Beispiel #1
0
// This method handles the pressure equation of state. Its tasks are
// 1. Calculate the new pressure
// 2. Update particle pressure
// 3. Increment the particle energy
// 4. Call plasticLaw to see if it wants to change the shear modulus
// 5. Optionally change delV (which is passed by reference)
// Notes:
//  delV is incremental volume change on this step.
//  J is total volume change at end of step (but it is 1 for low-strain materials)
void IsoPlasticity::UpdatePressure(MPMBase *mptr,double &delV,double J,int np,PlasticProperties *p,ResidualStrains *res,double eres) const
{   // pressure change
    double dP = -p->Kred*delV;
    mptr->IncrementPressure(dP);
    
    // work energy is dU = -P dV + s.de(total)
	// Here do hydrostatic term
    // Work energy increment per unit mass (dU/(rho0 V0)) (uJ/g)
    double avgP = mptr->GetPressure()-0.5*dP;
    mptr->AddWorkEnergyAndResidualEnergy(-avgP*delV,-3.*avgP*eres);

    // heat energy is Cv dT  - dPhi
	// Here do Cv dT term and dPhi is done later
    IncrementHeatEnergy(mptr,res->dT,0.,0.);
}
Beispiel #2
0
// To allow some subclasses to support large deformations, the initial calculation for incremental
// deformation gradient (the dvij), volume change (delV) and relative volume (Jnew) can be
// handled first by the subclass. This mtehod then finishes the constitutive law
void IsoPlasticity::PlasticityConstLaw(MPMBase *mptr,double dvxx,double dvyy,double dvzz,double dvxy,double dvyx,
        double dvxz,double dvzx,double dvyz,double dvzy,double delTime,int np,double delV,double Jnew,double eres,
									   PlasticProperties *p,ResidualStrains *res) const
{
	// here dvij is total strain increment, dexxr is relative strain by subtracting off eres
    double dexxr=dvxx-eres;  
    double deyyr=dvyy-eres;
	double dezzr=dvzz-eres;				// use in plane strain only
    double dgxy=dvxy+dvyx;
    double dgxz=dvxz+dvzx;
	double dgyz=dvyz+dvzy;
	
	// rotational strain increments (particle updated by Hypo3D)
	double dwrotxy=dvyx-dvxy;
	double dwrotxz=dvzx-dvxz;
	double dwrotyz=dvzy-dvyz;
	
	// allow arbitrary equation of state for pressure
	UpdatePressure(mptr,delV,Jnew,np,p,res,eres);
	
    // Elastic deviatoric stress increment
	Tensor *ep=mptr->GetStrainTensor();
	Tensor *sp=mptr->GetStressTensor();
    Tensor stk,st0=*sp;
	double dsig[6];
    double thirdDelV = delV/3.;
	dsig[XX] = 2.*p->Gred*(dexxr-thirdDelV);
	dsig[YY] = 2.*p->Gred*(deyyr-thirdDelV);
	dsig[ZZ] = 2.*p->Gred*(dezzr-thirdDelV);
	dsig[YZ] = p->Gred*dgyz;
	dsig[XZ] = p->Gred*dgxz;
	dsig[XY] = p->Gred*dgxy;
    stk.xx = st0.xx + dsig[XX];
    stk.yy = st0.yy + dsig[YY];
	stk.zz = st0.zz + dsig[ZZ];
    stk.yz = st0.yz + dsig[YZ];
    stk.xz = st0.xz + dsig[XZ];
    stk.xy = st0.xy + dsig[XY];
  
    // Calculate plastic potential f = ||s|| - sqrt(2/3)*sy(alpha,rate,...)
	HardeningAlpha alpha;
	plasticLaw->UpdateTrialAlpha(mptr,np,&alpha);			// initialize to last value
	double strial = GetMagnitudeSFromDev(&stk,np);
    double ftrial = strial - SQRT_TWOTHIRDS*plasticLaw->GetYield(mptr,np,delTime,&alpha,p->hardProps);
	if(ftrial<0.)
	{	// elastic, update stress and strain energy as usual
	
		// Add to total strain
		ep->xx+=dvxx;
		ep->yy+=dvyy;
		ep->zz+=dvzz;
		ep->xy+=dgxy;
		ep->xz+=dgxz;
		ep->yz+=dgyz;
		
		// update stress (need to make hypoelastic)
		Hypo3DCalculations(mptr,dwrotxy,dwrotxz,dwrotyz,dsig);
		
		// work energy increment per unit mass (dU/(rho0 V0)) (uJ/g)
		mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dvxx
								+ (st0.yy+sp->yy)*dvyy
								+ (st0.zz+sp->zz)*dvzz
								+ (st0.yz+sp->yz)*dgyz
								+ (st0.xz+sp->xz)*dgxz
								+ (st0.xy+sp->xy)*dgxy));
								
        // heat energy is Cv(dT-dTq0) - dPhi, but dPhi is zero here
        // and Cv(dT-dTq0) was done in Update Pressure
        
		// give material chance to update history variables that change in elastic updates
		ElasticUpdateFinished(mptr,np,delTime);
		
		return;
	}
	
	// Find direction of plastic strain and lambda for this plastic state
	// Base class finds it numerically, subclass can override if solvable by more efficient meethods
	Tensor dfds;
	GetDfDsigma(strial,&stk,np,&dfds);
	double lambdak = plasticLaw->SolveForLambdaBracketed(mptr,np,strial,&stk,p->Gred,1.,1.,delTime,&alpha,p->hardProps);
	
	// Now have lambda, finish update on this particle
        
    // Plastic strain increments on particle
    double dexxp = lambdak*dfds.xx;
    double deyyp = lambdak*dfds.yy;
	double dezzp = lambdak*dfds.zz;
    double dgxyp = 2.*lambdak*dfds.xy;     // 2 for engineering plastic shear strain
    double dgxzp = 2.*lambdak*dfds.xz;     // 2 for engineering plastic shear strain
    double dgyzp = 2.*lambdak*dfds.yz;     // 2 for engineering plastic shear strain
	Tensor *eplast=mptr->GetPlasticStrainTensor();
	eplast->xx += dexxp;
    eplast->yy += deyyp;
	eplast->zz += dezzp;
    eplast->xy += dgxyp;
	eplast->xz += dgxzp;
    eplast->yz += dgyzp;
   
    // Elastic strain increments on particle
    ep->xx += (dvxx-dexxp);
    ep->yy += (dvyy-deyyp);
    ep->zz += (dvzz-dezzp);
    dgxy -= dgxyp;
    ep->xy += dgxy;
    dgxz -= dgxzp;
    ep->xz += dgxz;
    dgyz -= dgyzp;
	ep->yz += dgyz;
	
    // Elastic strain increment minus the residual terms by now subtracting plastic parts
    dexxr -= dexxp;
    deyyr -= deyyp;
	dezzr -= dezzp;				// plain strain only
	//dgxy, dgxz, dgyz done above

	// increment particle deviatoric stresses
	dsig[XX] -= 2.*p->Gred*dexxp;
	dsig[YY] -= 2.*p->Gred*deyyp;
	dsig[ZZ] -= 2.*p->Gred*dezzp;
	dsig[YZ] -= p->Gred*dgyzp;
	dsig[XZ] -= p->Gred*dgxzp;
	dsig[XY] -= p->Gred*dgxyp;
	Hypo3DCalculations(mptr,dwrotxy,dwrotxz,dwrotyz,dsig);
	
    // work energy increment per unit mass (dU/(rho0 V0)) (uJ/g)
	double workEnergy = 0.5*((st0.xx+sp->xx)*dvxx + (st0.yy+sp->yy)*dvzz
                               + (st0.zz+sp->zz)*dvzz + (st0.yz+sp->yz)*dgyz
                               + (st0.xz+sp->xz)*dgxz + (st0.xy+sp->xy)*dgxy);
    
    // plastic strain work
    double plastEnergy = lambdak*(sp->xx*dfds.xx + sp->yy*dfds.yy + sp->zz*dfds.zz
                                  + 2.*sp->xy*dfds.xy + 2.*sp->xz*dfds.xz + 2.*sp->yz*dfds.yz);
    
    // total work
    mptr->AddWorkEnergy(plastEnergy + workEnergy);
    
    // disispated energy per unit mass (dPhi/(rho0 V0)) (uJ/g)
    double qdalphaTerm = lambdak*SQRT_TWOTHIRDS*plasticLaw->GetYieldIncrement(mptr,np,delTime,&alpha,p->hardProps);
    double dispEnergy = plastEnergy - qdalphaTerm;
    
    // heat energy is Cv(dT-dTq0) - dPhi
    // The dPhi is subtracted here because it will show up in next
    //		time step within Cv dT (if adiabatic heating occurs)
    // The Cv(dT-dTq0) was done already in update pressure
    IncrementHeatEnergy(mptr,0.,0.,dispEnergy);
    
	// The cumulative dissipated energy is tracked in plastic energy
    // Setting the disp energy allows heating if mechanical energy is on
    mptr->AddPlastEnergy(dispEnergy);
    
	// update internal variables
	plasticLaw->UpdatePlasticInternal(mptr,np,&alpha);
}
Beispiel #3
0
// Apply Constitutive law, check np to know what type
void TaitLiquid::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,
									ResidualStrains *res,int historyOffset) const
{
#ifdef NO_SHEAR_MODEL
    // get incremental deformation gradient
	const Matrix3 dF = du.Exponential(incrementalDefGradTerms);
    
    // decompose dF into dR and dU
    Matrix3 dR;
    Matrix3 dU = dF.RightDecompose(&dR,NULL);
	
	// current deformation gradient
    double detdF = dF.determinant();
	Matrix3 pF = mptr->GetDeformationGradientMatrix();
    Matrix3 F = dR*pF;
    if(np==THREED_MPM)
        F.Scale(pow(detdF,1./3.));
    else
        F.Scale2D(sqrt(detdF));
	
	// new deformation matrix with volume change onle
    mptr->SetDeformationGradientMatrix(F);

#else
#ifdef ELASTIC_B_MODEL
    // get incremental deformation gradient
	const Matrix3 dF = du.Exponential(incrementalDefGradTerms);
	double detdF = dF.determinant();
	
	// current deformation gradient
	Matrix3 pF = mptr->GetDeformationGradientMatrix();
	
	// new deformation matrix
	const Matrix3 F = dF*pF;
    mptr->SetDeformationGradientMatrix(F);
#else

	// Update total deformation gradient, and calculate trial B
	double detdF = IncrementDeformation(mptr,du,NULL,np);
#endif
#endif
    
    // Get new J and save result on the particle
	double J = detdF * mptr->GetHistoryDble(J_History,historyOffset);
    mptr->SetHistoryDble(J_History,J,historyOffset);

#ifdef ELASTIC_B_MODEL
	// store pressure strain as elastic B
    Tensor *pB = mptr->GetAltStrainTensor() ;
    if(np==THREED_MPM || np==AXISYMMETRIC_MPM)
	{	double J23 = pow(J,2./3.);
		pB->xx = J23;
		pB->yy = J23;
		pB->zz = J23;
	}
	else
	{	pB->xx = J;
		pB->yy = J;
	}
#endif
    
    // account for residual stresses
	double dJres = GetIncrementalResJ(mptr,res);
	double Jres = dJres * mptr->GetHistoryDble(J_History+1,historyOffset);
	mptr->SetHistoryDble(J_History+1,Jres,historyOffset);
    double Jeff = J/Jres;

