void addInitColumn(IloNumVarArray lambda, IloObjective rmpObj, 
	IloRangeArray maintConEng, IloRangeArray removeMod, IloRangeArray convex, 
	IloNumArray2 addXCol, IloNumArray addZCol, 
	const IloNumArray compCosts, const IloNumArray convexityCoef) {

	// loop counter
	IloInt t;		

	// counter for objective function coefficient for lambda
	// variable to be added.
	IloNum lambdaObjCoef = 0;

	// function assumes addXCol and addZCol contains proper values.

	// calculate objective function coefficient lambdaObjCoef
	for (t = 0; t < TIME_SPAN; t++) {

		// for each fixed t: scalar product of x[m]* vector and
		// component costs vector compCosts[m]:
		lambdaObjCoef += IloScalProd(addXCol[t],compCosts);

		// also clear the addXCol subarrays as soon as they
		// have been used
		addXCol[t].clear();
	}
			
	// now add this column and it's associated lambda variable to the RMP.
	lambda.add(IloNumVar(rmpObj(lambdaObjCoef) + maintConEng(addZCol) + 
		removeMod(addZCol) + convex(convexityCoef), 0.0, 1.0));

	// clear addZCol num array.
	addZCol.clear();

} // END of addColumn
void addColumn(IloCplex subSolver, IloNumVarArray2 x, IloNumVarArray z, IloNumVarArray lambda,
	IloObjective rmpObj, IloRangeArray maintConEng, IloRangeArray removeMod,
	IloRangeArray convex, IloNumArray2 addXCol, IloNumArray addZCol, 
	const IloNumArray compCosts, const IloNumArray convexityCoef) {

	// loop counter
	IloInt t;		

	// counter for objective function coefficient for lambda
	// variable to be added.
	IloNum lambdaObjCoef = 0;

	// extract subproblem-optimal solution values
	// (into IloNumArrays addXCol (2d) and addZCol (1d)).

	// z values:
	subSolver.getValues(addZCol,z);

	//cout << endl << endl << "z = " << endl << addZCol << endl;
	//cin.get();

	// !!! OBS !!!
	// here we might want to save these z values some column pool's custom-nitted class
	// array. Or to be specific, we want to add the indexes for NON-ZERO-ENTRIES in addZCol
	// to our class that keep place of columns.
	// E.g., given variable lambda(m)_(q_m), we want to know in our own class object,
	// given (m)(q_m), the indexes of non-zeros in that Z column.
	


	// and for each t...
	for (t = 0; t < TIME_SPAN; t++) {

		// x values:
		subSolver.getValues(addXCol[t],x[t]);
		//cout << endl << endl << "x[t=" << t << "] =" << endl << addXCol[t] << endl;
	}
	//cin.get();

	// calculate objective function coefficient lambdaObjCoef
	for (t = 0; t < TIME_SPAN; t++) {

		// for each fixed t: scalar product of x[m]* vector and
		// component costs vector compCosts[m]:
		lambdaObjCoef += IloScalProd(addXCol[t],compCosts);

		// also clear the addXCol subarrays as soon as they
		// have been used
		addXCol[t].clear();
	}
			
	// now add this column and it's associated lambda variable to the RMP.
	lambda.add(IloNumVar(rmpObj(lambdaObjCoef) + maintConEng(addZCol) + 
		removeMod(addZCol) + convex(convexityCoef), 0.0, 1.0));

	// clear addZCol num array.
	addZCol.clear();

} // END of addColumn
Beispiel #3
0
// This routine creates the master ILP (arc variables x and degree constraints).
//
// Modeling variables:
// forall (i,j) in A:
//    x(i,j) = 1, if arc (i,j) is selected
//           = 0, otherwise
//
// Objective:
// minimize sum((i,j) in A) c(i,j) * x(i,j)
//
// Degree constraints:
// forall i in V: sum((i,j) in delta+(i)) x(i,j) = 1
// forall i in V: sum((j,i) in delta-(i)) x(j,i) = 1
//
// Binary constraints on arc variables:
// forall (i,j) in A: x(i,j) in {0, 1}
//
void
createMasterILP(IloModel mod, Arcs x, IloNumArray2 arcCost)
{
   IloInt i, j;
   IloEnv env = mod.getEnv();
   IloInt numNodes = x.getSize();

