! Review if there should be a form of reduce which allows // void expressions. The general feeling is that it shouldn't // be allowed by default, since N expressions would not make N // results...and reduce is often used for positional purposes. // Substituting anything (like a NONE!, or anything else) would // perhaps be disingenuous. // fail (Error(RE_REDUCE_MADE_VOID)); } DS_PUSH(&reduced); } if (into) Pop_Stack_Values_Into(out, dsp_orig); else Val_Init_Array(out, VAL_TYPE(any_array), Pop_Stack_Values(dsp_orig)); DROP_SAFE_ENUMERATOR(&e); return FALSE; }
// // Modify_Array: C // // Returns new dst_idx // REBCNT Modify_Array( REBCNT action, // INSERT, APPEND, CHANGE REBARR *dst_arr, // target REBCNT dst_idx, // position const REBVAL *src_val, // source REBCNT flags, // AN_ONLY, AN_PART REBINT dst_len, // length to remove REBINT dups // dup count ) { REBCNT tail = ARR_LEN(dst_arr); REBINT ilen = 1; // length to be inserted const RELVAL *src_rel; REBCTX *specifier; if (IS_VOID(src_val) || dups < 0) { // If they are effectively asking for "no action" then all we have // to do is return the natural index result for the operation. // (APPEND will return 0, insert the tail of the insertion...so index) return (action == SYM_APPEND) ? 0 : dst_idx; } if (action == SYM_APPEND || dst_idx > tail) dst_idx = tail; // Check /PART, compute LEN: if (!GET_FLAG(flags, AN_ONLY) && ANY_ARRAY(src_val)) { // Adjust length of insertion if changing /PART: if (action != SYM_CHANGE && GET_FLAG(flags, AN_PART)) ilen = dst_len; else ilen = VAL_LEN_AT(src_val); // Are we modifying ourselves? If so, copy src_val block first: if (dst_arr == VAL_ARRAY(src_val)) { REBARR *copy = Copy_Array_At_Shallow( VAL_ARRAY(src_val), VAL_INDEX(src_val), VAL_SPECIFIER(src_val) ); MANAGE_ARRAY(copy); // !!! Review: worth it to not manage and free? src_rel = ARR_HEAD(copy); specifier = SPECIFIED; // copy already specified it } else { src_rel = VAL_ARRAY_AT(src_val); // skips by VAL_INDEX values specifier = VAL_SPECIFIER(src_val); } } else { // use passed in RELVAL and specifier src_rel = src_val; specifier = SPECIFIED; // it's a REBVAL, not a RELVAL, so specified } REBINT size = dups * ilen; // total to insert if (action != SYM_CHANGE) { // Always expand dst_arr for INSERT and APPEND actions: Expand_Series(ARR_SERIES(dst_arr), dst_idx, size); } else { if (size > dst_len) Expand_Series(ARR_SERIES(dst_arr), dst_idx, size-dst_len); else if (size < dst_len && GET_FLAG(flags, AN_PART)) Remove_Series(ARR_SERIES(dst_arr), dst_idx, dst_len-size); else if (size + dst_idx > tail) { EXPAND_SERIES_TAIL(ARR_SERIES(dst_arr), size - (tail - dst_idx)); } } tail = (action == SYM_APPEND) ? 0 : size + dst_idx; #if !defined(NDEBUG) if (IS_ARRAY_MANAGED(dst_arr)) { REBINT i; for (i = 0; i < ilen; ++i) ASSERT_VALUE_MANAGED(&src_rel[i]); } #endif for (; dups > 0; dups--) { REBINT index = 0; for (; index < ilen; ++index, ++dst_idx) { COPY_VALUE( SINK(ARR_HEAD(dst_arr) + dst_idx), src_rel + index, specifier ); } } TERM_ARRAY_LEN(dst_arr, ARR_LEN(dst_arr)); ASSERT_ARRAY(dst_arr); return tail; }
expv compile_intrinsic_call0(ID id, expv args, int ignoreTypeMismatch) { intrinsic_entry *ep = NULL; int found = 0; int nArgs = 0; int nIntrArgs = 0; int i; expv ret = NULL; expv a = NULL; TYPE_DESC tp = NULL, ftp; list lp; INTR_OPS iOps = INTR_END; const char *iName = NULL; expv kindV = NULL; int typeNotMatch = 0; int isVarArgs = 0; EXT_ID extid; if (SYM_TYPE(ID_SYM(id)) != S_INTR) { if (args == NULL) { args = list0(LIST); } tp = ID_TYPE(id); if (tp == NULL) { warning_at_node(args, "unknown type of '%s' declared as intrinsic", SYM_NAME(ID_SYM(id))); ID_TYPE(id) = BASIC_TYPE_DESC(TYPE_GNUMERIC_ALL); TYPE_ATTR_FLAGS(ID_TYPE(id)) = TYPE_ATTR_FLAGS(id); tp = ID_TYPE(id); } expv symV = expv_sym_term(F_FUNC, NULL, ID_SYM(id)); if (IS_PROCEDURE_TYPE(tp)) { ftp = tp; tp = FUNCTION_TYPE_RETURN_TYPE(ftp); } else { ftp = intrinsic_function_type(tp); extid = new_external_id_for_external_decl(ID_SYM(id), ftp); ID_TYPE(id) = ftp; PROC_EXT_ID(id) = extid; if (TYPE_IS_EXTERNAL(tp)){ ID_STORAGE(id) = STG_EXT; } else { EXT_PROC_CLASS(extid) = EP_INTRINSIC; } } EXPV_TYPE(symV) = ftp; return expv_cons(FUNCTION_CALL, tp, symV, args); } ep = &(intrinsic_table[SYM_VAL(ID_SYM(id))]); iOps = INTR_OP(ep); iName = ID_NAME(id); /* Count a number of argument, first. */ nArgs = 0; if (args == NULL) { args = list0(LIST); } FOR_ITEMS_IN_LIST(lp, args) { nArgs++; } /* Search an intrinsic by checking argument types. */ found = 0; for (; ((INTR_OP(ep) == iOps) && ((strcasecmp(iName, INTR_NAME(ep)) == 0) || !(isValidString(INTR_NAME(ep))))); ep++) { kindV = NULL; typeNotMatch = 0; isVarArgs = 0; /* Check a number of arguments. */ if (INTR_N_ARGS(ep) < 0 || INTR_N_ARGS(ep) == nArgs) { /* varriable args or no kind arg. */ if (INTR_N_ARGS(ep) < 0) { isVarArgs = 1; } nIntrArgs = nArgs; } else if (INTR_HAS_KIND_ARG(ep) && ((INTR_N_ARGS(ep) + 1) == nArgs)) { /* could be intrinsic call with kind arg. */ expv lastV = expr_list_get_n(args, nArgs - 1); if (lastV == NULL) { return NULL; /* error recovery */ } if (EXPV_KW_IS_KIND(lastV)) { goto gotKind; } tp = EXPV_TYPE(lastV); if (!(isValidType(tp))) { return NULL; /* error recovery */ } if (TYPE_BASIC_TYPE(tp) != TYPE_INT) { /* kind arg must be integer type. */ continue; } gotKind: nIntrArgs = INTR_N_ARGS(ep); kindV = lastV; } else { continue; } /* The number of arguments matchs. Then check types. */ for (i = 0; i < nIntrArgs; i++) { a = expr_list_get_n(args, i); if (a == NULL) { return NULL; /* error recovery */ } tp = EXPV_TYPE(a); if (!(isValidType(tp))) { //return NULL; /* error recovery */ continue; } if (i == 1 && INTR_ARG_TYPE(ep)[i] == INTR_TYPE_PASSIGNABLE) { if (expv_is_pointer_assignable(NULL, expr_list_get_n(args, 0), a)) { break; } } if (compare_intrinsic_arg_type(a, tp, ((isVarArgs == 0) ? INTR_ARG_TYPE(ep)[i] : INTR_ARG_TYPE(ep)[0])) != 0) { /* Type mismatch. */ typeNotMatch = 1; break; } } if (typeNotMatch == 1) { continue; } else { found = 1; break; } } if (found == 1) { /* Yes we found an intrinsic to use. */ SYMBOL sp = NULL; expv symV = NULL; /* Then we have to determine return type. */ if (INTR_RETURN_TYPE(ep) != INTR_TYPE_NONE) { tp = get_intrinsic_return_type(ep, args, kindV); if (!(isValidType(tp))) { //fatal("%s: can't determine return type.", __func__); //return NULL; tp = BASIC_TYPE_DESC(TYPE_GNUMERIC_ALL); } } else { tp = type_VOID; } /* Finally find symbol for the intrinsic and make it expv. */ sp = find_symbol((char *)iName); if (sp == NULL) { fatal("%s: symbol '%s' is not created??", __func__, INTR_NAME(ep)); /* not reached */ return NULL; } symV = expv_sym_term(F_FUNC, NULL, sp); if (symV == NULL) { fatal("%s: symbol expv creation failure.", __func__); /* not reached */ return NULL; } if (IS_VOID(tp)) { TYPE_DESC ret = new_type_desc(); *ret = *tp; tp = intrinsic_subroutine_type(); } else { TYPE_DESC ret = new_type_desc(); *ret = *tp; tp = intrinsic_function_type(ret); } if (ID_TYPE(id)) { *ID_TYPE(id) = *tp; } else { ID_TYPE(id) = tp; } /* set external id for functionType's type ID. * dont call declare_external_id() */ extid = new_external_id_for_external_decl(ID_SYM(id), tp); PROC_EXT_ID(id) = extid; if(TYPE_IS_EXTERNAL(tp)){ ID_STORAGE(id) = STG_EXT; }else{ EXT_PROC_CLASS(extid) = EP_INTRINSIC; } ret = expv_cons(FUNCTION_CALL, FUNCTION_TYPE_RETURN_TYPE(tp), symV, args); } if (ret == NULL && !ignoreTypeMismatch) { error_at_node((expr)args, "argument(s) mismatch for an intrinsic '%s()'.", iName); } return ret; }