    // new Kirchhoff pressure (over rho0) from Tait equation
	double p0=mptr->GetPressure();
    double pressure = J*TAIT_C*Ksp*(exp((1.-Jeff)/TAIT_C)-1.);
    mptr->SetPressure(pressure);
    
	// incremental energy per unit mass - dilational part
    double avgP = 0.5*(p0+pressure);
    double delV = 1. - 1./detdF;
    double workEnergy = -avgP*delV;
    
	// incremental residual energy per unit mass
	double delVres = 1. - 1./dJres;
	double resEnergy = -avgP*delVres;
	
    // viscosity term = 2 eta (0.5(grad v) + 0.5*(grad V)^T - (1/3) tr(grad v) I) = 2 eta dev(grad v)
    // (i.e., deviatoric part of the symmetric strain tensor, 2 is for conversion to engineering shear strain)
	// simple shear rate = |2 dev(grad v)|
    Matrix3 shear;
    double c[3][3];
	double shearRate;
    c[0][0] = (2.*du(0,0)-du(1,1)-du(2,2))/3.;
    c[1][1] = (2.*du(1,1)-du(0,0)-du(2,2))/3.;
    c[2][2] = (2.*du(2,2)-du(0,0)-du(1,1))/3.;
    c[0][1] = 0.5*(du(0,1)+du(1,0));
    c[1][0] = c[0][1];
	shearRate = c[0][0]*c[0][0] + c[1][1]*c[1][1] + c[2][2]*c[2][2]
	+ 2.*c[0][1]*c[0][1];
    if(np==THREED_MPM)
    {   c[0][2] = 0.5*(du(0,2)+du(2,0));
        c[2][0] = c[0][2];
        c[1][2] = 0.5*(du(1,2)+du(2,1));
        c[2][1] = c[1][2];
		shearRate += 2.*(c[0][2]*c[0][2] + c[1][2]*c[1][2]);
        shear.set(c);
    }
    else
        shear.set(c[0][0],c[0][1],c[1][0],c[1][1],c[2][2]);
	shearRate = 2.*sqrt(shearRate)/delTime;
	
	// Store shear rate
	mptr->SetHistoryDble(J_History+2,shearRate,historyOffset);
	
	// Get effective visocisy
	double twoetaspRate = 0.;
	if(numViscosity==1)
	{	twoetaspRate = TwoEtasp[0];
	}
	else
	{	shearRate = log10(shearRate);
		if(shearRate < logShearRate[0])
			twoetaspRate = TwoEtasp[0];
		else if(shearRate > logShearRate[numViscosity-1])
			twoetaspRate = TwoEtasp[numViscosity-1];
		else
		{	// interpolate
			for(int i=1;i<numViscosity;i++)
			{	if(shearRate <= logShearRate[i])
				{	// between i-1 and i
					double fract = (logShearRate[i]-shearRate)/(logShearRate[i]-logShearRate[i-1]);
					twoetaspRate = fract*TwoEtasp[i-1] + (1.-fract)*TwoEtasp[i];
					break;
				}
			}
		}
	}
    
    // Get Kirchoff shear stress (over rho0)
    shear.Scale(J*twoetaspRate/delTime);
    
    // update deviatoric stress
	Tensor *sp=mptr->GetStressTensor();
    sp->xx = shear(0,0);
    sp->yy = shear(1,1);
    sp->zz = shear(2,2);
    sp->xy = shear(0,1);
    if(np==THREED_MPM)
    {   sp->xz = shear(0,2);
        sp->yz = shear(1,2);
    }
    
    // shear work per unit mass = tau.du = tau.tau*delTime/twoetaspRate
    double shearWork = sp->xx*sp->xx + sp->yy*sp->yy + sp->zz*sp->zz + 2.*sp->xy*sp->xy;
    if(np==THREED_MPM) shearWork += 2.*(sp->xz*sp->xz + sp->yz*sp->yz);
    shearWork *= delTime/twoetaspRate;
    mptr->AddWorkEnergyAndResidualEnergy(workEnergy+shearWork,resEnergy);
    
    // particle isentropic temperature increment dT/T = - J (K/K0) gamma0 Delta(V)/V
    // Delta(V)/V = 1. - 1/detdF (total volume)
	double Kratio = Jeff*(1.+pressure/(TAIT_C*Ksp));
	double dTq0 = -J*Kratio*gamma0*mptr->pPreviousTemperature*delV;
    
    // heat energy is Cv (dT - dTq0) -dPhi
	// Here do Cv (dT - dTq0)
    // dPhi = shearWork is lost due to shear term
    IncrementHeatEnergy(mptr,res->dT,dTq0,shearWork);
}
Beispiel #4
0
// To allow some subclasses to support large deformations, the initial calculation for incremental
// deformation gradient (the dvij), volume change (delV) and relative volume (Jnew) can be
// handled first by the subclass. This mtehod then finishes the constitutive law
void IsoPlasticity::PlasticityConstLaw(MPMBase *mptr,double dvxx,double dvyy,double dvxy,double dvyx,
                                double dvzz,double delTime,int np,double delV,double Jnew,double eres,
									   PlasticProperties *p,ResidualStrains *res) const
{
	// here dvij is total strain increment, dexxr is relative strain by subtracting off eres
    double dexxr = dvxx-eres;			// trial dexx=dvxx
    double deyyr = dvyy-eres;			// trial deyy=dvyy
	double dezzr = dvzz-eres;			// In plane strain trial dezz=0, dvzz=0 except in axisymmetric
    double dgxy = dvxy+dvyx;			// no need to substract residual strain
    double dwrotxy = dvyx-dvxy;

	// allow arbitrary equation of state for pressure
    double P0 = mptr->GetPressure();
	UpdatePressure(mptr,delV,Jnew,np,p,res,eres);
    double Pfinal = mptr->GetPressure();
	
    // Deviatoric stress increment
	Tensor *ep=mptr->GetStrainTensor();
	Tensor *sp=mptr->GetStressTensor();
    Tensor dels,stk,st0=*sp;
    double thirdDelV = delV/3.;
	dels.xx = 2.*p->Gred*(dexxr-thirdDelV);
	dels.yy = 2.*p->Gred*(deyyr-thirdDelV);
	if(np==PLANE_STRESS_MPM)
		dels.zz = Pfinal-P0;
	else
		dels.zz = 2.*p->Gred*(dezzr-thirdDelV);
	dels.xy = p->Gred*dgxy;
    
    // trial deviatoric stress
    stk.xx = st0.xx + dels.xx;
    stk.yy = st0.yy + dels.yy;
	stk.zz = st0.zz + dels.zz;
    stk.xy = st0.xy + dels.xy;
  
    // Calculate plastic potential f = ||s|| - sqrt(2/3)*sy(alpha,rate,...)
	HardeningAlpha alpha;
	plasticLaw->UpdateTrialAlpha(mptr,np,&alpha);			// initialize to last value and zero plastic strain rate
	double strial = GetMagnitudeSFromDev(&stk,np);
    double ftrial = strial - SQRT_TWOTHIRDS*plasticLaw->GetYield(mptr,np,delTime,&alpha,p->hardProps);
	if(ftrial<0.)
	{	// elastic, update stress and strain energy as usual
	
		// Add input strain increment to elastic strain on particle
		ep->xx += dvxx;
		ep->yy += dvyy;
		ep->xy += dgxy;
				
		// increment deviatoric stress (Units N/m^2  cm^3/g) (pressure not needed here)
		Hypo2DCalculations(mptr,-dwrotxy,dels.xx,dels.yy,dels.xy);
		
		// work energy increment per unit mass (dU/(rho0 V0)) (by midpoint rule) (uJ/g)
        // energy units are also Pa cm^3/g, i.e., same as stress units
        sp->zz = stk.zz;
        if(np==AXISYMMETRIC_MPM)
		{	ep->zz += dvzz;
			mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dvxx + (st0.yy+sp->yy)*dvyy
									   + (st0.xy+sp->xy)*dgxy + (st0.zz+sp->zz)*dvzz));
		}
		else
        {   mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dvxx + (st0.yy+sp->yy)*dvyy
									   + (st0.xy+sp->xy)*dgxy));
		}
		
        // heat energy is Cv(dT-dTq0) - dPhi, but dPhi is zero here
        // and Cv(dT-dTq0) was done in Update pressure
        
		// give subclass material chance to update history variables that change in elastic updates
		ElasticUpdateFinished(mptr,np,delTime);
		
		return;
    }
    
	// Find  lambda for this plastic state
	// Base class finds it numerically, subclass can override if solvable by more efficient methods
    double lambdak = plasticLaw->SolveForLambdaBracketed(mptr,np,strial,&stk,p->Gred,p->psKred,Pfinal,delTime,&alpha,p->hardProps);
	
	// Now have lambda, finish update on this particle
	Tensor dfds;
	if(np==PLANE_STRESS_MPM)
    {   // get final stress state
        double d1 = (1 + p->psKred*lambdak);
		double d2 = (1.+2.*p->Gred*lambdak);
		double n1 = (stk.xx+stk.yy-2.*Pfinal)/d1;
		double n2 = (-stk.xx+stk.yy)/d2;
		double sxx = (n1-n2)/2.;
		double syy = (n1+n2)/2.;
		double txy = stk.xy/d2;
        
        // find increment in deviatoric stress
		dels.xx = sxx+Pfinal-st0.xx;
		dels.yy = syy+Pfinal-st0.yy;
		dels.xy = txy-st0.xy;
        
        // get final direction
        dfds.xx = (2.*sxx-syy)/3.;
        dfds.yy = (2.*syy-sxx)/3.;
        dfds.zz = -(dfds.xx+dfds.yy);
        dfds.xy = txy;				// tensorial shear strain
		
		// If fully plastic, the increment in deviatoric stress should be zero
		// sxx = sigmaxx+Pfinal = st0.xx, syy = sigmayy+Pfinal = st0.yy, szz = Pfinal
		// But first two must be wrong because trace is no longer zero?
		//
		// This is probably wrong
		// i.e.:	n1 + 2*Pfinal = st0.xx+st0.yy
		//			(stk.xx+stk.yy)/d1 - 2*Pfinal*(1/d1-1) = st0.xx+st0.yy
		// But (stk.xx+stk.yy) = (st0.xx+st0.yy) + 2.*Gred*(dexxr+deyyr-2*thirdDelV)
		//			(st0.xx+st0.yy)(1/d1-1) - 2*Pfinal*(1/d1-1) = -2.*Gred*(dexxr+deyyr-2*thirdDelV)/d1
		//			(st0.xx+st0.yy-2*Pfinal)*(1-d1) = -2.*Gred*(dexxr+deyyr-2*thirdDelV)
		//			B*Kred*lam = 2.*Gred*A    or    lam = 2.*Gred*A/(B*Kred)
		// where B = st0.xx+st0.yy-2*Pfinal, and A = (dexxr+deyyr-2*thirdDelV)
		// Then  d1 = 1+2*Gred*A/B, n1 = ((st0.xx+st0.yy) + 2*Gred*A - 2*Pfinal)/d1 = (B+2*Gred*A)*B/(B+2*Gred*A) = B
		//
		// Also expect syy-sxx = sigmayy-sigmaxx = st0.yy-st0.xx = n2
		//			(stk.yy-stk.xx)/d2 = st0.yy-st0.xx
		//			(st0.yy-st0.xx)/d2 + 2*Gred*(deyyr-dexxr)/d2 = (st0.yy-st0.xx)
		//			(st0.yy-st0.xx)(d2-1) = - 2*Gred*(deyyr-dexxr)
		//          lam = (deyyr-dexxr)/(st0.yy-st0.xx)
		// Then n2 = (st0.yy-st0.xx + 2*Gred*(deyyr-dexxr))/(1+2*Gred*(deyyr-dexxr)/(st0.yy-st0.xx)) = st0.yy-st0.xx
		//
		// But these to lam's seem to differ?
		// We can write 
	}
    else
    {   // get final direction
        GetDfDsigma(strial,&stk,np,&dfds);
    }
         
