Beispiel #1
0
/*
 * iwl_find_otp_image: find EEPROM image in OTP
 *   finding the OTP block that contains the EEPROM image.
 *   the last valid block on the link list (the block _before_ the last block)
 *   is the block we should read and used to configure the device.
 *   If all the available OTP blocks are full, the last block will be the block
 *   we should read and used to configure the device.
 *   only perform this operation if shadow RAM is disabled
 */
static int iwl_find_otp_image(struct iwl_trans *trans,
					u16 *validblockaddr)
{
	u16 next_link_addr = 0, valid_addr;
	__le16 link_value = 0;
	int usedblocks = 0;

	/* set addressing mode to absolute to traverse the link list */
	iwl_set_otp_access_absolute(trans);

	/* checking for empty OTP or error */
	if (iwl_is_otp_empty(trans))
		return -EINVAL;

	/*
	 * start traverse link list
	 * until reach the max number of OTP blocks
	 * different devices have different number of OTP blocks
	 */
	do {
		/* save current valid block address
		 * check for more block on the link list
		 */
		valid_addr = next_link_addr;
		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
		IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n",
				 usedblocks, next_link_addr);
		if (iwl_read_otp_word(trans, next_link_addr, &link_value))
			return -EINVAL;
		if (!link_value) {
			/*
			 * reach the end of link list, return success and
			 * set address point to the starting address
			 * of the image
			 */
			*validblockaddr = valid_addr;
			/* skip first 2 bytes (link list pointer) */
			*validblockaddr += 2;
			return 0;
		}
		/* more in the link list, continue */
		usedblocks++;
	} while (usedblocks <= trans->cfg->base_params->max_ll_items);

	/* OTP has no valid blocks */
	IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n");
	return -EINVAL;
}
Beispiel #2
0
static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp)
{
	u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;

	IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp);

	switch (gp) {
	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
		if (!nvm_is_otp) {
			IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
				gp);
			return -ENOENT;
		}
		return 0;
	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
		if (nvm_is_otp) {
			IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
			return -ENOENT;
		}
		return 0;
	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
	default:
		IWL_ERR(trans,
			"bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n",
			nvm_is_otp ? "OTP" : "EEPROM", gp);
		return -ENOENT;
	}
}
Beispiel #3
0
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
			const __be16 *nvm_hw)
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}
/*
 * Reads an NVM section completely.
 * NICs prior to 7000 family doesn't have a real NVM, but just read
 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
 * by uCode, we need to manually check in this case that we don't
 * overflow and try to read more than the EEPROM size.
 * For 7000 family NICs, we supply the maximal size we can read, and
 * the uCode fills the response with as much data as we can,
 * without overflowing, so no check is needed.
 */
static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
				u8 *data)
{
	u16 length, offset = 0;
	int ret;

	/* Set nvm section read length */
	length = IWL_NVM_DEFAULT_CHUNK_SIZE;

	ret = length;

	/* Read the NVM until exhausted (reading less than requested) */
	while (ret == length) {
		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
		if (ret < 0) {
			IWL_ERR(mvm,
				"Cannot read NVM from section %d offset %d, length %d\n",
				section, offset, length);
			return ret;
		}
		offset += ret;
	}

	IWL_DEBUG_EEPROM(mvm->trans->dev,
			 "NVM section %d read completed\n", section);
	return offset;
}
Beispiel #5
0
static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
{
	u16 count;
	int ret;

	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
		/* Request semaphore */
		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
			    CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);

		/* See if we got it */
		ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
				EEPROM_SEM_TIMEOUT);
		if (ret >= 0) {
			IWL_DEBUG_EEPROM(trans->dev,
					 "Acquired semaphore after %d tries.\n",
					 count+1);
			return ret;
		}
	}

	return ret;
}
Beispiel #6
0
/*
 * Reads an NVM section completely.
 * NICs prior to 7000 family doesn't have a real NVM, but just read
 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
 * by uCode, we need to manually check in this case that we don't
 * overflow and try to read more than the EEPROM size.
 * For 7000 family NICs, we supply the maximal size we can read, and
 * the uCode fills the response with as much data as we can,
 * without overflowing, so no check is needed.
 */
static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
				u8 *data, u32 size_read)
{
	u16 length, offset = 0;
	int ret;

	/* Set nvm section read length */
	length = IWL_NVM_DEFAULT_CHUNK_SIZE;

	ret = length;

	/* Read the NVM until exhausted (reading less than requested) */
	while (ret == length) {
		/* Check no memory assumptions fail and cause an overflow */
		if ((size_read + offset + length) >
		    mvm->cfg->base_params->eeprom_size) {
			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
			return -ENOBUFS;
		}

		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
		if (ret < 0) {
			IWL_DEBUG_EEPROM(mvm->trans->dev,
					 "Cannot read NVM from section %d offset %d, length %d\n",
					 section, offset, length);
			return ret;
		}
		offset += ret;
	}

	iwl_mvm_nvm_fixups(mvm, section, data, offset);

	IWL_DEBUG_EEPROM(mvm->trans->dev,
			 "NVM section %d read completed\n", section);
	return offset;
}
Beispiel #7
0
static int iwl_legacy_eeprom_verify_signature(struct iwl_priv *priv)
{
	u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
	int ret = 0;

	IWL_DEBUG_EEPROM(priv, "EEPROM signature=0x%08x\n", gp);
	switch (gp) {
	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
		break;
	default:
		IWL_ERR(priv, "bad EEPROM signature,"
			"EEPROM_GP=0x%08x\n", gp);
		ret = -ENOENT;
		break;
	}
	return ret;
}
Beispiel #8
0
/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
{
	int i, ret = 0;
	struct iwl_nvm_section *sections = mvm->nvm_sections;