// // Compose_Any_Array_Throws: C // // Compose a block from a block of un-evaluated values and GROUP! arrays that // are evaluated. This calls into Do_Core, so if 'into' is provided, then its // series must be protected from garbage collection. // // deep - recurse into sub-blocks // only - parens that return blocks are kept as blocks // // Writes result value at address pointed to by out. // REBOOL Compose_Any_Array_Throws( REBVAL *out, const REBVAL *any_array, REBOOL deep, REBOOL only, REBOOL into ) { REBDSP dsp_orig = DSP; Reb_Enumerator e; PUSH_SAFE_ENUMERATOR(&e, any_array); // evaluating could disrupt any_array while (NOT_END(e.value)) { UPDATE_EXPRESSION_START(&e); // informs the error delivery better if (IS_GROUP(e.value)) { // // We evaluate here, but disable lookahead so it only evaluates // the GROUP! and doesn't trigger errors on what's after it. // REBVAL evaluated; DO_NEXT_REFETCH_MAY_THROW(&evaluated, &e, DO_FLAG_NO_LOOKAHEAD); if (THROWN(&evaluated)) { *out = evaluated; DS_DROP_TO(dsp_orig); DROP_SAFE_ENUMERATOR(&e); return TRUE; } if (IS_BLOCK(&evaluated) && !only) { // // compose [blocks ([a b c]) merge] => [blocks a b c merge] // RELVAL *push = VAL_ARRAY_AT(&evaluated); while (NOT_END(push)) { // // `evaluated` is known to be specific, but its specifier // may be needed to derelativize its children. // DS_PUSH_RELVAL(push, VAL_SPECIFIER(&evaluated)); push++; } } else if (!IS_VOID(&evaluated)) { // // compose [(1 + 2) inserts as-is] => [3 inserts as-is] // compose/only [([a b c]) unmerged] => [[a b c] unmerged] // DS_PUSH(&evaluated); } else { // // compose [(print "Voids *vanish*!")] => [] // } } else if (deep) { if (IS_BLOCK(e.value)) { // // compose/deep [does [(1 + 2)] nested] => [does [3] nested] REBVAL specific; COPY_VALUE(&specific, e.value, e.specifier); REBVAL composed; if (Compose_Any_Array_Throws( &composed, &specific, TRUE, only, into )) { *out = composed; DS_DROP_TO(dsp_orig); DROP_SAFE_ENUMERATOR(&e); return TRUE; } DS_PUSH(&composed); } else { if (ANY_ARRAY(e.value)) { // // compose [copy/(orig) (copy)] => [copy/(orig) (copy)] // !!! path and second group are copies, first group isn't // REBARR *copy = Copy_Array_Shallow( VAL_ARRAY(e.value), IS_RELATIVE(e.value) ? e.specifier // use parent specifier if relative... : VAL_SPECIFIER(const_KNOWN(e.value)) // else child's ); DS_PUSH_TRASH; Val_Init_Array_Index( DS_TOP, VAL_TYPE(e.value), copy, VAL_INDEX(e.value) ); // ...manages } else DS_PUSH_RELVAL(e.value, e.specifier); } FETCH_NEXT_ONLY_MAYBE_END(&e); } else { // // compose [[(1 + 2)] (reverse "wollahs")] => [[(1 + 2)] "shallow"] // DS_PUSH_RELVAL(e.value, e.specifier); FETCH_NEXT_ONLY_MAYBE_END(&e); } } if (into) Pop_Stack_Values_Into(out, dsp_orig); else Val_Init_Array(out, VAL_TYPE(any_array), Pop_Stack_Values(dsp_orig)); DROP_SAFE_ENUMERATOR(&e); return FALSE; }
// // Next_Path_Throws: C // // Evaluate next part of a path. // REBOOL Next_Path_Throws(REBPVS *pvs) { REBPEF dispatcher; // Path must have dispatcher, else return: dispatcher = Path_Dispatch[VAL_TYPE(pvs->value)]; if (!dispatcher) return FALSE; // unwind, then check for errors pvs->item++; //Debug_Fmt("Next_Path: %r/%r", pvs->path-1, pvs->path); // Determine the "selector". See notes on pvs->selector_temp for why // a local variable can't be used for the temporary space. // if (IS_GET_WORD(pvs->item)) { // e.g. object/:field pvs->selector = GET_MUTABLE_VAR_MAY_FAIL(pvs->item, pvs->item_specifier); if (IS_VOID(pvs->selector)) fail (Error_No_Value_Core(pvs->item, pvs->item_specifier)); SET_TRASH_IF_DEBUG(&pvs->selector_temp); } // object/(expr) case: else if (IS_GROUP(pvs->item)) { if (Do_At_Throws( &pvs->selector_temp, VAL_ARRAY(pvs->item), VAL_INDEX(pvs->item), IS_RELATIVE(pvs->item) ? pvs->item_specifier // if relative, use parent specifier... : VAL_SPECIFIER(const_KNOWN(pvs->item)) // ...else use child's )) { *pvs->store = pvs->selector_temp; return TRUE; } pvs->selector = &pvs->selector_temp; } else { // object/word and object/value case: // COPY_VALUE(&pvs->selector_temp, pvs->item, pvs->item_specifier); pvs->selector = &pvs->selector_temp; } switch (dispatcher(pvs)) { case PE_OK: break; case PE_SET_IF_END: if (pvs->opt_setval && IS_END(pvs->item + 1)) { *pvs->value = *pvs->opt_setval; pvs->opt_setval = NULL; } break; case PE_NONE: SET_BLANK(pvs->store); case PE_USE_STORE: pvs->value = pvs->store; pvs->value_specifier = SPECIFIED; break; default: assert(FALSE); } if (NOT_END(pvs->item + 1)) return Next_Path_Throws(pvs); return FALSE; }
// // Do_Path_Throws_Core: C // // Evaluate an ANY_PATH! REBVAL, starting from the index position of that // path value and continuing to the end. // // The evaluator may throw because GROUP! is evaluated, e.g. `foo/(throw 1020)` // // If label_sym is passed in as being non-null, then the caller is implying // readiness to process a path which may be a function with refinements. // These refinements will be left in order on the data stack in the case // that `out` comes back as IS_FUNCTION(). // // If `opt_setval` is given, the path operation will be done as a "SET-PATH!" // if the path evaluation did not throw or error. HOWEVER the set value // is NOT put into `out`. This provides more flexibility on performance in // the evaluator, which may already have the `val` where it wants it, and // so the extra assignment would just be overhead. // // !!! Path evaluation is one of the parts of R3-Alpha that has not been // vetted very heavily by Ren-C, and needs a review and overhaul. // REBOOL Do_Path_Throws_Core( REBVAL *out, REBSTR **label_out, const RELVAL *path, REBCTX *specifier, REBVAL *opt_setval ) { REBPVS pvs; REBDSP dsp_orig = DSP; assert(ANY_PATH(path)); // !!! There is a bug in the dispatch such that if you are running a // set path, it does not always assign the output, because it "thinks you // aren't going to look at it". This presumably originated from before // parens were allowed in paths, and neglects cases like: // // foo/(throw 1020): value // // We always have to check to see if a throw occurred. Until this is // streamlined, we have to at minimum set it to something that is *not* // thrown so that we aren't testing uninitialized memory. A safe trash // will do, which is unset in release builds. // if (opt_setval) SET_TRASH_SAFE(out); // None of the values passed in can live on the data stack, because // they might be relocated during the path evaluation process. // assert(!IN_DATA_STACK_DEBUG(out)); assert(!IN_DATA_STACK_DEBUG(path)); assert(!opt_setval || !IN_DATA_STACK_DEBUG(opt_setval)); // Not currently robust for reusing passed in path or value as the output assert(out != path && out != opt_setval); assert(!opt_setval || !THROWN(opt_setval)); // Initialize REBPVS -- see notes in %sys-do.h // pvs.opt_setval = opt_setval; pvs.store = out; pvs.orig = path; pvs.item = VAL_ARRAY_AT(pvs.orig); // may not be starting at head of PATH! // The path value that's coming in may be relative (in which case it // needs to use the specifier passed in). Or it may be specific already, // in which case we should use the specifier in the value to process // its array contents. // if (IS_RELATIVE(path)) { #if !defined(NDEBUG) assert(specifier != SPECIFIED); if (VAL_RELATIVE(path) != VAL_FUNC(CTX_FRAME_FUNC_VALUE(specifier))) { Debug_Fmt("Specificity mismatch found in path dispatch"); PROBE_MSG(path, "the path being evaluated"); PROBE_MSG(FUNC_VALUE(VAL_RELATIVE(path)), "expected func"); PROBE_MSG(CTX_FRAME_FUNC_VALUE(specifier), "actual func"); assert(FALSE); } #endif pvs.item_specifier = specifier; } else pvs.item_specifier = VAL_SPECIFIER(const_KNOWN(path)); // Seed the path evaluation process by looking up the first item (to // get a datatype to dispatch on for the later path items) // if (IS_WORD(pvs.item)) { pvs.value = GET_MUTABLE_VAR_MAY_FAIL(pvs.item, pvs.item_specifier); pvs.value_specifier = SPECIFIED; if (IS_VOID(pvs.value)) fail (Error_No_Value_Core(pvs.item, pvs.item_specifier)); } else { // !!! Ideally there would be some way to deal with writes to // temporary locations, like this pvs.value...if a set-path sets // it, then it will be discarded. COPY_VALUE(pvs.store, VAL_ARRAY_AT(pvs.orig), pvs.item_specifier); pvs.value = pvs.store; pvs.value_specifier = SPECIFIED; } // Start evaluation of path: if (IS_END(pvs.item + 1)) { // If it was a single element path, return the value rather than // try to dispatch it (would cause a crash at time of writing) // // !!! Is this the desired behavior, or should it be an error? } else if (Path_Dispatch[VAL_TYPE(pvs.value)]) { REBOOL threw = Next_Path_Throws(&pvs); // !!! See comments about why the initialization of out is necessary. // Without it this assertion can change on some things: // // t: now // t/time: 10:20:03 // // (It thinks pvs.value has its THROWN bit set when it completed // successfully. It was a PE_USE_STORE case where pvs.value was reset to // pvs.store, and pvs.store has its thrown bit set. Valgrind does not // catch any uninitialized variables.) // // There are other cases that do trip valgrind when omitting the // initialization, though not as clearly reproducible. // assert(threw == THROWN(pvs.value)); if (threw) return TRUE; // Check for errors: if (NOT_END(pvs.item + 1) && !IS_FUNCTION(pvs.value)) { // // Only function refinements should get by this line: REBVAL specified_orig; COPY_VALUE(&specified_orig, pvs.orig, specifier); REBVAL specified_item; COPY_VALUE(&specified_item, pvs.item, specifier); fail (Error(RE_INVALID_PATH, &specified_orig, &specified_item)); } } else if (!IS_FUNCTION(pvs.value)) { REBVAL specified; COPY_VALUE(&specified, pvs.orig, specifier); fail (Error(RE_BAD_PATH_TYPE, &specified, Type_Of(pvs.value))); } if (opt_setval) { // If SET then we don't return anything assert(IS_END(pvs.item) + 1); return FALSE; } // If storage was not used, then copy final value back to it: if (pvs.value != pvs.store) COPY_VALUE(pvs.store, pvs.value, pvs.value_specifier); assert(!THROWN(out)); // Return 0 if not function or is :path/word... if (!IS_FUNCTION(pvs.value)) { assert(IS_END(pvs.item) + 1); return FALSE; } if (label_out) { REBVAL refinement; // When a function is hit, path processing stops as soon as the // processed sub-path resolves to a function. The path is still sitting // on the position of the last component of that sub-path. Usually, // this last component in the sub-path is a word naming the function. // if (IS_WORD(pvs.item)) { *label_out = VAL_WORD_SPELLING(pvs.item); } else { // In rarer cases, the final component (completing the sub-path to // the function to call) is not a word. Such as when you use a path // to pick by index out of a block of functions: // // functions: reduce [:add :subtract] // functions/1 10 20 // // Or when you have an immediate function value in a path with a // refinement. Tricky to make, but possible: // // do reduce [ // to-path reduce [:append 'only] [a] [b] // ] // // !!! When a function was not invoked through looking up a word // (or a word in a path) to use as a label, there were once three // different alternate labels used. One was SYM__APPLY_, another // was ROOT_NONAME, and another was to be the type of the function // being executed. None are fantastic, we do the type for now. *label_out = Canon(SYM_FROM_KIND(VAL_TYPE(pvs.value))); } // Move on to the refinements (if any) ++pvs.item; // !!! Currently, the mainline path evaluation "punts" on refinements. // When it finds a function, it stops the path evaluation and leaves // the position pvs.path before the list of refinements. // // A more elegant solution would be able to process and notice (for // instance) that `:APPEND/ONLY` should yield a function value that // has been specialized with a refinement. Path chaining should thus // be able to effectively do this and give the refined function object // back to the evaluator or other client. // // If a label_sym is passed in, we recognize that a function dispatch // is going to be happening. We do not want to pay to generate the // new series that would be needed to make a temporary function that // will be invoked and immediately GC'd So we gather the refinements // on the data stack. // // This code simulates that path-processing-to-data-stack, but it // should really be something in dispatch iself. In any case, we put // refinements on the data stack...and caller knows refinements are // from dsp_orig to DSP (thanks to accounting, all other operations // should balance!) for (; NOT_END(pvs.item); ++pvs.item) { // "the refinements" if (IS_VOID(pvs.item)) continue; if (IS_GROUP(pvs.item)) { // // Note it is not legal to use the data stack directly as the // output location for a DO (might be resized) if (Do_At_Throws( &refinement, VAL_ARRAY(pvs.item), VAL_INDEX(pvs.item), IS_RELATIVE(pvs.item) ? pvs.item_specifier // if relative, use parent's : VAL_SPECIFIER(const_KNOWN(pvs.item)) // else embedded )) { *out = refinement; DS_DROP_TO(dsp_orig); return TRUE; } if (IS_VOID(&refinement)) continue; DS_PUSH(&refinement); } else if (IS_GET_WORD(pvs.item)) { DS_PUSH_TRASH; *DS_TOP = *GET_OPT_VAR_MAY_FAIL(pvs.item, pvs.item_specifier); if (IS_VOID(DS_TOP)) { DS_DROP; continue; } } else DS_PUSH_RELVAL(pvs.item, pvs.item_specifier); // Whatever we were trying to use as a refinement should now be // on the top of the data stack, and only words are legal ATM // if (!IS_WORD(DS_TOP)) { fail (Error(RE_BAD_REFINE, DS_TOP)); } // Go ahead and canonize the word symbol so we don't have to // do it each time in order to get a case-insenstive compare // INIT_WORD_SPELLING(DS_TOP, VAL_WORD_CANON(DS_TOP)); } // To make things easier for processing, reverse the refinements on // the data stack (we needed to evaluate them in forward order). // This way we can just pop them as we go, and know if they weren't // all consumed if it doesn't get back to `dsp_orig` by the end. if (dsp_orig != DSP) { REBVAL *bottom = DS_AT(dsp_orig + 1); REBVAL *top = DS_TOP; while (top > bottom) { refinement = *bottom; *bottom = *top; *top = refinement; top--; bottom++; } } } else { // !!! Historically this just ignores a result indicating this is a // function with refinements, e.g. ':append/only'. However that // ignoring seems unwise. It should presumably create a modified // function in that case which acts as if it has the refinement. // // If the caller did not pass in a label pointer we assume they are // likely not ready to process any refinements. // if (NOT_END(pvs.item + 1)) fail (Error(RE_TOO_LONG)); // !!! Better error or add feature } return FALSE; }