    // Plastic strain increments on particle
    double dexxp = lambdak*dfds.xx;
    double deyyp = lambdak*dfds.yy;
	double dezzp = lambdak*dfds.zz;
    double dgxyp = 2.*lambdak*dfds.xy;     // 2 for engineering plastic shear strain
	Tensor *eplast=mptr->GetPlasticStrainTensor();
    eplast->xx += dexxp;
    eplast->yy += deyyp;
    eplast->xy += dgxyp;
	eplast->zz += dezzp;
    
    // Elastic strain increments on particle
    ep->xx += (dvxx-dexxp);
    ep->yy += (dvyy-deyyp);
    dgxy -= dgxyp;
    ep->xy += dgxy;
	if(np==PLANE_STRESS_MPM)
		ep->zz += eres - p->psLr2G*(dexxr+deyyr+dezzp);
	else
	{	// plain strain and axisymmetric when plastic increments is dezzp
		// In plain strain, dvzz=0 elastic increment is -dezzp to zz strain total is zero
		// Axisymmetry can have non-zero hoop strain
		ep->zz += (dvzz-dezzp);
		dezzr -= dezzp; 
	}
	
    // Elastic strain increment minus the residual terms by now subtracting plastic parts
    dexxr -= dexxp;
    deyyr -= deyyp;
	//dgxy -= dgxyp;			// done above
	//dezzr -= dezzp;			// plane strain and axisymmetry done above, plain stress not needed

	// increment particle deviatoric stresses (plane stress increments found above)
	if(np!=PLANE_STRESS_MPM)
	{	dels.xx -= 2.*p->Gred*dexxp;
		dels.yy -= 2.*p->Gred*deyyp;
		dels.xy -= p->Gred*dgxyp;
		dels.zz -= 2.*p->Gred*dezzp;
		sp->zz += dels.zz;
	}
    else
        sp->zz = Pfinal;          // now equal to Pfinal
        
	Hypo2DCalculations(mptr,-dwrotxy,dels.xx,dels.yy,dels.xy);
	
    // Elastic work increment per unit mass (dU/(rho0 V0)) (uJ/g)
    double workEnergy = 0.5*((st0.xx+sp->xx)*dvxx
                               + (st0.yy+sp->yy)*dvyy
                               + (st0.xy+sp->xy)*dgxy);
	if(np==AXISYMMETRIC_MPM)
    {	workEnergy += 0.5*(st0.zz+sp->zz)*dvzz;
	}
    
    // plastic strain work
    double plastEnergy = lambdak*(sp->xx*dfds.xx + sp->yy*dfds.yy + sp->zz*dfds.zz + 2.*sp->xy*dfds.xy);
    
    // total work
    mptr->AddWorkEnergy(plastEnergy + workEnergy);
    
    // disispated energy per unit mass (dPhi/(rho0 V0)) (uJ/g)
    double qdalphaTerm = lambdak*SQRT_TWOTHIRDS*plasticLaw->GetYieldIncrement(mptr,np,delTime,&alpha,p->hardProps);
    double dispEnergy = plastEnergy - qdalphaTerm;
    
    // heat energy is Cv(dT-dTq0) - dPhi
    // The dPhi is subtracted here because it will show up in next
    //		time step within Cv dT (if adibatic heating occurs)
    // The Cv(dT-dTq0) was done in update pressure
    IncrementHeatEnergy(mptr,0.,0.,dispEnergy);
    
	// The cumulative dissipated energy is tracked in plastic energy
    mptr->AddPlastEnergy(dispEnergy);
    
	// update internal variables
	plasticLaw->UpdatePlasticInternal(mptr,np,&alpha);
}
Beispiel #5
0
/* Take increments in strain and calculate new Particle: strains, rotation strain,
	stresses, strain energy,
	dvij are (gradient rates X time increment) to give deformation gradient change
	For Axisymmetry: x->R, y->Z, z->theta, np==AXISYMMETRIC_MPM, otherwise dvzz=0
	This material tracks pressure and stores deviatoric stress only in particle stress
	tensor
*/
void Neohookean::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,
									ResidualStrains *res,int historyOffset) const
{
	// Update strains and rotations and Left Cauchy strain
	double detDf = IncrementDeformation(mptr,du,NULL,np);
	
	// get pointer to new left Cauchy strain
    Tensor *B = mptr->GetAltStrainTensor();
	
    // account for residual stresses
	double dJres = GetIncrementalResJ(mptr,res);
	double Jres = dJres*mptr->GetHistoryDble(J_History+1,historyOffset);
	mptr->SetHistoryDble(J_History+1,Jres,historyOffset);
	double resStretch = pow(Jres,1./3.);
	double Jres23 = resStretch*resStretch;
	
	// Deformation gradients and Cauchy tensor differ in plane stress
	if(np==PLANE_STRESS_MPM)
	{	// Find B->zz required to have zero stress in z direction
		double arg = B->xx*B->yy - B->xy*B->xy;
		double xn;
		Tensor *ep=mptr->GetStrainTensor();
		
		switch(UofJOption)
		{   case J_MINUS_1_SQUARED:
			{	double a = pr.Lamesp*arg + pr.Gsp*pow(Jres,4./3.);
				double b = pr.Lamesp*sqrt(arg);
				xn = Jres*(b + sqrt(b*b + 4.*pr.Gsp*a))/(2.*a);
				xn *= xn;
				break;
			}
			case LN_J_SQUARED:
			{	xn = B->zz;
				double fx,fxp,xnp1,Jres23 = pow(Jres,2./3.);
				int iter=1;
				while(iter<20)
				{	// get f and df/dxn
					fx = pr.Gsp*(xn-Jres23) + 0.5*pr.Lamesp*Jres23*log(xn*arg/(Jres*Jres));
					fxp = pr.Gsp + pr.Lamesp*Jres23/(2*xn);
					
					// new prediction for solution
					xnp1 = xn - fx/fxp;
					if(fabs(xn-xnp1)<1e-10) break;
					xn = xnp1;
					iter+=1;
				}
				break;
			}
			case HALF_J_SQUARED_MINUS_1_MINUS_LN_J:
			default:
				xn = Jres*Jres*(pr.Lamesp+2.*pr.Gsp)/(pr.Lamesp*arg+2.*pr.Gsp*pow(Jres,4./3.));
				break;
		}
		
        // Done and xn = new B->zz = Fzz^2 = dFzz*(old Bzz)*dFzz = dFzz^2*(old Bzz),
		//    and Fzz = dFzz*(old Fzz) = 1 + ep->zz
        //cout << xn << "," << pow(Jres,2./3.)*pr.Lamesp*(xn*arg/(Jres*Jres)-1.) + 2.*pr.Gsp*(xn-pow(Jres,2./3.)) << endl;;
        double dFzz = sqrt(xn/B->zz);
        B->zz = xn;
		
		// particle strain ezz now known
		ep->zz = dFzz*(1.+ep->zz) - 1.;
        
        // incremental J changes
        detDf *= dFzz;
	}
    
    // Increment J and save it in history data
    double J = detDf*mptr->GetHistoryDble(J_History,historyOffset);
    mptr->SetHistoryDble(J_History,J,historyOffset);
	
	// for incremental energy, store initial stress
	Tensor *sporig=mptr->GetStressTensor();
	Tensor st0 = *sporig;
	
	// account for residual stresses
	double Jeff = J/Jres;
	
    // update pressure
	double p0=mptr->GetPressure();
	double Pterm = J*GetVolumetricTerms(Jeff,pr.Lamesp) + Jres*pr.Gsp*((B->xx+B->yy+B->zz)/(3.*Jres23) - 1.);
	
    // artifical viscosity
    double delV = 1. - 1./detDf;                        // total volume change
    double QAVred = 0.,AVEnergy=0.;
    if(delV<0. && artificialViscosity)
	{	QAVred = GetArtificalViscosity(delV/delTime,sqrt(pr.Ksp)*J);
        if(ConductionTask::AVHeating) AVEnergy = fabs(QAVred*delV);
    }
    double Pfinal = -Pterm + QAVred;
    
    // set the pressure
    mptr->SetPressure(Pfinal);
	
	// incremental energy - dilational part
    double avgP = 0.5*(p0+Pfinal);
    double dilEnergy = -avgP*delV;
	
	// incremental residual energy
	double delVres = 1. - 1./dJres;
	double resEnergy = -avgP*delVres;
	
    // Account for density change in specific stress
    // i.e.. Get (Kirchoff Stress)/rho0
	double GJeff = resStretch*pr.Gsp;		// = J*(Jres^(1/3) G/J) to get Kirchoff
    
	// find deviatoric (Cauchy stress)J/rho0 = deviatoric (Kirchoff stress)/rho0
	Tensor *sp=mptr->GetStressTensor();
    
    double I1third = (B->xx+B->yy+B->zz)/3.;
	sp->xx = GJeff*(B->xx-I1third);
	sp->yy = GJeff*(B->yy-I1third);
	sp->zz = GJeff*(B->zz-I1third);
	sp->xy = GJeff*B->xy;
    if(np==THREED_MPM)
	{	sp->xz = GJeff*B->xz;
        sp->yz = GJeff*B->yz;
    }
    
	// incremental work energy = shear energy
    double shearEnergy = 0.5*((sp->xx+st0.xx)*du(0,0) + (sp->yy+st0.yy)*du(1,1) + (sp->zz+st0.zz)*du(2,2)+
							  (sp->xy+st0.xy)*(du(0,1)+du(1,0)));
    if(np==THREED_MPM)
    {   shearEnergy += 0.5*((sp->xz+st0.xz)*(du(0,2)+du(2,0)) + (sp->yz+st0.yz)*(du(1,2)+du(2,1)));
    }
    
    // strain energy
    double dU = dilEnergy + shearEnergy;
    mptr->AddWorkEnergyAndResidualEnergy(dU,resEnergy);
	
	// particle isentropic temperature increment
	double Kratio;				// = rho_0 K/(rho K_0)
    double Jeff1third = pow(Jeff,1./3.);
    double Gterm = pr.Gsp*(1. - Jeff1third*Jeff1third + 2./(3.*Jeff1third));
	switch(UofJOption)
	{   case J_MINUS_1_SQUARED:
			Kratio = pr.Lamesp+Jeff + Gterm;
			break;
			
		case LN_J_SQUARED:
			Kratio = pr.Lamesp*(1-log(Jeff))/(Jeff*Jeff) + Gterm;
			break;
			
		case HALF_J_SQUARED_MINUS_1_MINUS_LN_J:
		default:
			Kratio = 0.5*(Jeff + 1./Jeff);
			break;
	}
    Kratio /= pr.Ksp;
    double dTq0 = -J*Kratio*gamma0*mptr->pPreviousTemperature*delV;
    