	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");

	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
			continue;
		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
					    sections[i].length);
		if (ret < 0) {
			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
			break;
		}
	}
	return ret;
}
/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
{
	int i, ret;
	u16 section_id;
	struct iwl_nvm_section *sections = mvm->nvm_sections;

	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");

	for (i = 0; i < ARRAY_SIZE(nvm_to_read); i++) {
		section_id = nvm_to_read[i];
		ret = iwl_nvm_write_section(mvm, section_id,
					    sections[section_id].data,
					    sections[section_id].length);
		if (ret < 0) {
			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
			break;
		}
	}
	return ret;
}
Beispiel #10
0
/**
 * iwl_legacy_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
 *
 * Does not set up a command, or touch hardware.
 */
static int iwl_legacy_mod_ht40_chan_info(struct iwl_priv *priv,
			      enum ieee80211_band band, u16 channel,
			      const struct iwl_eeprom_channel *eeprom_ch,
			      u8 clear_ht40_extension_channel)
{
	struct iwl_channel_info *ch_info;

	ch_info = (struct iwl_channel_info *)
			iwl_legacy_get_channel_info(priv, band, channel);

	if (!iwl_legacy_is_channel_valid(ch_info))
		return -1;

	IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
			" Ad-Hoc %ssupported\n",
			ch_info->channel,
			iwl_legacy_is_channel_a_band(ch_info) ?
			"5.2" : "2.4",
			CHECK_AND_PRINT(IBSS),
			CHECK_AND_PRINT(ACTIVE),
			CHECK_AND_PRINT(RADAR),
			CHECK_AND_PRINT(WIDE),
			CHECK_AND_PRINT(DFS),
			eeprom_ch->flags,
			eeprom_ch->max_power_avg,
			((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
			 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
			"" : "not ");

	ch_info->ht40_eeprom = *eeprom_ch;
	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
	ch_info->ht40_flags = eeprom_ch->flags;
	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
		ch_info->ht40_extension_channel &=
					~clear_ht40_extension_channel;

	return 0;
}
/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof, *temp;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)

	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, iwlwifi_mod_params.nvm_file,
			       mvm->trans->dev);
	if (ret) {
		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
			iwlwifi_mod_params.nvm_file, ret);
		return ret;
	}

	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
		 iwlwifi_mod_params.nvm_file, fw_entry->size);

	if (fw_entry->size < sizeof(*file_sec)) {
		IWL_ERR(mvm, "NVM file too small\n");
		ret = -EINVAL;
		goto out;
	}

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(mvm, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;

	file_sec = (void *)fw_entry->data;

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(mvm,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		section_size = 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
		section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));

		if (section_size > IWL_MAX_NVM_SECTION_SIZE) {
			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(mvm, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(mvm,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_NUM_OF_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}
		mvm->nvm_sections[section_id].data = temp;
		mvm->nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
Beispiel #12
0
static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
			      u16 offset, u16 length, u8 *data)
{
	struct iwl_nvm_access_cmd nvm_access_cmd = {
		.offset = cpu_to_le16(offset),
		.length = cpu_to_le16(length),
		.type = cpu_to_le16(section),
		.op_code = NVM_READ_OPCODE,
	};
	struct iwl_nvm_access_resp *nvm_resp;
	struct iwl_rx_packet *pkt;
	struct iwl_host_cmd cmd = {
		.id = NVM_ACCESS_CMD,
		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
		.data = { &nvm_access_cmd, },
	};
	int ret, bytes_read, offset_read;
	u8 *resp_data;

	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);

	ret = iwl_mvm_send_cmd(mvm, &cmd);
	if (ret)
		return ret;

	pkt = cmd.resp_pkt;

	/* Extract NVM response */
	nvm_resp = (void *)pkt->data;
	ret = le16_to_cpu(nvm_resp->status);
	bytes_read = le16_to_cpu(nvm_resp->length);
	offset_read = le16_to_cpu(nvm_resp->offset);
	resp_data = nvm_resp->data;
	if (ret) {
		if ((offset != 0) &&
		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
			/*
			 * meaning of NOT_VALID_ADDRESS:
			 * driver try to read chunk from address that is
			 * multiple of 2K and got an error since addr is empty.
			 * meaning of (offset != 0): driver already
			 * read valid data from another chunk so this case
			 * is not an error.
			 */
			IWL_DEBUG_EEPROM(mvm->trans->dev,
					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
					 offset);
			ret = 0;
		} else {
			IWL_DEBUG_EEPROM(mvm->trans->dev,
					 "NVM access command failed with status %d (device: %s)\n",
					 ret, mvm->cfg->name);
			ret = -EIO;
		}
		goto exit;
	}

	if (offset_read != offset) {
		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
			offset_read);
		ret = -EINVAL;
		goto exit;
	}

	/* Write data to NVM */
	memcpy(data + offset, resp_data, bytes_read);
	ret = bytes_read;

exit:
	iwl_free_resp(&cmd);
	return ret;
}

static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
				 const u8 *data, u16 length)
{
	int offset = 0;

	/* copy data in chunks of 2k (and remainder if any) */

	while (offset < length) {
		int chunk_size, ret;

		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
				 length - offset);

		ret = iwl_nvm_write_chunk(mvm, section, offset,
					  chunk_size, data + offset);
		if (ret < 0)
			return ret;

		offset += chunk_size;
	}

	return 0;
}
Beispiel #13
0
/**
 * iwl_legacy_init_channel_map - Set up driver's info for all possible channels
 */
int iwl_legacy_init_channel_map(struct iwl_priv *priv)
{
	int eeprom_ch_count = 0;
	const u8 *eeprom_ch_index = NULL;
	const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
	int band, ch;
	struct iwl_channel_info *ch_info;

	if (priv->channel_count) {
		IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
		return 0;
	}

	IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");

	priv->channel_count =
	    ARRAY_SIZE(iwlegacy_eeprom_band_1) +
	    ARRAY_SIZE(iwlegacy_eeprom_band_2) +
	    ARRAY_SIZE(iwlegacy_eeprom_band_3) +
	    ARRAY_SIZE(iwlegacy_eeprom_band_4) +
	    ARRAY_SIZE(iwlegacy_eeprom_band_5);

	IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
			priv->channel_count);

	priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
				     priv->channel_count, GFP_KERNEL);
	if (!priv->channel_info) {
		IWL_ERR(priv, "Could not allocate channel_info\n");
		priv->channel_count = 0;
		return -ENOMEM;
	}

	ch_info = priv->channel_info;

	/* Loop through the 5 EEPROM bands adding them in order to the
	 * channel map we maintain (that contains additional information than
	 * what just in the EEPROM) */
	for (band = 1; band <= 5; band++) {

		iwl_legacy_init_band_reference(priv, band, &eeprom_ch_count,
					&eeprom_ch_info, &eeprom_ch_index);

		/* Loop through each band adding each of the channels */
		for (ch = 0; ch < eeprom_ch_count; ch++) {
			ch_info->channel = eeprom_ch_index[ch];
			ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
			    IEEE80211_BAND_5GHZ;

			/* permanently store EEPROM's channel regulatory flags
			 *   and max power in channel info database. */
			ch_info->eeprom = eeprom_ch_info[ch];

			/* Copy the run-time flags so they are there even on
			 * invalid channels */
			ch_info->flags = eeprom_ch_info[ch].flags;
			/* First write that ht40 is not enabled, and then enable
			 * one by one */
			ch_info->ht40_extension_channel =
					IEEE80211_CHAN_NO_HT40;

			if (!(iwl_legacy_is_channel_valid(ch_info))) {
				IWL_DEBUG_EEPROM(priv,
					       "Ch. %d Flags %x [%sGHz] - "
					       "No traffic\n",
					       ch_info->channel,
					       ch_info->flags,
					       iwl_legacy_is_channel_a_band(ch_info) ?
					       "5.2" : "2.4");
				ch_info++;
				continue;
			}

			/* Initialize regulatory-based run-time data */
			ch_info->max_power_avg = ch_info->curr_txpow =
			    eeprom_ch_info[ch].max_power_avg;
			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
			ch_info->min_power = 0;

			IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
				       "%s%s%s%s%s%s(0x%02x %ddBm):"
				       " Ad-Hoc %ssupported\n",
				       ch_info->channel,
				       iwl_legacy_is_channel_a_band(ch_info) ?
				       "5.2" : "2.4",
				       CHECK_AND_PRINT_I(VALID),
				       CHECK_AND_PRINT_I(IBSS),
				       CHECK_AND_PRINT_I(ACTIVE),
				       CHECK_AND_PRINT_I(RADAR),
				       CHECK_AND_PRINT_I(WIDE),
				       CHECK_AND_PRINT_I(DFS),
				       eeprom_ch_info[ch].flags,
				       eeprom_ch_info[ch].max_power_avg,
				       ((eeprom_ch_info[ch].
					 flags & EEPROM_CHANNEL_IBSS)
					&& !(eeprom_ch_info[ch].
					     flags & EEPROM_CHANNEL_RADAR))
				       ? "" : "not ");

			ch_info++;
		}
	}

	/* Check if we do have HT40 channels */
	if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
	    EEPROM_REGULATORY_BAND_NO_HT40 &&
	    priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
	    EEPROM_REGULATORY_BAND_NO_HT40)
		return 0;

	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
	for (band = 6; band <= 7; band++) {
		enum ieee80211_band ieeeband;

		iwl_legacy_init_band_reference(priv, band, &eeprom_ch_count,
					&eeprom_ch_info, &eeprom_ch_index);

		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
		ieeeband =
			(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;

		/* Loop through each band adding each of the channels */
		for (ch = 0; ch < eeprom_ch_count; ch++) {
			/* Set up driver's info for lower half */
			iwl_legacy_mod_ht40_chan_info(priv, ieeeband,
						eeprom_ch_index[ch],
						&eeprom_ch_info[ch],
						IEEE80211_CHAN_NO_HT40PLUS);

			/* Set up driver's info for upper half */
			iwl_legacy_mod_ht40_chan_info(priv, ieeeband,
						eeprom_ch_index[ch] + 4,
						&eeprom_ch_info[ch],
						IEEE80211_CHAN_NO_HT40MINUS);
		}
	}

	return 0;
}
Beispiel #14
0
/**
 * iwl_legacy_eeprom_init - read EEPROM contents
 *
 * Load the EEPROM contents from adapter into priv->eeprom
 *
 * NOTE:  This routine uses the non-debug IO access functions.
 */
int iwl_legacy_eeprom_init(struct iwl_priv *priv)
{
	__le16 *e;
	u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
	int sz;
	int ret;
	u16 addr;

	/* allocate eeprom */
	sz = priv->cfg->base_params->eeprom_size;
	IWL_DEBUG_EEPROM(priv, "NVM size = %d\n", sz);
	priv->eeprom = kzalloc(sz, GFP_KERNEL);
	if (!priv->eeprom) {
		ret = -ENOMEM;
		goto alloc_err;
	}
	e = (__le16 *)priv->eeprom;

	priv->cfg->ops->lib->apm_ops.init(priv);

	ret = iwl_legacy_eeprom_verify_signature(priv);
	if (ret < 0) {
		IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
		ret = -ENOENT;
		goto err;
	}