   // Create variables x(i,j) for (i,j) in A 
   // For simplicity, also dummy variables x(i,i) are created.
   // Those variables are fixed to 0 and do not partecipate to 
   // the constraints.

   char varName[100];
   for (i = 0; i < numNodes; ++i) {
      x[i] = IloIntVarArray(env, numNodes, 0, 1);
      x[i][i].setBounds(0, 0); 
      for (j = 0; j < numNodes; ++j) {
         sprintf(varName, "x.%d.%d", (int) i, (int) j); 
         x[i][j].setName(varName);
      }
      mod.add(x[i]);
   }
  
   // Create objective function: minimize sum((i,j) in A ) c(i,j) * x(i,j)

   IloExpr obj(env);
   for (i = 0; i < numNodes; ++i) {
      arcCost[i][i] = 0;
      obj += IloScalProd(x[i], arcCost[i]);
   }
   mod.add(IloMinimize(env, obj));
   obj.end();

   // Add the out degree constraints.
   // forall i in V: sum((i,j) in delta+(i)) x(i,j) = 1

   for (i = 0; i < numNodes; ++i) {
      IloExpr expr(env);
      for (j = 0;   j < i; ++j)  expr += x[i][j];
      for (j = i+1; j < numNodes; ++j)  expr += x[i][j];
      mod.add(expr == 1);
      expr.end();
   }

   // Add the in degree constraints.
   // forall i in V: sum((j,i) in delta-(i)) x(j,i) = 1

   for (i = 0; i < numNodes; i++) {
      IloExpr expr(env);
      for (j = 0;   j < i; j++)  expr += x[j][i];
      for (j = i+1; j < numNodes; j++)  expr += x[j][i];
      mod.add(expr == 1);
      expr.end();
   }

}// END createMasterILP
void kMST_ILP::addObjectiveFunction()
{
	// multiply variable by cost
	IloIntArray edgeCost(env, instance.n_edges * 2);

	for (unsigned int i=0; i<edges.getSize(); i++) {
		edgeCost[i] = instance.edges[i % instance.n_edges].weight;
	}

	model.add(IloMinimize(env,  IloScalProd(edges, edgeCost) ));
}
Beispiel #5
0
void CPLEXSolver::add_in_constraint(LinearConstraint *con, double coef){
    DBG("Creating a Gurobi representation of a constriant %s\n", "");
    IloNumArray weights(*env, (IloInt)con->_coefficients.size());
    IloNumVarArray vars(*env, (IloInt)con->_variables.size());
    
    for(unsigned int i = 0; i < con->_variables.size(); ++i){
        DBG("\tAdding variable to CPLEX\n%s", "");
        IloNumVar var_ptr;
        
        if(con->_variables[i]->_var == NULL){
            
            IloNumVar::Type type;
        
            if(con->_variables[i]->_continuous) type = IloNumVar::Float;
            // else if(con->_lower == 0 && con->_upper == 1) type = IloNumVar::Bool;
            else type = IloNumVar::Int;

            var_ptr = IloNumVar(getEnv(),
                                con->_variables[i]->_lower, // LB
                                con->_variables[i]->_upper, // UB
                                type);

            int *var_id = new int;
            *var_id = variables->getSize();
            variables->add(var_ptr);
            con->_variables[i]->_var = (void*) var_id;
            
            DBG("Created new variable with id %d. type:%c lb:%f ub:%f coef:%f\n", *var_id, type, con->_variables[i]->_lower, con->_variables[i]->_upper, coef);
        } else {
            var_ptr = (*variables)[*(int*)(con->_variables[i]->_var)];
        }

        vars[i] = (*variables)[*(int*)(con->_variables[i]->_var)];
        weights[i] = con->_coefficients[i];
    }

    IloNumExprArg lin_expr = IloScalProd(weights, vars);

    if(coef < -0.1){
        model->add(IloMinimize(*env, lin_expr));
    } else if(coef > 0.1){
        model->add(IloMaximize(*env, lin_expr));
    } else {
        if(con->_lhs > -INFINITY && con->_rhs < INFINITY){
            if(con->_lhs == con->_rhs) {
                model->add(lin_expr == con->_lhs);
            } else {
                model->add(IloRange(*env, con->_lhs, lin_expr, con->_rhs));
            }
        } else if(con->_lhs > -INFINITY) model->add(lin_expr >= con->_lhs);
        else if(con->_rhs < INFINITY) model->add(lin_expr <= con->_rhs);
    }
}
int
main()
{
   IloEnv env;
   try {
      IloModel model(env);
    
      setData(env);
      IloNumVarArray  inside(env, nbProds);
      IloNumVarArray outside(env, nbProds);
   