    // thermodynamics heat and temperature
	IncrementHeatEnergy(mptr,res->dT,dTq0,QAVred);
}
Beispiel #6
0
/* Take increments in strain and calculate new Particle: strains, rotation strain, plastic strain,
		stresses, strain energy, plastic energy, dissipated energy, angle
	dvij are (gradient rates X time increment) to give deformation gradient change
	For Axisymmetry: x->R, y->Z, z->theta, np==AXISYMMETRIC_MPM, otherwise dvzz=0
	This material tracks pressure and stores deviatoric stress only in particle stress tensor
*/
void Viscoelastic::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,ResidualStrains *res) const
{
    // Effective strain by deducting thermal strain (no shear thermal strain because isotropic)
	double eres=CTE*res->dT;
	if(DiffusionTask::active)
		eres+=CME*res->dC;
	
	// update pressure
	double delV = du.trace() - 3.*eres;
	UpdatePressure(mptr,delV,res,eres);
	
	// deviatoric strains increment
	// Actually find 2*de to avoid many multiples by two
	Tensor de;
	double dV = du.trace()/3.;
	de.xx = 2.*(du(0,0) - dV);
	de.yy = 2.*(du(1,1) - dV);
	de.zz = 2.*(du(2,2) - dV);
	de.xy = du(0,1)+du(1,0);
	if(np==THREED_MPM)
	{	de.xz = du(0,2)+du(2,0);
		de.yz = du(1,2)+du(2,1);
	}
	
	// Find initial 2*e(t) in ed
	Tensor *ep=mptr->GetStrainTensor();
	Tensor ed = *ep;
	double thirdV = (ed.xx+ed.yy+ed.zz)/3.;
	ed.xx = 2.*(ed.xx-thirdV);
	ed.yy = 2.*(ed.yy-thirdV);
	ed.zz = 2.*(ed.zz-thirdV);
							 
	// Increment total strains on the particle
    ep->xx += du(0,0);
    ep->yy += du(1,1);
	ep->zz += du(2,2);
    ep->xy += de.xy;
	if(np==THREED_MPM)
	{	ep->xz += de.xz;
		ep->yz += de.yz;
	}
	
	// get internal variable increments and update them too
	Tensor dak;
    double **ak =(double **)(mptr->GetHistoryPtr());
	int k;
    for(k=0;k<ntaus;k++)
    {   double tmp = exp(-delTime/tauk[k]);
		double tmpm1 = tmp-1.;
		double tmpp1 = tmp+1.;
		double arg = 0.25*delTime/tauk[k];					// 0.25 because e's have factor of 2
		dak.xx = tmpm1*ak[XX_HISTORY][k] + arg*(tmpp1*ed.xx + de.xx);
		dak.yy = tmpm1*ak[YY_HISTORY][k] + arg*(tmpp1*ed.yy + de.yy);
		dak.xy = tmpm1*ak[XY_HISTORY][k] + arg*(tmpp1*ed.xy + de.xy);
		dak.zz = tmpm1*ak[ZZ_HISTORY][k] + arg*(tmpp1*ed.zz + de.zz);
		ak[XX_HISTORY][k] += dak.xx;
		ak[YY_HISTORY][k] += dak.yy;
		ak[ZZ_HISTORY][k] += dak.zz;
		ak[XY_HISTORY][k] += dak.xy;
		
		if(np==THREED_MPM)
		{	dak.xz = tmpm1*ak[XZ_HISTORY][k] + arg*(tmpp1*ed.xz + de.xz);
			dak.yz = tmpm1*ak[YZ_HISTORY][k] + arg*(tmpp1*ed.yz + de.yz);
			ak[XZ_HISTORY][k] += dak.xz;
			ak[YZ_HISTORY][k] += dak.yz;
		}
    }
	
	// increment particle deviatoric stresses
	double dsig[6];
	dsig[XX] = Gered*de.xx;
	dsig[YY] = Gered*de.yy;
	dsig[ZZ] = Gered*de.zz;
	dsig[XY] = Gered*de.xy;
	if(np==THREED_MPM)
	{	dsig[XZ] = Gered*de.xz;
		dsig[YZ] = Gered*de.yz;
	}
    for(k=0;k<ntaus;k++)
	{	dsig[XX] -= TwoGkred[k]*dak.xx;
		dsig[YY] -= TwoGkred[k]*dak.yy;
		dsig[ZZ] -= TwoGkred[k]*dak.zz;
		dsig[XY] -= TwoGkred[k]*dak.xy;
		if(np==THREED_MPM)
		{	dsig[XZ] -= TwoGkred[k]*dak.xz;
			dsig[YZ] -= TwoGkred[k]*dak.yz;
		}
	}
	
	// Hypoelastic increment of particle deviatoric stresses
	Tensor *sp=mptr->GetStressTensor();
	Tensor st0 = *sp;
	double dwrotxy = du(1,0)-du(0,1);
	if(np==THREED_MPM)
	{	double dwrotxz = du(2,0)-du(0,2);
		double dwrotyz = du(2,1)-du(1,2);
		Hypo3DCalculations(mptr,dwrotxy,dwrotxz,dwrotyz,dsig);
	}
	else
	{	Hypo2DCalculations(mptr,-dwrotxy,dsig[XX],dsig[YY],dsig[XY]);
		sp->zz += dsig[ZZ];
	}
	
	// incremental work energy = shear energy (dilation and residual energy done in update pressure)
    double shearEnergy = 0.5*((sp->xx+st0.xx)*du(0,0) + (sp->yy+st0.yy)*du(1,1) + (sp->zz+st0.zz)*du(2,2)+
							  (sp->xy+st0.xy)*de.xy);
    if(np==THREED_MPM)
    {   shearEnergy += 0.5*((sp->xz+st0.xz)*de.xz + (sp->yz+st0.yz)*de.yz);
    }
    mptr->AddWorkEnergyAndResidualEnergy(shearEnergy,0.);
	
    // disispated energy per unit mass (dPhi/(rho0 V0)) (uJ/g)
    double dispEnergy = 0.;
    for(k=0;k<ntaus;k++)
	{	dispEnergy += TwoGkred[k]*(dak.xx*(0.5*(ed.xx+0.5*de.xx)-ak[XX_HISTORY][k]+0.5*dak.xx)
						+ dak.yy*(0.5*(ed.yy+0.5*de.yy)-ak[YY_HISTORY][k]+0.5*dak.yy)
						+ dak.zz*(0.5*(ed.zz+0.5*de.zz)-ak[ZZ_HISTORY][k]+0.5*dak.zz)
						+ dak.xy*(0.5*(ed.xy+0.5*de.xy)-ak[XY_HISTORY][k]+0.5*dak.xy));
		if(np==THREED_MPM)
		{	dispEnergy += TwoGkred[k]*(dak.xz*(0.5*(ed.xz+0.5*de.xz)-ak[XZ_HISTORY][k]+0.5*dak.xz)
							+ dak.yz*(0.5*(ed.yz+0.5*de.yz)-ak[YZ_HISTORY][k]+0.5*dak.yz));
		}
	}
    mptr->AddPlastEnergy(dispEnergy);
    
    // heat energy is Cv dT - dPhi
    // The dPhi is subtracted here because it will show up in next
    //		time step within Cv dT (if adibatic heating occurs)
    // The Cv dT was done in update pressure
    IncrementHeatEnergy(mptr,0.,0.,dispEnergy);
}
Beispiel #7
0
/* For 3D MPM analysis, take increments in strain and calculate new
    Particle: strains, rotation strain, stresses, strain energy, angle
    dvij are (gradient rates X time increment) to give deformation gradient change
    Assumes linear elastic, uses hypoelastic correction
*/
void Elastic::MPMConstLaw(MPMBase *mptr,double dvxx,double dvyy,double dvzz,double dvxy,double dvyx,
        double dvxz,double dvzx,double dvyz,double dvzy,double delTime,int np,void *properties,ResidualStrains *res) const
{
	// cast pointer to material-specific data
	ElasticProperties *p = (ElasticProperties *)properties;
	
	// Add to total strain
	Tensor *ep = mptr->GetStrainTensor();
    ep->xx += dvxx;
    ep->yy += dvyy;
    ep->zz += dvzz;
    double dgamxy = dvxy+dvyx;
    ep->xy += dgamxy;
    double dgamxz = dvxz+dvzx;
    ep->xz += dgamxz;
    double dgamyz = dvyz+dvzy;
    ep->yz += dgamyz;
	
	// rotational strain increments (particle updated by Hypo3D)
	double dwrotxy = dvyx-dvxy;
	double dwrotxz = dvzx-dvxz;
	double dwrotyz = dvzy-dvyz;
	
    // residual strains (thermal and moisture) (isotropic only)
	double exxr = p->alpha[0]*res->dT;
	double eyyr = p->alpha[1]*res->dT;
	double ezzr = p->alpha[2]*res->dT;
	double eyzr = p->alpha[3]*res->dT;
	double exzr = p->alpha[4]*res->dT;
	double exyr = p->alpha[5]*res->dT;
	if(DiffusionTask::active)
	{	exxr += p->beta[0]*res->dC;
		eyyr += p->beta[1]*res->dC;
		ezzr += p->beta[2]*res->dC;
		eyzr += p->beta[3]*res->dC;
		exzr += p->beta[4]*res->dC;
		exyr += p->beta[5]*res->dC;
	}
	
	// effective strains
	double dvxxeff = dvxx-exxr;
	double dvyyeff = dvyy-eyyr;
	double dvzzeff = dvzz-ezzr;
	double dgamyzeff = dgamyz-eyzr;
	double dgamxzeff = dgamxz-exzr;
	double dgamxyeff = dgamxy-exyr;
	
    // save initial stresses
	Tensor *sp=mptr->GetStressTensor();
    Tensor st0=*sp;
	
	// stress increments
	double delsp[6];
	int i;
	for(i=0;i<6;i++)
    {   delsp[i] = p->C[i][0]*dvxxeff + p->C[i][1]*dvyyeff + p->C[i][2]*dvzzeff
                    + p->C[i][3]*dgamyzeff + p->C[i][4]*dgamxzeff + p->C[i][5]*dgamxyeff;
    }
	
	// update stress (need to make hypoelastic)
	Hypo3DCalculations(mptr,dwrotxy,dwrotxz,dwrotyz,delsp);
	
	// work energy increment per unit mass (dU/(rho0 V0))
    mptr->AddWorkEnergyAndResidualEnergy(
						0.5*((st0.xx+sp->xx)*dvxx + (st0.yy+sp->yy)*dvyy
                            + (st0.zz+sp->zz)*dvzz  + (st0.yz+sp->yz)*dgamyz
                            + (st0.xz+sp->xz)*dgamxz + (st0.xy+sp->xy)*dgamxy),
						0.5*((st0.xx+sp->xx)*exxr + (st0.yy+sp->yy)*eyyr
							 + (st0.zz+sp->zz)*ezzr  + (st0.yz+sp->yz)*eyzr
							 + (st0.xz+sp->xz)*exzr + (st0.xy+sp->xy)*exyr));
    
    // track heat energy
    IncrementHeatEnergy(mptr,res->dT,0.,0.);

}
Beispiel #8
0
// Apply Constitutive law, check np to know what type
void TaitLiquid::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,ResidualStrains *res) const
{
#ifdef NO_SHEAR_MODEL
    // get incremental deformation gradient
	const Matrix3 dF = du.Exponential(incrementalDefGradTerms);
    