	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
	ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
	if (ret < 0) {
		IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
		ret = -ENOENT;
		goto err;
	}

	/* eeprom is an array of 16bit values */
	for (addr = 0; addr < sz; addr += sizeof(u16)) {
		u32 r;

		_iwl_legacy_write32(priv, CSR_EEPROM_REG,
			     CSR_EEPROM_REG_MSK_ADDR & (addr << 1));

		ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
					  CSR_EEPROM_REG_READ_VALID_MSK,
					  CSR_EEPROM_REG_READ_VALID_MSK,
					  IWL_EEPROM_ACCESS_TIMEOUT);
		if (ret < 0) {
			IWL_ERR(priv, "Time out reading EEPROM[%d]\n",
							addr);
			goto done;
		}
		r = _iwl_legacy_read_direct32(priv, CSR_EEPROM_REG);
		e[addr / 2] = cpu_to_le16(r >> 16);
	}

	IWL_DEBUG_EEPROM(priv, "NVM Type: %s, version: 0x%x\n",
		       "EEPROM",
		       iwl_legacy_eeprom_query16(priv, EEPROM_VERSION));

	ret = 0;
done:
	priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);

err:
	if (ret)
		iwl_legacy_eeprom_free(priv);
	/* Reset chip to save power until we load uCode during "up". */
	iwl_legacy_apm_stop(priv);
alloc_err:
	return ret;
}
Beispiel #15
0
/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof;
	u8 *temp;
	int max_section_size;
	const __le32 *dword_buff;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8))
#define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4)
#define NVM_HEADER_0	(0x2A504C54)
#define NVM_HEADER_1	(0x4E564D2A)
#define NVM_HEADER_SIZE	(4 * sizeof(u32))

	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");

	/* Maximal size depends on HW family and step */
	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
	else
		max_section_size = IWL_MAX_NVM_8000_SECTION_SIZE;

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, mvm->nvm_file_name,
			       mvm->trans->dev);
	if (ret) {
		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
			mvm->nvm_file_name, ret);
		return ret;
	}

	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
		 mvm->nvm_file_name, fw_entry->size);

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(mvm, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;
	dword_buff = (__le32 *)fw_entry->data;

	/* some NVM file will contain a header.
	 * The header is identified by 2 dwords header as follow:
	 * dword[0] = 0x2A504C54
	 * dword[1] = 0x4E564D2A
	 *
	 * This header must be skipped when providing the NVM data to the FW.
	 */
	if (fw_entry->size > NVM_HEADER_SIZE &&
	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
		IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
		IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
			 le32_to_cpu(dword_buff[3]));

		/* nvm file validation, dword_buff[2] holds the file version */
		if ((CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
		     le32_to_cpu(dword_buff[2]) < 0xE4A) ||
		    (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_B_STEP &&
		     le32_to_cpu(dword_buff[2]) >= 0xE4A)) {
			ret = -EFAULT;
			goto out;
		}
	} else {
		file_sec = (void *)fw_entry->data;
	}

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(mvm,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
			section_size =
				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
		} else {
			section_size = 2 * NVM_WORD2_LEN_FAMILY_8000(
						le16_to_cpu(file_sec->word2));
			section_id = NVM_WORD1_ID_FAMILY_8000(
						le16_to_cpu(file_sec->word1));
		}

		if (section_size > max_section_size) {
			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(mvm, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(mvm,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}

		iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);

		kfree(mvm->nvm_sections[section_id].data);
		mvm->nvm_sections[section_id].data = temp;
		mvm->nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
Beispiel #16
0
int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
{
	int ret, section;
	u32 size_read = 0;
	u8 *nvm_buffer, *temp;
	const char *nvm_file_B = mvm->cfg->default_nvm_file_B_step;
	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;

	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
		return -EINVAL;

	/* load NVM values from nic */
	if (read_nvm_from_nic) {
		/* Read From FW NVM */
		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");

		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
				     GFP_KERNEL);
		if (!nvm_buffer)
			return -ENOMEM;
		for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
			/* we override the constness for initial read */
			ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
						   size_read);
			if (ret < 0)
				continue;
			size_read += ret;
			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
			if (!temp) {
				ret = -ENOMEM;
				break;
			}

			iwl_mvm_nvm_fixups(mvm, section, temp, ret);

			mvm->nvm_sections[section].data = temp;
			mvm->nvm_sections[section].length = ret;

#ifdef CONFIG_IWLWIFI_DEBUGFS
			switch (section) {
			case NVM_SECTION_TYPE_SW:
				mvm->nvm_sw_blob.data = temp;
				mvm->nvm_sw_blob.size  = ret;
				break;
			case NVM_SECTION_TYPE_CALIBRATION:
				mvm->nvm_calib_blob.data = temp;
				mvm->nvm_calib_blob.size  = ret;
				break;
			case NVM_SECTION_TYPE_PRODUCTION:
				mvm->nvm_prod_blob.data = temp;
				mvm->nvm_prod_blob.size  = ret;
				break;
			case NVM_SECTION_TYPE_PHY_SKU:
				mvm->nvm_phy_sku_blob.data = temp;
				mvm->nvm_phy_sku_blob.size  = ret;
				break;
			default:
				if (section == mvm->cfg->nvm_hw_section_num) {
					mvm->nvm_hw_blob.data = temp;
					mvm->nvm_hw_blob.size = ret;
					break;
				}
			}
#endif
		}
		if (!size_read)
			IWL_ERR(mvm, "OTP is blank\n");
		kfree(nvm_buffer);
	}