      IloObjective obj = IloAdd(model, IloMinimize(env));
    
      // Must meet demand for each product
    
      for(IloInt p = 0; p < nbProds; p++) {
         IloRange demRange = IloAdd(model,
                                    IloRange (env, demand[p], demand[p]));
         inside[p]  = IloNumVar(obj(insideCost[p])  + demRange(1));
         outside[p] = IloNumVar(obj(outsideCost[p]) + demRange(1));
      }
    
      // Must respect capacity constraint for each resource
    
      for(IloInt r = 0; r < nbResources; r++)
         model.add(IloScalProd(consumption[r], inside) <= capacity[r]);
    
      IloCplex cplex(env);
      cplex.extract(model);
    
      cplex.solve();
    
      if (cplex.getStatus() != IloAlgorithm::Optimal)
         cout << "No optimal solution" << endl;
    
      cout << "Solution status: " << cplex.getStatus() << endl;
      displayResults(cplex, inside, outside);
      cout << "----------------------------------------" << endl;
   }
   catch (IloException& ex) {
      cerr << "Error: " << ex << endl;
   }
   catch (...) {
      cerr << "Error" << endl;
   }
   env.end();
   return 0;
}
Beispiel #7
0
int
main(int argc, char **argv)
{
   IloEnv env;
   try {
      IloInt  i, j;

      IloNum      rollWidth;
      IloNumArray amount(env);
      IloNumArray size(env);

      if ( argc > 1 )
         readData(argv[1], rollWidth, size, amount);
      else
         readData("../../../examples/data/cutstock.dat",
                  rollWidth, size, amount);

      /// CUTTING-OPTIMIZATION PROBLEM ///

      IloModel cutOpt (env);

      IloObjective   RollsUsed = IloAdd(cutOpt, IloMinimize(env));
      IloRangeArray  Fill = IloAdd(cutOpt,
                                   IloRangeArray(env, amount, IloInfinity));
      IloNumVarArray Cut(env);

      IloInt nWdth = size.getSize();
      for (j = 0; j < nWdth; j++) {
         Cut.add(IloNumVar(RollsUsed(1) + Fill[j](int(rollWidth / size[j]))));
      }
      
      IloCplex cutSolver(cutOpt);

      /// PATTERN-GENERATION PROBLEM ///

      IloModel patGen (env);

      IloObjective ReducedCost = IloAdd(patGen, IloMinimize(env, 1));
      IloNumVarArray Use(env, nWdth, 0.0, IloInfinity, ILOINT);
      patGen.add(IloScalProd(size, Use) <= rollWidth);

      IloCplex patSolver(patGen);

      /// COLUMN-GENERATION PROCEDURE ///

      IloNumArray price(env, nWdth);
      IloNumArray newPatt(env, nWdth);

      /// COLUMN-GENERATION PROCEDURE ///

      for (;;) {
         /// OPTIMIZE OVER CURRENT PATTERNS ///
       
         cutSolver.solve();
         report1 (cutSolver, Cut, Fill);
       
         /// FIND AND ADD A NEW PATTERN ///
       
         for (i = 0; i < nWdth; i++) {
           price[i] = -cutSolver.getDual(Fill[i]);
         }
         ReducedCost.setLinearCoefs(Use, price);
       
         patSolver.solve();
         report2 (patSolver, Use, ReducedCost);
       
         if (patSolver.getValue(ReducedCost) > -RC_EPS) break;
       
         patSolver.getValues(newPatt, Use);
         Cut.add( IloNumVar(RollsUsed(1) + Fill(newPatt)) );
      }

      cutOpt.add(IloConversion(env, Cut, ILOINT));

      cutSolver.solve();
      cout << "Solution status: " << cutSolver.getStatus() << endl;
      report3 (cutSolver, Cut);
   }
   catch (IloException& ex) {
      cerr << "Error: " << ex << endl;
   }
   catch (...) {
      cerr << "Error" << endl;
   }

   env.end();

   return 0;
}
Beispiel #8
0
int
main(int, char**)
{
   IloEnv env;
   try {
      IloInt j;

      define_data(env);