    // decompose dF into dR and dU
    Matrix3 dR;
    Matrix3 dU = dF.RightDecompose(&dR,NULL);
	
	// current deformation gradient
    double detdF = dF.determinant();
	Matrix3 pF = mptr->GetDeformationGradientMatrix();
    Matrix3 F = dR*pF;
    if(np==THREED_MPM)
        F.Scale(pow(detdF,1./3.));
    else
        F.Scale2D(sqrt(detdF));
	
	// new deformation matrix with volume change onle
    mptr->SetDeformationGradientMatrix(F);
#else

	// Update total deformation gradient, and calculate trial B
	double detdF = IncrementDeformation(mptr,du,NULL,np);
#endif
    
    // Get new J and save result on the particle
	double J = detdF * mptr->GetHistoryDble(J_history);
    mptr->SetHistoryDble(J_history,J);
    
    // account for residual stresses
	double dresStretch,resStretch = GetResidualStretch(mptr,dresStretch,res);
	double Jres = resStretch*resStretch*resStretch;
    double Jeff = J/Jres;

    // new Kirchhoff pressure (over rho0) from Tait equation
	double p0=mptr->GetPressure();
    double pressure = J*TAIT_C*Ksp*(exp((1.-Jeff)/TAIT_C)-1.);
    mptr->SetPressure(pressure);
    
	// incremental energy per unit mass - dilational part
    double avgP = 0.5*(p0+pressure);
    double delV = 1. - 1./detdF;
    double workEnergy = -avgP*delV;
    
	// incremental residual energy per unit mass
	double delVres = 1. - 1./(dresStretch*dresStretch*dresStretch);
	double resEnergy = -avgP*delVres;
	
    // viscosity term = 2 eta (0.5(grad v) + 0.5*(grad V)^T - (1/3) tr(grad v) I)
    // (i.e., divatoric part of the symmetric strain tensor, 2 is for conversion to engineering shear strain)
    Matrix3 shear;
    double c[3][3];
    c[0][0] = (2.*du(0,0)-du(1,1)-du(2,2))/3.;
    c[1][1] = (2.*du(1,1)-du(0,0)-du(2,2))/3.;
    c[2][2] = (2.*du(2,2)-du(0,0)-du(1,1))/3.;
    c[0][1] = 0.5*(du(0,1)+du(1,0));
    c[1][0] = c[0][1];
    if(np==THREED_MPM)
    {   c[0][2] = 0.5*(du(0,2)+du(2,0));
        c[2][0] = c[0][2];
        c[1][2] = 0.5*(du(1,2)+du(2,1));
        c[2][1] = c[1][2];
        shear.set(c);
    }
    else
        shear.set(c[0][0],c[0][1],c[1][0],c[1][1],c[2][2]);
    
    // Get Kirchoff shear stress (over rho0)
    shear.Scale(J*TwoEtasp/delTime);
    
    // update deviatoric stress
	Tensor *sp=mptr->GetStressTensor();
    sp->xx = shear(0,0);
    sp->yy = shear(1,1);
    sp->zz = shear(2,2);
    sp->xy = shear(0,1);
    if(np==THREED_MPM)
    {   sp->xz = shear(0,2);
        sp->yz = shear(1,2);
    }
    
    // shear work per unit mass = tau.du = tau.tau*delTime/TwoEtasp
    double shearWork = sp->xx*sp->xx + sp->yy*sp->yy + sp->zz*sp->zz + 2.*sp->xy*sp->xy;
    if(np==THREED_MPM) shearWork += 2.*(sp->xz*sp->xz + sp->yz*sp->yz);
    shearWork *= delTime/TwoEtasp;
    mptr->AddWorkEnergyAndResidualEnergy(workEnergy+shearWork,resEnergy);
    
    // particle isentropic temperature increment dT/T = - J (K/K0) gamma0 Delta(V)/V
    // Delta(V)/V = 1. - 1/detdF (total volume)
	double Kratio = Jeff*(1.+pressure/(TAIT_C*Ksp));
	double dTq0 = -J*Kratio*gamma0*mptr->pPreviousTemperature*delV;
    
    // heat energy is Cv (dT - dTq0) -dPhi
	// Here do Cv (dT - dTq0)
    // dPhi = shearWork is lost due to shear term
    IncrementHeatEnergy(mptr,res->dT,dTq0,shearWork);
}
Beispiel #9
0
// This method handles the pressure equation of state. Its tasks are
// 1. Calculate the new pressure
// 2. Update particle pressure
// 3. Increment the particle energy due to dilation
// 4. Call plasticLaw to see if it wants to change the shear modulus
// J = V(T,c)/V0(T,c), Jeff = V(T,c)/V0(Tref,cref), Jres = V0(T,c)/V0(Tref,cref) = J/Jeff
// Jtot = V(T,c)/V0(Trec,cref), Jres = V0(T,c)/V0(Tref,cref) for free expansion, J = V(T,c)/V0(T,c)
// Jn+1 = (detdF/detdFres) Jn, Jresn+1 = detdFres Jresn, Jtot = detdF Jtotn
// detdFres = (1+dres)^3 (approximately)
// Here Tref and cref are starting conditions and T and c are current temperature and moisture
void HEMGEOSMaterial::UpdatePressure(MPMBase *mptr,double J,double detdF,int np,double Jeff,
									 double delTime,HEPlasticProperties *p,ResidualStrains *res,double detdFres) const
{
    // J is total volume change - may need to reference to free-swelling volume if that works
	// Note that swelling looks like a problem because the sums of strains needs to be adjusted
	//		to stress-free state
	
	// previous pressure
	double P,P0 = mptr->GetPressure();
	double delV = 1. - 1./detdF;
	double dTq0;
    
    // M-G EOS
    // Want specific pressure or pressure over current density (using J = rho0/rho)
    if(J>1.)
	{	// new compression J(k+1) = 1-x(k+1)
		double x = 1.-J;
		
		// compression law
        // denominator = 1 - S1*x - S2*x^2 - S3*x^3
        double denom = 1./(1. - x*(S1 + x*(S2 + x*S3)));
		
        // law not valid if denominator passes zero
        if(denom<0)
        {   cout << "# Excessive x = " << x << endl;
            mptr->Describe();
        }
        
        // current effective and reduced (by rho0) bulk modulus
        p->Kred = C0squared*(1.-0.5*gamma0*x)*denom*denom;
		
		// Pressure from bulk modulus and an energy term
		double e = mptr->GetInternalEnergy();
		P = J*(p->Kred*x + gamma0*e);
		
		// particle isentropic temperature increment
		dTq0 = -J*gamma0*mptr->pPreviousTemperature*delV;
    }
    else
    {   // In tension hyperelastic law P = - K0(J-1)
        p->Kred = C0squared*Jeff;
		P = -J*C0squared*(Jeff-1.);
		//P = P0 - J*p->Kred*delV;
		
		// particle isentropic temperature increment
		double Kratio = Jeff;
		dTq0 = -J*Kratio*gamma0*mptr->pPreviousTemperature*delV;
    }
	
    // artifical viscosity
	// delV is total incremental volumetric strain = total Delta(V)/V
    double QAVred = 0.,AVEnergy=0.;
    if(delV<0. && artificialViscosity)
    {   double c = sqrt(p->Kred*J/1000.);        // m/sec
        QAVred = GetArtificalViscosity(delV/delTime,c);
        if(ConductionTask::AVHeating) AVEnergy = fabs(QAVred*delV);
    }
    
    // set final pressure
    mptr->SetPressure(P+QAVred);
    
    // work energy is dU = -P dV + s.de(total)
	// Here do hydrostatic terms, deviatoric later
    double avgP = 0.5*(P0+P);
	double delVres = 1. - 1./detdFres;
    mptr->AddWorkEnergyAndResidualEnergy(-avgP*delV,-avgP*delVres);
    
    // heat energy is Cv (dT - dTq0) - dPhi - |QAVred*delV|
	// Here do Cv (dT - dTq0) - |QAVred*delV| term and dPhi is done later
    IncrementHeatEnergy(mptr,res->dT,dTq0,AVEnergy);
	
	// SCGL and SL shear modulus and save Gratio = Jeff G/G0 for later calculations
    // Note: Jeff in Gred and Gratio is so that where they are used, they give
    //          specific Cauchy stress
    p->Gred = G1sp * plasticLaw->GetShearRatio(mptr,avgP,Jeff,p->hardProps);
}
Beispiel #10
0
/* Take increments in strain and calculate new Particle: strains, rotation strain,
        stresses, strain energy,
    dvij are (gradient rates X time increment) to give deformation gradient change
    For Axisymmetry: x->R, y->Z, z->theta, np==AXISYMMETRIC_MPM, otherwise dvzz=0
    This material tracks pressure and stores deviatoric stress only in particle stress
        tensor
*/
void Mooney::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,
								ResidualStrains *res,int historyOffset) const
{
	// incremental energy, store initial stress
	Tensor *sporig=mptr->GetStressTensor();
	Tensor st0 = *sporig;
	
	// Update strains and rotations and Left Cauchy strain
	double detDf = IncrementDeformation(mptr,du,NULL,np);
    
    // get pointer to new left Cauchy strain
    Tensor *B = mptr->GetAltStrainTensor();
	
    // account for residual stresses
	double dJres = GetIncrementalResJ(mptr,res);
	double Jres = dJres*mptr->GetHistoryDble(J_History+1,historyOffset);
	mptr->SetHistoryDble(J_History+1,Jres,historyOffset);

	// Deformation gradients and Cauchy tensor differ in plane stress
	if(np==PLANE_STRESS_MPM)
	{	// Find B->zz required to have zero stress in z direction
		
		// fixed arguments
		double arg = B->xx*B->yy - B->xy*B->xy;
		double arg12 = sqrt(arg);
		double arg16 = pow(arg,1./6.);
		double arg2 = B->xx+B->yy;
		
		// Newton-Rapheson starting at B.zz = 1
		// In tests finds answer in 3 or less steps
		Tensor *ep=mptr->GetStrainTensor();
		double xn16,xn12,xnp1,xn = (1.+ep->zz)*(1.+ep->zz);
		double fx,fxp,J13,J0,J2,Jeff;
		int iter=1;
        double mJ2P,mdJ2PdJ;
        
        // solution for B.zz in xn and J = sqrt(xn*arg) with dJ/dxn = arg/(2 sqrt(xn*arg))
        // Solving f=0 where f = 3J^2 Kterm + Jres*G1(2*xn-arg2)J^(1/3) + Jres*G2(xn*arg2 - 2*arg)/J^(1/3)
		//			where J^(1/3) = (xn*arg)^(1/6)
		// df/dxn = d(3J^2 Kterm)/dJ dJ/dxn
		//				+ Jres*G1((14*xn-arg2)/(6*xn))J^(1/3)
		//				+ Jres*G2((5*xn*arg2+2*arg)/(6*xn))/J^(1/3)
		while(iter<20)
		{	xn16 = pow(xn,1./6.);
			xn12 = sqrt(xn);
			J13 = xn16*arg16;
			J0 = xn12*arg12;
			J2 = J0*J0;
            Jeff = J0/Jres;
            