	/* Only if PNVM selected in the mod param - load external NVM  */
	if (mvm->nvm_file_name) {
		/* read External NVM file from the mod param */
		ret = iwl_mvm_read_external_nvm(mvm);
		if (ret) {
			/* choose the nvm_file name according to the
			 * HW step
			 */
			if (CSR_HW_REV_STEP(mvm->trans->hw_rev) ==
			    SILICON_B_STEP)
				mvm->nvm_file_name = nvm_file_B;
			else
				mvm->nvm_file_name = nvm_file_C;

			if ((ret == -EFAULT || ret == -ENOENT) &&
			    mvm->nvm_file_name) {
				/* in case nvm file was failed try again */
				ret = iwl_mvm_read_external_nvm(mvm);
				if (ret)
					return ret;
			} else {
				return ret;
			}
		}
	}

	/* parse the relevant nvm sections */
	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
	if (!mvm->nvm_data)
		return -ENODATA;
	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
			 mvm->nvm_data->nvm_version);

	return 0;
}
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
				const __le16 * const nvm_ch_flags)
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
	int num_of_ch, num_2ghz_channels;
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
	}

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);

		if (ch_idx >= num_2ghz_channels &&
		    !data->sku_cap_band_52GHz_enable)
			ch_flags &= ~NVM_CHANNEL_VALID;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
					 nvm_chan[ch_idx],
					 ch_flags,
					 (ch_idx >= num_2ghz_channels) ?
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

		channel->hw_value = nvm_chan[ch_idx];
		channel->band = (ch_idx < num_2ghz_channels) ?
				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* TODO: Need to be dependent to the NVM */
		channel->flags = IEEE80211_CHAN_NO_HT40;
		if (ch_idx < num_2ghz_channels &&
		    (ch_flags & NVM_CHANNEL_40MHZ)) {
			if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
				channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
			if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
				channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
		} else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT &&
			   (ch_flags & NVM_CHANNEL_40MHZ)) {
			if ((ch_idx - num_2ghz_channels) % 2 == 0)
				channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
			else
				channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
		}
		if (!(ch_flags & NVM_CHANNEL_80MHZ))
			channel->flags |= IEEE80211_CHAN_NO_80MHZ;
		if (!(ch_flags & NVM_CHANNEL_160MHZ))
			channel->flags |= IEEE80211_CHAN_NO_160MHZ;

		if (!(ch_flags & NVM_CHANNEL_IBSS))
			channel->flags |= IEEE80211_CHAN_NO_IR;

		if (!(ch_flags & NVM_CHANNEL_ACTIVE))
			channel->flags |= IEEE80211_CHAN_NO_IR;

		if (ch_flags & NVM_CHANNEL_RADAR)
			channel->flags |= IEEE80211_CHAN_RADAR;

		/* Initialize regulatory-based run-time data */

		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
		channel->max_power = DEFAULT_MAX_TX_POWER;
		is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
		IWL_DEBUG_EEPROM(dev,
				 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
				 CHECK_AND_PRINT_I(WIDE),
				 CHECK_AND_PRINT_I(DFS),
				 ch_flags,
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}
int iwl_nvm_init(struct iwl_mvm *mvm)
{
	int ret, i, section;
	u8 *nvm_buffer, *temp;

	/* load external NVM if configured */
	if (iwlwifi_mod_params.nvm_file) {
		/* move to External NVM flow */
		ret = iwl_mvm_read_external_nvm(mvm);
		if (ret)
			return ret;
	} else {
		/* Read From FW NVM */
		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");

		/* TODO: find correct NVM max size for a section */
		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
				     GFP_KERNEL);
		if (!nvm_buffer)
			return -ENOMEM;
		for (i = 0; i < ARRAY_SIZE(nvm_to_read); i++) {
			section = nvm_to_read[i];
			/* we override the constness for initial read */
			ret = iwl_nvm_read_section(mvm, section, nvm_buffer);
			if (ret < 0)
				break;
			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
			if (!temp) {
				ret = -ENOMEM;
				break;
			}
			mvm->nvm_sections[section].data = temp;
			mvm->nvm_sections[section].length = ret;

#ifdef CPTCFG_IWLWIFI_DEBUGFS
			switch (section) {
			case NVM_SECTION_TYPE_HW:
				mvm->nvm_hw_blob.data = temp;
				mvm->nvm_hw_blob.size = ret;
				break;
			case NVM_SECTION_TYPE_SW:
				mvm->nvm_sw_blob.data = temp;
				mvm->nvm_sw_blob.size  = ret;
				break;
			case NVM_SECTION_TYPE_CALIBRATION:
				mvm->nvm_calib_blob.data = temp;
				mvm->nvm_calib_blob.size  = ret;
				break;
			case NVM_SECTION_TYPE_PRODUCTION:
				mvm->nvm_prod_blob.data = temp;
				mvm->nvm_prod_blob.size  = ret;
				break;
			default:
				WARN(1, "section: %d", section);
			}
#endif
		}
		kfree(nvm_buffer);
		if (ret < 0)
			return ret;
	}

	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
	if (!mvm->nvm_data)
		return -ENODATA;

	return 0;
}
Beispiel #19
0
/**
 * iwl_read_eeprom - read EEPROM contents
 *
 * Load the EEPROM contents from adapter and return it
 * and its size.
 *
 * NOTE:  This routine uses the non-debug IO access functions.
 */
int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size)
{
	__le16 *e;
	u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
	int sz;
	int ret;
	u16 addr;
	u16 validblockaddr = 0;
	u16 cache_addr = 0;
	int nvm_is_otp;

	if (!eeprom || !eeprom_size)
		return -EINVAL;

	nvm_is_otp = iwl_nvm_is_otp(trans);
	if (nvm_is_otp < 0)
		return nvm_is_otp;

	sz = trans->cfg->base_params->eeprom_size;
	IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz);

	e = kmalloc(sz, GFP_KERNEL);
	if (!e)
		return -ENOMEM;

	ret = iwl_eeprom_verify_signature(trans, nvm_is_otp);
	if (ret < 0) {
		IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
		goto err_free;
	}