      IloModel model(env);

      IloNumVarArray m(env, nbElements, 0.0, IloInfinity);
      IloNumVarArray r(env, nbRaw,   0.0, IloInfinity);
      IloNumVarArray s(env, nbScrap, 0.0, IloInfinity);
      IloNumVarArray i(env, nbIngot, 0, 100000, ILOINT);
      IloNumVarArray e(env, nbElements);

      // Objective Function: Minimize Cost
      model.add(IloMinimize(env, IloScalProd(nm, m) + IloScalProd(nr, r) +
                                 IloScalProd(ns, s) + IloScalProd(ni, i)  ));

      // Min and max quantity of each element in alloy
      for (j = 0; j < nbElements; j++)
         e[j] = IloNumVar(env, p[j] * alloy, P[j] * alloy);

      // Constraint: produce requested quantity of alloy
      model.add(IloSum(e) == alloy);

      // Constraints: Satisfy element quantity requirements for alloy
      for (j = 0; j < nbElements; j++) {
         model.add(e[j] == m[j] + IloScalProd(PRaw[j], r)
                                + IloScalProd(PScrap[j], s)
                                + IloScalProd(PIngot[j], i));
      }

      // Optimize
      IloCplex cplex(model);
      cplex.setOut(env.getNullStream());
      cplex.setWarning(env.getNullStream());
      cplex.solve();

      if (cplex.getStatus() == IloAlgorithm::Infeasible)
         env.out() << "No Solution" << endl;

      env.out() << "Solution status: " << cplex.getStatus() << endl;

      // Print results
      env.out() << "Cost:" << cplex.getObjValue() << endl;

      env.out() << "Pure metal:" << endl;
      for(j = 0; j < nbElements; j++)
         env.out() << j << ") " << cplex.getValue(m[j]) << endl;

      env.out() << "Raw material:" << endl;
      for(j = 0; j < nbRaw; j++)
         env.out() << j << ") " << cplex.getValue(r[j]) << endl;

      env.out() << "Scrap:" << endl;
      for(j = 0; j < nbScrap; j++)
         env.out() << j << ") " << cplex.getValue(s[j]) << endl;

      env.out() << "Ingots : " << endl;
      for(j = 0; j < nbIngot; j++)
         env.out() << j << ") " << cplex.getValue(i[j]) << endl;
      env.out() << "Elements:" << endl;

      for(j = 0; j < nbElements; j++)
         env.out() << j << ") " << cplex.getValue(e[j]) << endl;
   }
   catch (IloException& ex) {
      cerr << "Error: " << ex << endl;
   }
   catch (...) {
      cerr << "Error" << endl;
   }
   env.end();
   return 0;
}
Beispiel #9
0
ILOSTLBEGIN


int
main(int, char**)
{
   IloEnv env;
   try {
      IloInt nbMachines = 6;
      IloNumArray cost     (env, nbMachines,
                            15.0, 20.0, 45.0, 64.0, 12.0, 56.0);
      IloNumArray capacity (env, nbMachines,
                            100.0, 20.0, 405.0, 264.0, 12.0, 256.0);
      IloNumArray fixedCost(env, nbMachines,
                            1900.0, 820.0, 805.0, 464.0, 3912.00, 556.0);
      IloNum demand = 22.0;

      IloModel model(env);
      IloNumVarArray x(env, nbMachines, 0, IloInfinity);
      IloNumVarArray fused(env, nbMachines, 0, 1, ILOINT);


      // Objective: minimize the sum of fixed and variable costs
      model.add(IloMinimize(env, IloScalProd(cost, x)
                               + IloScalProd(fused, fixedCost)));

      IloInt i;
      for(i =  0; i < nbMachines; i++) {
        // Constraint: respect capacity constraint on machine 'i'
        model.add(x[i] <= capacity[i]);

        // Constraint: only produce product on machine 'i' if it is 'used'
        //             (to capture fixed cost of using machine 'i')
        model.add(x[i] <= capacity[i]*fused[i]);
      }

      // Constraint: meet demand
      model.add(IloSum(x) == demand);