            // get f and df/dxn
            GetNewtonPressureTerms(Jeff, Ksp, mJ2P, mdJ2PdJ);
            fx = 3.*Jres*mJ2P + G1sp*(2.*xn-arg2)*J13 + G2sp*(xn*arg2-2.*arg)/J13;
            fxp = (1.5*J0/xn)*mdJ2PdJ + G1sp*J13*(14.*xn-arg2)/(6.*xn) + G2sp*(2.*arg+5.*xn*arg2)/(6.*J13*xn);
            
            // new prediction for solution
			xnp1 = xn - fx/fxp;
			//cout << iter << ": " << xn << "," << xnp1 << "," << fabs(xn-xnp1) << endl;
			if(fabs(xn-xnp1)<1e-10) break;
			xn = xnp1;
			iter+=1;
		}
        
        if(iter>=20) cout << "# Not enough iterations in plane stress Mooney-Rivlin material" << endl;
        
        // Done and xn = new B->zz = Fzz^2 = dFzz*(old Bzz)*dFzz = dFzz^2*(old Bzz),
		//    and Fzz = dFzz*(old Fzz) = 1 + ep->zz
        double dFzz = sqrt(xn/B->zz);
        B->zz = xn;
		
		// particle strain ezz now known
		ep->zz = dFzz*(1.+ep->zz) - 1.;
        
        // incremental J changes
        detDf *= dFzz;
	}
    
    // Increment J and save it in history data
    double J = detDf*mptr->GetHistoryDble(J_History,historyOffset);
    mptr->SetHistoryDble(J_History,J,historyOffset);
	
	// account for residual stresses
	double Jeff = J/Jres;
	
    // update pressure
	double p0=mptr->GetPressure();
	double Kterm = J*GetVolumetricTerms(Jeff,Ksp);       // times J to get Kirchoff stress
	
    // artifical viscosity
    double delV = 1. - 1./detDf;                        // total volume change
    double QAVred = 0.,AVEnergy=0.;
    if(delV<0. && artificialViscosity)
	{	QAVred = GetArtificalViscosity(delV/delTime,sqrt(Ksp*J),mptr);
        if(ConductionTask::AVHeating) AVEnergy = fabs(QAVred*delV);
    }
    double Pfinal = -Kterm + QAVred;
    
    // set the pressure
    mptr->SetPressure(Pfinal);
	
	// incremental energy - dilational part
    double avgP = 0.5*(p0+Pfinal);
    double dilEnergy = -avgP*delV;
	
	// incremental residual energy
	double delVres = 1. - 1./dJres;
	double resEnergy = -avgP*delVres;
	
    // Account for density change in specific stress
    // i.e.. Get (Cauchy Stress)/rho = J*(Cauchy Stress)/rho0 = (Kirchoff Stress)/rho0
	double J23 = pow(J, 2./3.);
	double J43 = J23*J23;
	double JforG1 = J23/Jres;                   // J^(5/3)/(Jres J) = J^(2/3)/Jres to get Kirchoff stress
	double JforG2 = J43/Jres;                   // J^(7/3)/(Jres J) = J^(4/3)/Jres to get Kirchoff stress
	
	//JforG1 *= Jres;			// this uses Jeff to get Kirchoff stress
	//JforG2 *= Jres;			// this uses Jeff to get Kirchoff stress
    
	// find deviatoric (Cauchy stress)J/rho0 = deviatoric (Kirchoff stress)/rho0
	Tensor *sp=mptr->GetStressTensor();
    
	sp->xx = (2*B->xx-B->yy-B->zz)*G1sp/(3.*JforG1)
            + (B->xx*(B->yy+B->zz)-2*B->yy*B->zz-B->xy*B->xy)*G2sp/(3.*JforG2);
	sp->yy = (2*B->yy-B->xx-B->zz)*G1sp/(3.*JforG1)
            + (B->yy*(B->xx+B->zz)-2*B->xx*B->zz-B->xy*B->xy)*G2sp/(3.*JforG2);
	sp->zz = (2*B->zz-B->xx-B->yy)*G1sp/(3.*JforG1)
            + (B->zz*(B->xx+B->yy)-2*B->xx*B->yy+2.*B->xy*B->xy)*G2sp/(3.*JforG2);
	sp->xy = B->xy*G1sp/JforG1 + (B->zz*B->xy)*G2sp/JforG2;
    
    if(np==THREED_MPM)
    {   sp->xx += (2.*B->yz*B->yz-B->xz*B->xz)*G2sp/(3.*JforG2);
        sp->yy += (2.*B->xz*B->xz-B->yz*B->yz)*G2sp/(3.*JforG2);
        sp->zz -= (B->xz*B->xz+B->yz*B->yz)*G2sp/(3.*JforG2);
        sp->xy -= B->xz*B->yz*G2sp/JforG2;
	    sp->xz = B->xz*G1sp/JforG1 + (B->yy*B->xz-B->xy*B->yz)*G2sp/JforG2;
        sp->yz = B->yz*G1sp/JforG1 + (B->xx*B->yz-B->xy*B->xz)*G2sp/JforG2;
    }
    
	// incremental work energy = shear energy
    double shearEnergy = 0.5*((sp->xx+st0.xx)*du(0,0) + (sp->yy+st0.yy)*du(1,1) + (sp->zz+st0.zz)*du(2,2)+
							  (sp->xy+st0.xy)*(du(0,1)+du(1,0)));
    if(np==THREED_MPM)
    {   shearEnergy += 0.5*((sp->xz+st0.xz)*(du(0,2)+du(2,0)) + (sp->yz+st0.yz)*(du(1,2)+du(2,1)));
    }
    
    // strain energy
    double dU = dilEnergy + shearEnergy;
    mptr->AddWorkEnergyAndResidualEnergy(dU,resEnergy);
	
    // thermodynamics depends on whether or not this is a rubber
	double dTq0;
    if(rubber)
    {   // convert internal energy to temperature change
		dTq0 = dU/GetHeatCapacity(mptr);
	}
	else
	{	// elastic particle isentropic temperature increment
		double Kratio;				// = rho_0 K/(rho K_0)
		switch(UofJOption)
		{   case J_MINUS_1_SQUARED:
				Kratio = Jeff;
				break;
				
			case LN_J_SQUARED:
				Kratio = (1-log(Jeff))/(Jeff*Jeff);
				break;
				
			case HALF_J_SQUARED_MINUS_1_MINUS_LN_J:
			default:
				Kratio = 0.5*(Jeff + 1./Jeff);
				break;
		}
		dTq0 = -J*Kratio*gamma0*mptr->pPreviousTemperature*delV;
	}
	IncrementHeatEnergy(mptr,res->dT,dTq0,QAVred);
}
Beispiel #11
0
/* Take increments in strain and calculate new Particle: strains, rotation strain,
	stresses, strain energy,
	du are (gradient rates X time increment) to give deformation gradient change
	For Axisymmetry: x->R, y->Z, z->theta, np==AXISYMMETRIC_MPM, otherwise dvzz=0
	This material tracks pressure and stores deviatoric stress only in particle stress tensor
 */
void Viscoelastic::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,ResidualStrains *res,int historyOffset) const
{
	// current previous deformation gradient and stretch
	Matrix3 pFnm1 = mptr->GetDeformationGradientMatrix();
	
    // get incremental deformation gradient and decompose it
	const Matrix3 dF = du.Exponential(incrementalDefGradTerms);
    Matrix3 dR;
    Matrix3 dVstretch = dF.LeftDecompose(&dR,NULL);
	
	// decompose to get previous stretch
	Matrix3 Vnm1 = pFnm1.LeftDecompose(NULL,NULL);
	
	// get strain increments de = (dV-I) dR Vnma dRT
	dVstretch(0,0) -= 1.;
	dVstretch(1,1) -= 1.;
	dVstretch(2,2) -= 1.;
	Matrix3 Vrot = Vnm1.RMRT(dR);
	Matrix3 detot = dVstretch*Vrot;
	
	// Update total deformation gradient
	Matrix3 pF = dF*pFnm1;
	mptr->SetDeformationGradientMatrix(pF);
	
    // Effective strain by deducting thermal strain (no shear thermal strain because isotropic)
	double eres=CTE*res->dT;
	if(DiffusionTask::active)
		eres+=CME*res->dC;
	
	// update pressure
	double dTq0 = 0.,dispEnergy = 0.;
	double traceDe = detot.trace();
	double delV = traceDe - 3.*eres;
#ifdef USE_KIRCHOFF_STRESS
	// tracking J
	double detdF = dF.determinant();
	double **h =(double **)(mptr->GetHistoryPtr(0));
	double J = detdF*h[mptrHistory][MGJ_HISTORY];
	h[mptrHistory][MGJ_HISTORY] = J;
	UpdatePressure(mptr,delV,res,eres,detdF,J,delTime,dTq0,dispEnergy);
#else
	UpdatePressure(mptr,delV,res,eres,&dF,delTime,dTq0,dispEnergy);
#endif
	
	// deviatoric strains increment in de
	// Actually de is finding 2*(dev e) to avoid many multiplies by two
	Tensor de;
	double dV = traceDe/3.;
	de.xx = 2.*(detot(0,0) - dV);
	de.yy = 2.*(detot(1,1) - dV);
	de.zz = 2.*(detot(2,2) - dV);
	de.xy = 2.*detot(0,1);
	if(np==THREED_MPM)
	{	de.xz = 2.*detot(0,2);
		de.yz = 2.*detot(1,2);
	}
	
	// Find initial 2*e(t) (deviatoric strain) in ed
	Tensor ed;
	double thirdV = Vrot.trace()/3.;
	ed.xx = 2.*(Vrot(0,0)-thirdV);
	ed.yy = 2.*(Vrot(1,1)-thirdV);
	ed.zz = 2.*(Vrot(2,2)-thirdV);
	ed.xy = 2.*Vrot(0,1);
	if(np==THREED_MPM)
	{	ed.xz = 2.*Vrot(0,2);
		ed.yz = 2.*Vrot(1,2);
	}
	
	// increment particle deviatoric stresses - elastic part
	double dsig[6];
	dsig[XX] = Gered*de.xx;
	dsig[YY] = Gered*de.yy;
	dsig[ZZ] = Gered*de.zz;
	dsig[XY] = Gered*de.xy;
	if(np==THREED_MPM)
	{	dsig[XZ] = Gered*de.xz;
		dsig[YZ] = Gered*de.yz;
	}
	
	// get internal variable increments, update them, add to incremental stress, and get dissipated energy6
	Tensor dak;
    double **ak =(double **)(mptr->GetHistoryPtr(0));
	int k;
    for(k=0;k<ntaus;k++)
    {   double tmp = exp(-delTime/tauk[k]);
		double tmpm1 = tmp-1.;
		double tmpp1 = tmp+1.;
		double arg = 0.25*delTime/tauk[k];					// 0.25 because e's have factor of 2
		dak.xx = tmpm1*ak[XX_HISTORY][k] + arg*(tmpp1*ed.xx + de.xx);
		dak.yy = tmpm1*ak[YY_HISTORY][k] + arg*(tmpp1*ed.yy + de.yy);
		dak.xy = tmpm1*ak[XY_HISTORY][k] + arg*(tmpp1*ed.xy + de.xy);
		dak.zz = tmpm1*ak[ZZ_HISTORY][k] + arg*(tmpp1*ed.zz + de.zz);
		ak[XX_HISTORY][k] += dak.xx;
		ak[YY_HISTORY][k] += dak.yy;
		ak[ZZ_HISTORY][k] += dak.zz;
		ak[XY_HISTORY][k] += dak.xy;
		