	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
	ret = iwl_eeprom_acquire_semaphore(trans);
	if (ret < 0) {
		IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
		goto err_free;
	}

	if (nvm_is_otp) {
		ret = iwl_init_otp_access(trans);
		if (ret) {
			IWL_ERR(trans, "Failed to initialize OTP access.\n");
			goto err_unlock;
		}

		iwl_write32(trans, CSR_EEPROM_GP,
			    iwl_read32(trans, CSR_EEPROM_GP) &
			    ~CSR_EEPROM_GP_IF_OWNER_MSK);

		iwl_set_bit(trans, CSR_OTP_GP_REG,
			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
		/* traversing the linked list if no shadow ram supported */
		if (!trans->cfg->base_params->shadow_ram_support) {
			ret = iwl_find_otp_image(trans, &validblockaddr);
			if (ret)
				goto err_unlock;
		}
		for (addr = validblockaddr; addr < validblockaddr + sz;
		     addr += sizeof(u16)) {
			__le16 eeprom_data;

			ret = iwl_read_otp_word(trans, addr, &eeprom_data);
			if (ret)
				goto err_unlock;
			e[cache_addr / 2] = eeprom_data;
			cache_addr += sizeof(u16);
		}
	} else {
		/* eeprom is an array of 16bit values */
		for (addr = 0; addr < sz; addr += sizeof(u16)) {
			u32 r;

			iwl_write32(trans, CSR_EEPROM_REG,
				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));

			ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
					   CSR_EEPROM_REG_READ_VALID_MSK,
					   CSR_EEPROM_REG_READ_VALID_MSK,
					   IWL_EEPROM_ACCESS_TIMEOUT);
			if (ret < 0) {
				IWL_ERR(trans,
					"Time out reading EEPROM[%d]\n", addr);
				goto err_unlock;
			}
			r = iwl_read32(trans, CSR_EEPROM_REG);
			e[addr / 2] = cpu_to_le16(r >> 16);
		}
	}

	IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n",
			 nvm_is_otp ? "OTP" : "EEPROM");

	iwl_eeprom_release_semaphore(trans);

	*eeprom_size = sz;
	*eeprom = (u8 *)e;
	return 0;

 err_unlock:
	iwl_eeprom_release_semaphore(trans);
 err_free:
	kfree(e);

	return ret;
}
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
				const __le16 * const nvm_ch_flags)
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;

	for (ch_idx = 0; ch_idx < IWL_NUM_CHANNELS; ch_idx++) {
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
		if (!(ch_flags & NVM_CHANNEL_VALID)) {
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
					 iwl_nvm_channels[ch_idx],
					 ch_flags,
					 (ch_idx >= NUM_2GHZ_CHANNELS) ?
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

		channel->hw_value = iwl_nvm_channels[ch_idx];
		channel->band = (ch_idx < NUM_2GHZ_CHANNELS) ?
				IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* TODO: Need to be dependent to the NVM */
		channel->flags = IEEE80211_CHAN_NO_HT40;
		if (ch_idx < NUM_2GHZ_CHANNELS &&
		    (ch_flags & NVM_CHANNEL_40MHZ)) {
			if (iwl_nvm_channels[ch_idx] <= LAST_2GHZ_HT_PLUS)
				channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
			if (iwl_nvm_channels[ch_idx] >= FIRST_2GHZ_HT_MINUS)
				channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
		} else if (iwl_nvm_channels[ch_idx] <= LAST_5GHZ_HT &&
			   (ch_flags & NVM_CHANNEL_40MHZ)) {
			if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
				channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
			else
				channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
		}
		if (!(ch_flags & NVM_CHANNEL_80MHZ))
			channel->flags |= IEEE80211_CHAN_NO_80MHZ;
		if (!(ch_flags & NVM_CHANNEL_160MHZ))
			channel->flags |= IEEE80211_CHAN_NO_160MHZ;

		if (!(ch_flags & NVM_CHANNEL_IBSS))
			channel->flags |= IEEE80211_CHAN_NO_IBSS;

		if (!(ch_flags & NVM_CHANNEL_ACTIVE))
			channel->flags |= IEEE80211_CHAN_PASSIVE_SCAN;

		if (ch_flags & NVM_CHANNEL_RADAR)
			channel->flags |= IEEE80211_CHAN_RADAR;

		/* Initialize regulatory-based run-time data */

		/* TODO: read the real value from the NVM */
		channel->max_power = 0;
		is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
		IWL_DEBUG_EEPROM(dev,
				 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
				 CHECK_AND_PRINT_I(WIDE),
				 CHECK_AND_PRINT_I(DFS),
				 ch_flags,
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}
Beispiel #21
0
static struct iwl_op_mode *
iwl_op_mode_mvm_start(struct iwl_trans *trans, const struct iwl_cfg *cfg,
		      const struct iwl_fw *fw, struct dentry *dbgfs_dir)
{
	struct ieee80211_hw *hw;
	struct iwl_op_mode *op_mode;
	struct iwl_mvm *mvm;
	struct iwl_trans_config trans_cfg = {};
	static const u8 no_reclaim_cmds[] = {
		TX_CMD,
	};
	int err, scan_size;
	u32 min_backoff;