      IloCplex cplex(env);
      cplex.extract(model);
      cplex.solve();

      cout << "Solution status: " << cplex.getStatus() << endl;

      cout << "Obj " << cplex.getObjValue() << endl;
      IloNum eps = cplex.getParam(
         IloCplex::Param::MIP::Tolerances::Integrality);
      for(i = 0; i < nbMachines; i++) {
         if (cplex.getValue(fused[i]) > eps) {
            cout << "E" << i << " is used for ";
            cout << cplex.getValue(x[i]) << endl;
         }
      }
      cout << endl;
      cout << "----------------------------------------" << endl;
   }
   catch (IloException& ex) {
      cerr << "Error: " << ex << endl;
   }

   env.end();
   return 0;
}
Beispiel #10
0
int
main()
{
    IloEnv env;
    try {
        NumMatrix cost(env, nbMonths);
        cost[0]=IloNumArray(env, nbProducts, 110.0, 120.0, 130.0, 110.0, 115.0);
        cost[1]=IloNumArray(env, nbProducts, 130.0, 130.0, 110.0,  90.0, 115.0);
        cost[2]=IloNumArray(env, nbProducts, 110.0, 140.0, 130.0, 100.0,  95.0);
        cost[3]=IloNumArray(env, nbProducts, 120.0, 110.0, 120.0, 120.0, 125.0);
        cost[4]=IloNumArray(env, nbProducts, 100.0, 120.0, 150.0, 110.0, 105.0);
        cost[5]=IloNumArray(env, nbProducts,  90.0, 100.0, 140.0,  80.0, 135.0);

        // Variable definitions
        IloNumVarArray produce(env, nbMonths, 0, IloInfinity);
        NumVarMatrix   use(env, nbMonths);
        NumVarMatrix   buy(env, nbMonths);
        NumVarMatrix   store(env, nbMonths);
        IloInt i, p;
        for (i = 0; i < nbMonths; i++) {
            use[i]   = IloNumVarArray(env, nbProducts, 0, IloInfinity);
            buy[i]   = IloNumVarArray(env, nbProducts, 0, IloInfinity);
            store[i] = IloNumVarArray(env, nbProducts, 0, 1000);
        }
        IloExpr profit(env);

        IloModel model(env);

        // For each type of raw oil we must have 500 tons at the end
        for (p = 0; p < nbProducts; p++) {
            store[nbMonths-1][p].setBounds(500, 500);
        }

        // Constraints on each month
        for (i = 0; i < nbMonths; i++) {
            // Not more than 200 tons of vegetable oil can be refined
            model.add(use[i][v1] + use[i][v2] <= 200);

            // Not more than 250 tons of non-vegetable oil can be refined
            model.add(use[i][o1] + use[i][o2] + use[i][o3] <= 250);

            // Constraints on food composition
            model.add(3 * produce[i] <=
                      8.8 * use[i][v1] + 6.1 * use[i][v2] +
                      2   * use[i][o1] + 4.2 * use[i][o2] + 5 * use[i][o3]);
            model.add(8.8 * use[i][v1] + 6.1 * use[i][v2] +
                      2   * use[i][o1] + 4.2 * use[i][o2] + 5 * use[i][o3]
                      <= 6 * produce[i]);
            model.add(produce[i] == IloSum(use[i]));

            // Raw oil can be stored for later use
            if (i == 0) {
                for (IloInt p = 0; p < nbProducts; p++)
                    model.add(500 + buy[i][p] == use[i][p] + store[i][p]);
            }
            else {
                for (IloInt p = 0; p < nbProducts; p++)
                    model.add(store[i-1][p] + buy[i][p] == use[i][p] + store[i][p]);
            }

            // Logical constraints
            // The food cannot use more than 3 oils
            // (or at least two oils must not be used)
            model.add((use[i][v1] == 0) + (use[i][v2] == 0) + (use[i][o1] == 0) +
                      (use[i][o2] == 0) + (use[i][o3] == 0) >= 2);

            // When an oil is used, the quantity must be at least 20 tons
            for (p = 0; p < nbProducts; p++)
                model.add((use[i][p] == 0) || (use[i][p] >= 20));

            // If products v1 or v2 are used, then product o3 is also used
            model.add(IloIfThen(env, (use[i][v1] >= 20) || (use[i][v2] >= 20),
                                use[i][o3] >= 20));

            // Objective function
            profit += 150 * produce[i] - IloScalProd(cost[i], buy[i]) -
                      5 * IloSum(store[i]);
        }

        // Objective function
        model.add(IloMaximize(env, profit));