		// add to stress increments
		dsig[XX] -= TwoGkred[k]*dak.xx;
		dsig[YY] -= TwoGkred[k]*dak.yy;
		dsig[ZZ] -= TwoGkred[k]*dak.zz;
		dsig[XY] -= TwoGkred[k]*dak.xy;
		
		// dissipation
		dispEnergy += TwoGkred[k]*(dak.xx*(0.5*(ed.xx+0.5*de.xx)-ak[XX_HISTORY][k]+0.5*dak.xx)
								   + dak.yy*(0.5*(ed.yy+0.5*de.yy)-ak[YY_HISTORY][k]+0.5*dak.yy)
								   + dak.zz*(0.5*(ed.zz+0.5*de.zz)-ak[ZZ_HISTORY][k]+0.5*dak.zz)
								   + dak.xy*(0.5*(ed.xy+0.5*de.xy)-ak[XY_HISTORY][k]+0.5*dak.xy));
		
		// extra terms for 3D
		if(np==THREED_MPM)
		{	// internal variables
			dak.xz = tmpm1*ak[XZ_HISTORY][k] + arg*(tmpp1*ed.xz + de.xz);
			dak.yz = tmpm1*ak[YZ_HISTORY][k] + arg*(tmpp1*ed.yz + de.yz);
			ak[XZ_HISTORY][k] += dak.xz;
			ak[YZ_HISTORY][k] += dak.yz;
			
			// stresses
			dsig[XZ] -= TwoGkred[k]*dak.xz;
			dsig[YZ] -= TwoGkred[k]*dak.yz;
			
			// dissipation
			dispEnergy += TwoGkred[k]*(dak.xz*(0.5*(ed.xz+0.5*de.xz)-ak[XZ_HISTORY][k]+0.5*dak.xz)
									   + dak.yz*(0.5*(ed.yz+0.5*de.yz)-ak[YZ_HISTORY][k]+0.5*dak.yz));
		}
	}
	
	// Update particle deviatoric stresses
	Tensor *sp=mptr->GetStressTensor();
	//Tensor st0 = *sp;
	if(np==THREED_MPM)
	{	// incremental rotate of prior stress
		Matrix3 stn(sp->xx,sp->xy,sp->xz,sp->xy,sp->yy,sp->yz,sp->xz,sp->yz,sp->zz);
		Matrix3 str = stn.RMRT(dR);

#ifdef USE_KIRCHOFF_STRESS
		// convert sigma(n)/rho(n) to sigma(n)/rho(n+1) and add dsigma/rho(n+1)
		sp->xx = detdF*str(0,0)+J*dsig[XX];
		sp->yy = detdF*str(1,1)+J*dsig[YY];
		sp->xy = detdF*str(0,1)+J*dsig[XY];
		sp->zz = detdF*str(2,2)+J*dsig[ZZ];
		sp->yz = detdF*str(1,2)+J*dsig[YZ];
		sp->xz = detdF*str(0,2)+J*dsig[XZ];
#else
		sp->xx = str(0,0)+dsig[XX];
		sp->yy = str(1,1)+dsig[YY];
		sp->xy = str(0,1)+dsig[XY];
		sp->zz = str(2,2)+dsig[ZZ];
		sp->yz = str(1,2)+dsig[YZ];
		sp->xz = str(0,2)+dsig[XZ];
#endif
	}
	else
	{	// incremental rotate of prior stress
		Matrix3 stn(sp->xx,sp->xy,sp->xy,sp->yy,sp->zz);
		Matrix3 str = stn.RMRT(dR);
		
#ifdef USE_KIRCHOFF_STRESS
		// convert sigma(n)/rho(n) to sigma(n)/rho(n+1) and add dsigma/rho(n+1)
		sp->xx = detdF*str(0,0)+J*dsig[XX];
		sp->yy = detdF*str(1,1)+J*dsig[YY];
		sp->xy = detdF*str(0,1)+J*dsig[XY];
		sp->zz = detdF*sp->zz+J*dsig[ZZ];
#else
		sp->xx = str(0,0)+dsig[XX];
		sp->yy = str(1,1)+dsig[YY];
		sp->xy = str(0,1)+dsig[XY];
		sp->zz += dsig[ZZ];
#endif
	}
	
	// incremental work energy = shear energy (dilation and residual energy done in update pressure)
    double shearEnergy = sp->xx*detot(0,0) + sp->yy*detot(1,1) + sp->zz*detot(2,2) + sp->xy*de.xy;
    if(np==THREED_MPM)
    {   shearEnergy += sp->xz*de.xz + sp->yz*de.yz;
    }
    mptr->AddWorkEnergyAndResidualEnergy(shearEnergy,0.);
	
    // disispated energy per unit mass (dPhi/(rho0 V0)) (nJ/g)
    mptr->AddPlastEnergy(dispEnergy);
    
    // heat energy is Cv dT - dPhi
    // The dPhi is subtracted here because it will show up in next
    //		time step within Cv dT (if adibatic heating occurs)
    // The Cv dT was done in update pressure
    IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
}
Beispiel #12
0
// To allow some subclasses to support large deformations, the initial calculation for incremental
// deformation gradient (the dvij), volume change (delV) can be
// handled first by the subclass. This mtehod then finishes the constitutive law
void IsoPlasticity::LRPlasticityConstLaw(MPMBase *mptr,double dexx,double deyy,double dezz,double dgxy,
									   double dgxz,double dgyz,double delTime,int np,double delV,double eres,
									   PlasticProperties *p,ResidualStrains *res,Matrix3 *dR) const
{
	// here dvij is total strain increment, dexxr is relative strain by subtracting off eres
    double dexxr=dexx-eres;
    double deyyr=deyy-eres;
	double dezzr=dezz-eres;
	
	// allow arbitrary equation of state for pressure
	double dTq0 = 0.,dispEnergy = 0.;
	UpdatePressure(mptr,delV,np,p,res,eres,dTq0,dispEnergy);
	
    // Elastic deviatoric stress increment
	Tensor *sp=mptr->GetStressTensor();
    Tensor stk;
	//Tensor st0=*sp;
	double dsig[6];
    double thirdDelV = delV/3.;
	dsig[XX] = 2.*p->Gred*(dexxr-thirdDelV);
	dsig[YY] = 2.*p->Gred*(deyyr-thirdDelV);
	dsig[ZZ] = 2.*p->Gred*(dezzr-thirdDelV);
	dsig[YZ] = p->Gred*dgyz;
	dsig[XZ] = p->Gred*dgxz;
	dsig[XY] = p->Gred*dgxy;
	
	// incremental rotate of prior strain
	Tensor *eplast=mptr->GetAltStrainTensor();
	Matrix3 etn(eplast->xx,0.5*eplast->xy,0.5*eplast->xz,0.5*eplast->xy,eplast->yy,0.5*eplast->yz,
				0.5*eplast->xz,0.5*eplast->yz,eplast->zz);
	Matrix3 etr = etn.RMRT(*dR);
	Matrix3 stn(sp->xx,sp->xy,sp->xz,sp->xy,sp->yy,sp->yz,sp->xz,sp->yz,sp->zz);
	Matrix3 str = stn.RMRT(*dR);
	
    // trial deviatoric stress
    stk.xx = str(0,0) + dsig[XX];
    stk.yy = str(1,1) + dsig[YY];
	stk.zz = str(2,2) + dsig[ZZ];
    stk.yz = str(1,2) + dsig[YZ];
    stk.xz = str(0,2) + dsig[XZ];
    stk.xy = str(0,1) + dsig[XY];
	
    // Calculate plastic potential f = ||s|| - sqrt(2/3)*sy(alpha,rate,...)
	HardeningAlpha alpha;
	plasticLaw->UpdateTrialAlpha(mptr,np,&alpha,0);			// initialize to last value
	double strial = GetMagnitudeSFromDev(&stk,np);
    double ftrial = strial - SQRT_TWOTHIRDS*plasticLaw->GetYield(mptr,np,delTime,&alpha,p->hardProps);
	if(ftrial<0.)
	{	// elastic, update stress and strain energy as usual
		
		// set in-plane deviatoric stress
		*sp = stk;

		// rotate plastic strain
		eplast->xx = etr(0,0);
		eplast->yy = etr(1,1);
		eplast->zz = etr(2,2);
		eplast->xy = 2.*etr(0,1);
		eplast->xz = 2.*etr(0,2);
		eplast->yz = 2.*etr(1,2);
		
		// work energy increment per unit mass (dU/(rho0 V0)) (nJ/g)
		mptr->AddWorkEnergy(sp->xx*dexx + sp->yy*deyy + sp->zz*dezz
								 + sp->yz*dgyz + sp->xz*dgxz + sp->xy*dgxy);
		//mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dexx + (st0.yy+sp->yy)*deyy + (st0.zz+sp->zz)*dezz
		//						 + (st0.yz+sp->yz)*dgyz + (st0.xz+sp->xz)*dgxz + (st0.xy+sp->xy)*dgxy));
		
		// give material chance to update history variables that change in elastic updates
		plasticLaw->ElasticUpdateFinished(mptr,np,delTime,0);
		
		// heat energy from pressure and any pressure method items
		IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
		
		return;
	}
	
	// Find direction of plastic strain and lambda for this plastic state
	// Base class finds it numerically, subclass can override if solvable by more efficient meethods
	Tensor dfds;
	GetDfDsigma(strial,&stk,np,&dfds);
	double lambdak = plasticLaw->SolveForLambdaBracketed(mptr,np,strial,&stk,p->Gred,1.,1.,delTime,&alpha,p->hardProps,0);
	
	// Now have lambda, finish update on this particle
	
    // Plastic strain increments on particle
    double dexxp = lambdak*dfds.xx;
    double deyyp = lambdak*dfds.yy;
	double dezzp = lambdak*dfds.zz;
    double dgxyp = 2.*lambdak*dfds.xy;     // 2 for engineering plastic shear strain
    double dgxzp = 2.*lambdak*dfds.xz;     // 2 for engineering plastic shear strain
    double dgyzp = 2.*lambdak*dfds.yz;     // 2 for engineering plastic shear strain
	
	// incremental plastic strain
	eplast->xx = etr(0,0) + dexxp;
    eplast->yy = etr(1,1) + deyyp;
	eplast->zz = etr(2,2) + dezzp;
    eplast->xy = 2.*etr(0,1) + dgxyp;
	eplast->xz = 2.*etr(0,2) + dgxzp;
    eplast->yz = 2.*etr(1,2) + dgyzp;
	
	// increment particle deviatoric stresses
	sp->xx = stk.xx - 2.*p->Gred*dexxp;
	sp->yy = stk.yy - 2.*p->Gred*deyyp;
	sp->zz = stk.zz - 2.*p->Gred*dezzp;
	sp->yz = stk.yz - p->Gred*dgyzp;
	sp->xz = stk.xz - p->Gred*dgxzp;
	sp->xy = stk.xy - p->Gred*dgxyp;
	
    // work energy increment per unit mass (dU/(rho0 V0)) (nJ/g)
	double workEnergy = sp->xx*dexx + sp->yy*dezz + sp->zz*dezz + sp->yz*dgyz + sp->xz*dgxz + sp->xy*dgxy;
 	//double workEnergy = 0.5*((st0.xx+sp->xx)*dexx + (st0.yy+sp->yy)*dezz + (st0.zz+sp->zz)*dezz
	//						 + (st0.yz+sp->yz)*dgyz + (st0.xz+sp->xz)*dgxz + (st0.xy+sp->xy)*dgxy);
   