	/*
	 * We use IWL_MVM_STATION_COUNT to check the validity of the station
	 * index all over the driver - check that its value corresponds to the
	 * array size.
	 */
	BUILD_BUG_ON(ARRAY_SIZE(mvm->fw_id_to_mac_id) != IWL_MVM_STATION_COUNT);

	/********************************
	 * 1. Allocating and configuring HW data
	 ********************************/
	hw = ieee80211_alloc_hw(sizeof(struct iwl_op_mode) +
				sizeof(struct iwl_mvm),
				&iwl_mvm_hw_ops);
	if (!hw)
		return NULL;

	if (cfg->max_rx_agg_size)
		hw->max_rx_aggregation_subframes = cfg->max_rx_agg_size;

	if (cfg->max_tx_agg_size)
		hw->max_tx_aggregation_subframes = cfg->max_tx_agg_size;

	op_mode = hw->priv;
	op_mode->ops = &iwl_mvm_ops;

	mvm = IWL_OP_MODE_GET_MVM(op_mode);
	mvm->dev = trans->dev;
	mvm->trans = trans;
	mvm->cfg = cfg;
	mvm->fw = fw;
	mvm->hw = hw;

	mvm->restart_fw = iwlwifi_mod_params.restart_fw ? -1 : 0;

	mvm->aux_queue = 15;
	mvm->first_agg_queue = 16;
	mvm->last_agg_queue = mvm->cfg->base_params->num_of_queues - 1;
	if (mvm->cfg->base_params->num_of_queues == 16) {
		mvm->aux_queue = 11;
		mvm->first_agg_queue = 12;
	}
	mvm->sf_state = SF_UNINIT;
	mvm->low_latency_agg_frame_limit = 6;
	mvm->cur_ucode = IWL_UCODE_INIT;

	mutex_init(&mvm->mutex);
	mutex_init(&mvm->d0i3_suspend_mutex);
	spin_lock_init(&mvm->async_handlers_lock);
	INIT_LIST_HEAD(&mvm->time_event_list);
	INIT_LIST_HEAD(&mvm->aux_roc_te_list);
	INIT_LIST_HEAD(&mvm->async_handlers_list);
	spin_lock_init(&mvm->time_event_lock);

	INIT_WORK(&mvm->async_handlers_wk, iwl_mvm_async_handlers_wk);
	INIT_WORK(&mvm->roc_done_wk, iwl_mvm_roc_done_wk);
	INIT_WORK(&mvm->sta_drained_wk, iwl_mvm_sta_drained_wk);
	INIT_WORK(&mvm->d0i3_exit_work, iwl_mvm_d0i3_exit_work);
	INIT_DELAYED_WORK(&mvm->fw_dump_wk, iwl_mvm_fw_error_dump_wk);
	INIT_DELAYED_WORK(&mvm->tdls_cs.dwork, iwl_mvm_tdls_ch_switch_work);

	spin_lock_init(&mvm->d0i3_tx_lock);
	spin_lock_init(&mvm->refs_lock);
	skb_queue_head_init(&mvm->d0i3_tx);
	init_waitqueue_head(&mvm->d0i3_exit_waitq);

	SET_IEEE80211_DEV(mvm->hw, mvm->trans->dev);

	/*
	 * Populate the state variables that the transport layer needs
	 * to know about.
	 */
	trans_cfg.op_mode = op_mode;
	trans_cfg.no_reclaim_cmds = no_reclaim_cmds;
	trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds);
	trans_cfg.rx_buf_size_8k = iwlwifi_mod_params.amsdu_size_8K;

	if (mvm->fw->ucode_capa.flags & IWL_UCODE_TLV_FLAGS_DW_BC_TABLE)
		trans_cfg.bc_table_dword = true;

	trans_cfg.command_names = iwl_mvm_cmd_strings;

	trans_cfg.cmd_queue = IWL_MVM_CMD_QUEUE;
	trans_cfg.cmd_fifo = IWL_MVM_TX_FIFO_CMD;
	trans_cfg.scd_set_active = true;

	trans_cfg.sdio_adma_addr = fw->sdio_adma_addr;

	/* Set a short watchdog for the command queue */
	trans_cfg.cmd_q_wdg_timeout =
		iwl_mvm_get_wd_timeout(mvm, NULL, false, true);

	snprintf(mvm->hw->wiphy->fw_version,
		 sizeof(mvm->hw->wiphy->fw_version),
		 "%s", fw->fw_version);

	/* Configure transport layer */
	iwl_trans_configure(mvm->trans, &trans_cfg);

	trans->rx_mpdu_cmd = REPLY_RX_MPDU_CMD;
	trans->rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start);
	trans->dbg_dest_tlv = mvm->fw->dbg_dest_tlv;
	trans->dbg_dest_reg_num = mvm->fw->dbg_dest_reg_num;
	memcpy(trans->dbg_conf_tlv, mvm->fw->dbg_conf_tlv,
	       sizeof(trans->dbg_conf_tlv));
	trans->dbg_trigger_tlv = mvm->fw->dbg_trigger_tlv;

	/* set up notification wait support */
	iwl_notification_wait_init(&mvm->notif_wait);

	/* Init phy db */
	mvm->phy_db = iwl_phy_db_init(trans);
	if (!mvm->phy_db) {
		IWL_ERR(mvm, "Cannot init phy_db\n");
		goto out_free;
	}

	IWL_INFO(mvm, "Detected %s, REV=0x%X\n",
		 mvm->cfg->name, mvm->trans->hw_rev);

	min_backoff = calc_min_backoff(trans, cfg);
	iwl_mvm_tt_initialize(mvm, min_backoff);

	if (iwlwifi_mod_params.nvm_file)
		mvm->nvm_file_name = iwlwifi_mod_params.nvm_file;
	else
		IWL_DEBUG_EEPROM(mvm->trans->dev,
				 "working without external nvm file\n");

	if (WARN(cfg->no_power_up_nic_in_init && !mvm->nvm_file_name,
		 "not allowing power-up and not having nvm_file\n"))
		goto out_free;