        IloCplex cplex(model);

        if (cplex.solve()) {
            cout << "Solution status: " << cplex.getStatus() << endl;
            cout << " Maximum profit = " << cplex.getObjValue() << endl;
            for (IloInt i = 0; i < nbMonths; i++) {
                IloInt p;
                cout << " Month " << i << " " << endl;
                cout << "  . buy   ";
                for (p = 0; p < nbProducts; p++) {
                    cout << cplex.getValue(buy[i][p]) << "\t ";
                }
                cout << endl;
                cout << "  . use   ";
                for (p = 0; p < nbProducts; p++) {
                    cout << cplex.getValue(use[i][p]) << "\t ";
                }
                cout << endl;
                cout << "  . store ";
                for (p = 0; p < nbProducts; p++) {
                    cout << cplex.getValue(store[i][p]) << "\t ";
                }
                cout << endl;
            }
        }
        else {
            cout << " No solution found" << endl;
        }
    }
    catch (IloException& ex) {
        cerr << "Error: " << ex << endl;
    }
    catch (...) {
        cerr << "Error" << endl;
    }
    env.end();
    return 0;
}
Beispiel #11
0
ILOSTLBEGIN

int main(int argc, char** argv)
{
    IloEnv env ;

    try 
    {
        IloModel model(env) ;
        IloCplex cplex(env) ;

        // Get data                                                             
        // Import data from file
        try
        {
           //IloInt i, j ;

           const char* filename ;

           if (argc > 1)
              filename = argv[1] ;
           else
              filename = "data/tsp.dat" ;

           ifstream f(filename, ios::in) ;

            if (!f)
           {
              cerr << "No such file: " << filename << endl ;
              throw(1) ;
           }

        // Create data matrix
        IloArray<IloNumArray> costmatrix (env) ;
        f >> costmatrix ;
        IloInt n = costmatrix.getSize() ;

        // Define variables and "fill" them so as not to get seg faults
        IloArray<IloIntVarArray> x (env, n) ;
        for (i=0 ; i<n ; i++)
        {
            x[i] = IloIntVarArray (env, n) ;
            for(IloInt j=0 ; j<n ; j++)
            {
                x[i][j] = IloIntVar (env) ;
            }
        }

        IloIntVarArray u (env, n) ;
        for(i=0 ; i<n ; i++)
        {
            u[i] = IloIntVar (env) ;
        }

        // Define constraints
        IloExpr constr_i (env) ;
        IloExpr constr_j (env) ;
        IloExpr constr_u (env) ;
        
        // Vertical constraint
        // Create a full vector with a hole to express the vertical constraint as a scalar product
        IloIntArray basevector (env, n) ;
        basevector[0] = 0 ;
        for (int i=1 ; i<n ; i++)
        {
            basevector[i] = 1 ;
        }
        constr_i = IloScalProd(basevector, x[0]) ;
        model.add( constr_i == 1) ;

        for (i=1 ; i < n ; i++)
        {
            basevector[i-1] = 1 ;
            basevector[i] = 0 ;
            constr_i = IloScalProd(basevector, x[i]) ;
            model.add(constr_i == 1) ;

            for (j=0 ; j < n ; j++)
            {
               if (i != j)
               {
                  constr_j += x[j][i] ;
                  constr_u = u[i] - u[j] + n*x[i][j] ;
                  model.add(constr_u == 1) ;
               }
            }
            model.add(constr_j == 1) ;
        }


        // Define objective                                                     
        IloExpr obj (env) ;
        for (i=1 ; i < n ; i++)
        {
            for (j=0 ; j < n ; j++)
            {
               if (i != j)
               {
                  obj += costmatrix[i][j] * x[i][j] ;
               }
            }
        }                                             
        model.add( IloMinimize(env, obj) ) ;                                   

        // Extract model                                                        
        cplex.extract(model);

        // Export model                                                         

        // Set parameters                                                     

        // Solve                                                                
        if ( !cplex.solve() ) 
        {
            env.error() << "Failed to optimize problem" << endl;
            cplex.out() << "Solution status " << cplex.getStatus() << endl ;
            cplex.out() << "Model" << cplex.getModel() << endl ;
            throw(-1);
        }

        cplex.out() << "Solution status " << cplex.getStatus() << endl;
        cplex.out() << "Objective value " << cplex.getObjValue() << endl;

        // Print solution details                                               

    }
    catch (IloException& e) 
    {
        cerr << "Concert exception caught: " << e << endl;
    }

  }
  catch (...)
  {
      cerr << "Unknown exception caught" << endl ;
  }
    
  // freeing memory                                                           
  env.end();
  return 0;
} // END main         
Beispiel #12
0
int main(int argc, const char* argv[]){
  IloEnv env;
  try{
    IloModel model(env);
    IloInt i, j;

    const char* filename = "../../../examples/data/facility.data";
    if (argc > 1)
      filename = argv[1];
    std::ifstream file(filename);
    if (!file){
      env.out() << "usage: " << argv[0] << " <file>" << std::endl;
      throw FileError();
    }

    IloIntArray capacity(env), fixedCost(env);
    IloArray<IloIntArray> cost(env);
    IloInt nbLocations;
    IloInt nbStores;

    file >> nbLocations;
    file >> nbStores;
    capacity = IloIntArray(env, nbLocations);
    for(i = 0; i < nbLocations; i++){
      file >> capacity[i];
    }
    fixedCost = IloIntArray(env, nbLocations);
    for(i = 0; i < nbLocations; i++){
      file >> fixedCost[i];
    }
    for(j = 0; j < nbStores; j++){
      cost.add(IloIntArray(env, nbLocations));
      for(i = 0; i < nbLocations; i++){
        file >> cost[j][i];
      }
    }

    IloBool consistentData = (fixedCost.getSize() == nbLocations);
    consistentData = consistentData && nbStores <= IloSum(capacity);
    for (i = 0; consistentData && (i < nbStores); i++)
      consistentData = (cost[i].getSize() == nbLocations);
    if (!consistentData){
      env.out() << "ERROR: data file '"
                << filename << "' contains inconsistent data" << std::endl;
    }

    IloIntVarArray supplier(env, nbStores, 0, nbLocations - 1);
    for (j = 0; j < nbLocations; j++)
      model.add(IloCount(supplier, j)  <= capacity[j]);
    model.add(supplier[2] != supplier[7]);
    IloIntVarArray open(env, nbLocations, 0, 1);
    for (i = 0; i < nbStores; i++)
      model.add(open[supplier[i]] == 1);

    IloIntExpr obj = IloScalProd(open, fixedCost);
    for (i = 0; i < nbStores; i++)
      obj += cost[i][supplier[i]];
    model.add(IloMinimize(env, obj));
    IloCP cp(model);
    cp.setParameter(IloCP::LogVerbosity, IloCP::Quiet);
    cp.solve();

    cp.out() << std::endl << "Optimal value: " << cp.getValue(obj) << std::endl;
    for (j = 0; j < nbLocations; j++){
      if (cp.getValue(open[j]) == 1){
        cp.out() << "Facility " << j << " is open, it serves stores ";
        for (i = 0; i < nbStores; i++){
          if (cp.getValue(supplier[i]) == j)
            cp.out() << i << " ";
        }
        cp.out() << std::endl;
      }
    }
  }
  catch(IloException& e){
    env.out() << " ERROR: " << e.getMessage() << std::endl;
  }
  env.end();
  return 0;
}
Beispiel #13
0
int
main(int argc, char **argv)
{
   IloEnv env;
   try {
      IloInt i, j;

      IloNumArray capacity(env), fixedCost(env);
      FloatMatrix cost(env);
      IloInt      nbLocations;
      IloInt      nbClients;

      const char* filename  = "../../../examples/data/facility.dat";
      if (argc > 1) 
         filename = argv[1];
      ifstream file(filename);
      if (!file) {
         cerr << "ERROR: could not open file '" << filename
              << "' for reading" << endl;
         cerr << "usage:   " << argv[0] << " <file>" << endl;
         throw(-1);
      }

      file >> capacity >> fixedCost >> cost;
      nbLocations = capacity.getSize();
      nbClients   = cost.getSize(); 

      IloBool consistentData = (fixedCost.getSize() == nbLocations);
      for(i = 0; consistentData && (i < nbClients); i++)
         consistentData = (cost[i].getSize() == nbLocations);
      if (!consistentData) {
         cerr << "ERROR: data file '" 
              << filename << "' contains inconsistent data" << endl;
         throw(-1);
      }