	/*
	 * Even if nvm exists in the nvm_file driver should read again the nvm
	 * from the nic because there might be entries that exist in the OTP
	 * and not in the file.
	 * for nics with no_power_up_nic_in_init: rely completley on nvm_file
	 */
	if (cfg->no_power_up_nic_in_init && mvm->nvm_file_name) {
		err = iwl_nvm_init(mvm, false);
		if (err)
			goto out_free;
	} else {
		err = iwl_trans_start_hw(mvm->trans);
		if (err)
			goto out_free;

		mutex_lock(&mvm->mutex);
		err = iwl_run_init_mvm_ucode(mvm, true);
		if (!err || !iwlmvm_mod_params.init_dbg)
			iwl_trans_stop_device(trans);
		mutex_unlock(&mvm->mutex);
		/* returns 0 if successful, 1 if success but in rfkill */
		if (err < 0 && !iwlmvm_mod_params.init_dbg) {
			IWL_ERR(mvm, "Failed to run INIT ucode: %d\n", err);
			goto out_free;
		}
	}

	scan_size = iwl_mvm_scan_size(mvm);

	mvm->scan_cmd = kmalloc(scan_size, GFP_KERNEL);
	if (!mvm->scan_cmd)
		goto out_free;

	/* Set EBS as successful as long as not stated otherwise by the FW. */
	mvm->last_ebs_successful = true;

	err = iwl_mvm_mac_setup_register(mvm);
	if (err)
		goto out_free;

	err = iwl_mvm_dbgfs_register(mvm, dbgfs_dir);
	if (err)
		goto out_unregister;

	memset(&mvm->rx_stats, 0, sizeof(struct mvm_statistics_rx));

	/* rpm starts with a taken ref. only set the appropriate bit here. */
	mvm->refs[IWL_MVM_REF_UCODE_DOWN] = 1;

	return op_mode;

 out_unregister:
	ieee80211_unregister_hw(mvm->hw);
	iwl_mvm_leds_exit(mvm);
 out_free:
	flush_delayed_work(&mvm->fw_dump_wk);
	iwl_phy_db_free(mvm->phy_db);
	kfree(mvm->scan_cmd);
	if (!cfg->no_power_up_nic_in_init || !mvm->nvm_file_name)
		iwl_trans_op_mode_leave(trans);
	ieee80211_free_hw(mvm->hw);
	return NULL;
}
Beispiel #22
0
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
				const __le16 * const nvm_ch_flags,
				bool lar_supported)
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
	bool is_5ghz;
	int num_of_ch, num_2ghz_channels;
	const u8 *nvm_chan;

	if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
		num_of_ch = IWL_NUM_CHANNELS;
		nvm_chan = &iwl_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
	} else {
		num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
		nvm_chan = &iwl_nvm_channels_family_8000[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
	}

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);

		if (ch_idx >= num_2ghz_channels &&
		    !data->sku_cap_band_52GHz_enable)
			continue;

		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
			IWL_DEBUG_EEPROM(dev,
					 "Ch. %d Flags %x [%sGHz] - No traffic\n",
					 nvm_chan[ch_idx],
					 ch_flags,
					 (ch_idx >= num_2ghz_channels) ?
					 "5.2" : "2.4");
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

		channel->hw_value = nvm_chan[ch_idx];
		channel->band = (ch_idx < num_2ghz_channels) ?
				NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
		is_5ghz = channel->band == NL80211_BAND_5GHZ;

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
							       ch_flags, cfg);
		else
			channel->flags = 0;

		IWL_DEBUG_EEPROM(dev,
				 "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n",
				 channel->hw_value,
				 is_5ghz ? "5.2" : "2.4",
				 ch_flags,
				 CHECK_AND_PRINT_I(VALID),
				 CHECK_AND_PRINT_I(IBSS),
				 CHECK_AND_PRINT_I(ACTIVE),
				 CHECK_AND_PRINT_I(RADAR),
				 CHECK_AND_PRINT_I(INDOOR_ONLY),
				 CHECK_AND_PRINT_I(GO_CONCURRENT),
				 CHECK_AND_PRINT_I(WIDE),
				 CHECK_AND_PRINT_I(40MHZ),
				 CHECK_AND_PRINT_I(80MHZ),
				 CHECK_AND_PRINT_I(160MHZ),
				 channel->max_power,
				 ((ch_flags & NVM_CHANNEL_IBSS) &&
				  !(ch_flags & NVM_CHANNEL_RADAR))
					? "" : "not ");
	}

	return n_channels;
}
Beispiel #23
0
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
				const void * const nvm_ch_flags,
				u32 sbands_flags, bool v4)
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u32 ch_flags;
	int num_of_ch, num_2ghz_channels = NUM_2GHZ_CHANNELS;
	const u16 *nvm_chan;

	if (cfg->uhb_supported) {
		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		num_of_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
	}

	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

		if (v4)
			ch_flags =
				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
		else
			ch_flags =
				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);

		if (is_5ghz && !data->sku_cap_band_52ghz_enable)
			continue;

		/* workaround to disable wide channels in 5GHz */
		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
		    is_5ghz) {
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
		    !(ch_flags & NVM_CHANNEL_VALID)) {
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

		channel->hw_value = nvm_chan[ch_idx];
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;

		/* don't put limitations in case we're using LAR */
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
							       ch_flags, cfg);
		else
			channel->flags = 0;

		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
	}

	return n_channels;
}