      IloNumVarArray open(env, nbLocations, 0, 1, ILOINT);
      NumVarMatrix supply(env, nbClients);
      for(i = 0; i < nbClients; i++)
         supply[i] = IloNumVarArray(env, nbLocations, 0, 1, ILOINT);

      IloModel model(env);
      for(i = 0; i < nbClients; i++)
         model.add(IloSum(supply[i]) == 1);
      for(j = 0; j < nbLocations; j++) {
         IloExpr v(env);
         for(i = 0; i < nbClients; i++)
            v += supply[i][j];
         model.add(v <= capacity[j] * open[j]);
         v.end();
      }

      IloExpr obj = IloScalProd(fixedCost, open);
      for(i = 0; i < nbClients; i++) {
         obj += IloScalProd(cost[i], supply[i]);
      }
      model.add(IloMinimize(env, obj));
      obj.end();

      IloCplex cplex(env);
      cplex.extract(model);
      cplex.solve();
	
      cplex.out() << "Solution status: " << cplex.getStatus() << endl;

      IloNum tolerance = cplex.getParam(
         IloCplex::Param::MIP::Tolerances::Integrality);
      cplex.out() << "Optimal value: " << cplex.getObjValue() << endl;
      for(j = 0; j < nbLocations; j++) {
         if (cplex.getValue(open[j]) >= 1 - tolerance) {
            cplex.out() << "Facility " << j << " is open, it serves clients ";
            for(i = 0; i < nbClients; i++) {
               if (cplex.getValue(supply[i][j]) >= 1 - tolerance)
                  cplex.out() << i << " ";
            }
            cplex.out() << endl; 
         }
      }
   }
   catch(IloException& e) {
      cerr  << " ERROR: " << e << endl;   
   }
   catch(...) {
      cerr  << " ERROR" << endl;   
   }
   env.end();
   return 0;
}
Beispiel #14
0
int
main (void)
{
   IloEnv   env;
   try {
      IloModel model(env);
      IloCplex cplex(env);

      IloInt nbWhouses = 4;
      IloInt nbLoads = 31;
      IloInt w, l;

      IloNumVarArray capVars(env, nbWhouses, 0, 10, ILOINT); // Used capacities
      IloNumArray    capLbs (env, nbWhouses, 2, 3, 5, 7); // Minimum usage level
      IloNumArray    costs  (env, nbWhouses, 1, 2, 4, 6); // Cost per warehouse

      // These variables represent the assigninment of a
      // load to a warehouse.
      IloNumVarArrayArray assignVars(env, nbWhouses); 
      for (w = 0; w < nbWhouses; w++) {
         assignVars[w] = IloNumVarArray(env, nbLoads, 0, 1, ILOINT);

         // Links the number of loads assigned to a warehouse with 
         // the capacity variable of the warehouse.
         model.add(IloSum(assignVars[w]) == capVars[w]);
      }

      // Each load must be assigned to just one warehouse.
      for (l = 0; l < nbLoads; l++) {
         IloNumVarArray aux(env);
         for (w = 0; w < nbWhouses; w++)
            aux.add(assignVars[w][l]);
         model.add(IloSum(aux) == 1);
         aux.end();
      }

      model.add (IloMinimize(env, IloScalProd(costs, capVars)));

      cplex.extract(model);
      cplex.setParam(IloCplex::Param::MIP::Strategy::Search, IloCplex::Traditional);
      if ( cplex.solve(SemiContGoal(env, capVars, capLbs)) ) {
         cout << " --------------------------------------------------" << endl;
         cout << "Solution status: " << cplex.getStatus() << endl;
         cout << endl << "Solution found:" << endl;
         cout << " Objective value = " 
              << cplex.getObjValue() << endl << endl;
         for (w = 0; w < nbWhouses; w++) {
            cout << "Warehouse " << w << ": stored " 
                 << cplex.getValue(capVars[w]) << " loads" << endl;
            for (l = 0; l < nbLoads; l++) {
               if ( cplex.getValue(assignVars[w][l]) > 1e-5 )
                  cout << "Load " << l << " | ";
            }
            cout << endl << endl;
         }
         cout << " --------------------------------------------------" << endl;
      } 
      else {
         cout << " No solution found " << endl;
      }

   }
   catch (IloException& e) {
      cerr << "Concert exception caught: " << e << endl;
   }

   env.end();

   return 0;
}  // END main