    // total work
    mptr->AddWorkEnergy(workEnergy);
    
    // plastic strain work
    double plastEnergy = lambdak*(sp->xx*dfds.xx + sp->yy*dfds.yy + sp->zz*dfds.zz
                                  + 2.*sp->xy*dfds.xy + 2.*sp->xz*dfds.xz + 2.*sp->yz*dfds.yz);
    
    // and subtrace q dalpa disispated energy per unit mass (dPhi/(rho0 V0)) (nJ/g)
    double qdalphaTerm = lambdak*SQRT_TWOTHIRDS*plasticLaw->GetYieldIncrement(mptr,np,delTime,&alpha,p->hardProps);
    dispEnergy += plastEnergy - qdalphaTerm;
    
	// The cumulative dissipated energy is tracked in plastic energy
    // Setting the disp energy allows heating if mechanical energy is on
    mptr->AddPlastEnergy(dispEnergy);
    
    // heat energy is Cv(dT-dTq0) - dPhi
    // The dPhi is subtracted here because it will show up in next
    //		time step within Cv dT (if adiabatic heating occurs)
    // The Cv(dT-dTq0) was done already in update pressure
    IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
    
	// update internal variables
	plasticLaw->UpdatePlasticInternal(mptr,np,&alpha,0);
}
Beispiel #13
0
// To allow some subclasses to support large deformations, the initial calculation for incremental
// deformation gradient (the dvij), volume change (delV)
// handled first by the subclass. This method then finishes the constitutive law
void IsoPlasticity::LRPlasticityConstLaw(MPMBase *mptr,double dexx,double deyy,double dgxy,
									   double dezz,double delTime,int np,double delV,double eres,
									   PlasticProperties *p,ResidualStrains *res,Matrix3 *dR) const
{
	// here deij is total strain increment, dexxr is relative strain by subtracting off eres
    double dexxr = dexx-eres;
    double deyyr = deyy-eres;
	double dezzr = dezz-eres;			// In plane strain trial dezz=0, but not in axisymmetric
	
	// allow arbitrary equation of state for pressure
    double P0 = mptr->GetPressure();
	double dTq0 = 0.,dispEnergy = 0.;
	UpdatePressure(mptr,delV,np,p,res,eres,dTq0,dispEnergy);
    double Pfinal = mptr->GetPressure();
	
    // Deviatoric stress increment
	Tensor *sp=mptr->GetStressTensor();
    Tensor dels,stk;
	//Tensor st0=*sp;
    double thirdDelV = delV/3.;
	dels.xx = 2.*p->Gred*(dexxr-thirdDelV);
	dels.yy = 2.*p->Gred*(deyyr-thirdDelV);
	if(np==PLANE_STRESS_MPM)
		dels.zz = Pfinal-P0;
	else
		dels.zz = 2.*p->Gred*(dezzr-thirdDelV);
	dels.xy = p->Gred*dgxy;
	
	// incremental rotate of plastic strain
	Tensor *eplast=mptr->GetAltStrainTensor();
	Matrix3 etn(eplast->xx,0.5*eplast->xy,0.5*eplast->xy,eplast->yy,eplast->zz);
	Matrix3 etr = etn.RMRT(*dR);
	eplast->xx = etr(0,0);
	eplast->yy = etr(1,1);
	eplast->xy = 2.*etr(0,1);
	
	// incremental rotation of stress
	Matrix3 stn(sp->xx,sp->xy,sp->xy,sp->yy,sp->zz);
	Matrix3 str = stn.RMRT(*dR);
	
    // trial deviatoric stress
    stk.xx = str(0,0) + dels.xx;
    stk.yy = str(1,1) + dels.yy;
	stk.zz = str(2,2) + dels.zz;
    stk.xy = str(0,1) + dels.xy;
	
    // Calculate plastic potential f = ||s|| - sqrt(2/3)*sy(alpha,rate,...)
	HardeningAlpha alpha;
	plasticLaw->UpdateTrialAlpha(mptr,np,&alpha,0);			// initialize to last value and zero plastic strain rate
	double strial = GetMagnitudeSFromDev(&stk,np);
    double ftrial = strial - SQRT_TWOTHIRDS*plasticLaw->GetYield(mptr,np,delTime,&alpha,p->hardProps);
	if(ftrial<0.)
	{	// elastic, update stress and strain energy as usual
		
		// set in plane deviatoric stress
		sp->xx = stk.xx;
		sp->xy = stk.xy;
		sp->yy = stk.yy;
        sp->zz = stk.zz;
		
		// work energy increment per unit mass (dU/(rho0 V0)) (by midpoint rule) (nJ/g)
        // energy units are also Pa mm^3/g, i.e., same as stress units
        if(np==AXISYMMETRIC_MPM)
		{	mptr->AddWorkEnergy(sp->xx*dexx + sp->yy*deyy + sp->xy*dgxy + sp->zz*dezz);
			//mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dexx + (st0.yy+sp->yy)*deyy + (st0.xy+sp->xy)*dgxy + (st0.zz+sp->zz)*dezz));
		}
		else if(np==PLANE_STRESS_MPM)
		{	// zz deformation
			mptr->IncrementDeformationGradientZZ(-p->psLr2G*(dexxr+deyyr) + eres);
			mptr->AddWorkEnergy(sp->xx*dexx + sp->yy*deyy + sp->xy*dgxy);
			//mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dexx + (st0.yy+sp->yy)*deyy + (st0.xy+sp->xy)*dgxy));
		}
		else
        {   mptr->AddWorkEnergy(sp->xx*dexx + sp->yy*deyy + sp->xy*dgxy);
			//mptr->AddWorkEnergy(0.5*((st0.xx+sp->xx)*dexx + (st0.yy+sp->yy)*deyy + (st0.xy+sp->xy)*dgxy));
		}
		
		// give subclass material chance to update history variables that change in elastic updates
		plasticLaw->ElasticUpdateFinished(mptr,np,delTime,0);
		
		// heat energy from pressure and any pressure method items
		IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
		
		return;
    }
    
	// Find  lambda for this plastic state
	// Base class finds it numerically, subclass can override if solvable by more efficient methods
    double lambdak = plasticLaw->SolveForLambdaBracketed(mptr,np,strial,&stk,p->Gred,p->psKred,Pfinal,delTime,&alpha,p->hardProps,0);
	
	// Now have lambda, finish update on this particle
	Tensor dfds;
	if(np==PLANE_STRESS_MPM)
    {   // get final stress state
        double d1 = (1 + p->psKred*lambdak);
		double d2 = (1.+2.*p->Gred*lambdak);
		double n1 = (stk.xx+stk.yy-2.*Pfinal)/d1;
		double n2 = (-stk.xx+stk.yy)/d2;
		double sxx = (n1-n2)/2.;
		double syy = (n1+n2)/2.;
		double txy = stk.xy/d2;
        
        // find increment in deviatoric stress
		dels.xx = sxx+Pfinal-sp->xx;
		dels.yy = syy+Pfinal-sp->yy;
		dels.xy = txy-sp->xy;
        
        // get final direction
        dfds.xx = (2.*sxx-syy)/3.;
        dfds.yy = (2.*syy-sxx)/3.;
        dfds.zz = -(dfds.xx+dfds.yy);
        dfds.xy = txy;				// tensorial shear strain
		
		// zz deformation
		mptr->IncrementDeformationGradientZZ(-p->psLr2G*(dexxr+deyyr - lambdak*(dfds.xx+dfds.yy)) + eres + lambdak*dfds.zz);
		
		// If fully plastic, the increment in deviatoric stress should be zero
		// sxx = sigmaxx+Pfinal = st0.xx, syy = sigmayy+Pfinal = st0.yy, szz = Pfinal
		// But first two must be wrong because trace is no longer zero?
		//
		// This is probably wrong
		// i.e.:	n1 + 2*Pfinal = st0.xx+st0.yy
		//			(stk.xx+stk.yy)/d1 - 2*Pfinal*(1/d1-1) = st0.xx+st0.yy
		// But (stk.xx+stk.yy) = (st0.xx+st0.yy) + 2.*Gred*(dexxr+deyyr-2*thirdDelV)
		//			(st0.xx+st0.yy)(1/d1-1) - 2*Pfinal*(1/d1-1) = -2.*Gred*(dexxr+deyyr-2*thirdDelV)/d1
		//			(st0.xx+st0.yy-2*Pfinal)*(1-d1) = -2.*Gred*(dexxr+deyyr-2*thirdDelV)
		//			B*Kred*lam = 2.*Gred*A    or    lam = 2.*Gred*A/(B*Kred)
		// where B = st0.xx+st0.yy-2*Pfinal, and A = (dexxr+deyyr-2*thirdDelV)
		// Then  d1 = 1+2*Gred*A/B, n1 = ((st0.xx+st0.yy) + 2*Gred*A - 2*Pfinal)/d1 = (B+2*Gred*A)*B/(B+2*Gred*A) = B
		//
		// Also expect syy-sxx = sigmayy-sigmaxx = st0.yy-st0.xx = n2
		//			(stk.yy-stk.xx)/d2 = st0.yy-st0.xx
		//			(st0.yy-st0.xx)/d2 + 2*Gred*(deyyr-dexxr)/d2 = (st0.yy-st0.xx)
		//			(st0.yy-st0.xx)(d2-1) = - 2*Gred*(deyyr-dexxr)
		//          lam = (deyyr-dexxr)/(st0.yy-st0.xx)
		// Then n2 = (st0.yy-st0.xx + 2*Gred*(deyyr-dexxr))/(1+2*Gred*(deyyr-dexxr)/(st0.yy-st0.xx)) = st0.yy-st0.xx
		//
		// But these two lam's seem to differ?
		// We can write
	}
    else
    {   // get final direction
        GetDfDsigma(strial,&stk,np,&dfds);
    }
	
    // Plastic strain increments on particle
    double dexxp = lambdak*dfds.xx;
    double deyyp = lambdak*dfds.yy;
	double dezzp = lambdak*dfds.zz;
    double dgxyp = 2.*lambdak*dfds.xy;     // 2 for engineering plastic shear strain
	
	eplast->xx += dexxp;
    eplast->yy += deyyp;
	eplast->zz += dezzp;
    eplast->xy += dgxyp;
	
	// increment particle deviatoric stresses (plane stress increments found above)
	if(np!=PLANE_STRESS_MPM)
	{	dels.xx -= 2.*p->Gred*dexxp;
		dels.yy -= 2.*p->Gred*deyyp;
		dels.xy -= p->Gred*dgxyp;
		dels.zz -= 2.*p->Gred*dezzp;
		sp->zz += dels.zz;
	}
    else
        sp->zz = Pfinal;          // now equal to Pfinal
	
	// update in-plane stressees
	sp->xx = str(0,0) + dels.xx;
	sp->yy = str(1,1) + dels.yy;
	sp->xy = str(0,1) + dels.xy;
	
    // Elastic work increment per unit mass (dU/(rho0 V0)) (nJ/g)
	double workEnergy = sp->xx*dexx + sp->yy*deyy + sp->xy*dgxy;
	//double workEnergy = 0.5*((st0.xx+sp->xx)*dexx + (st0.yy+sp->yy)*deyy + (st0.xy+sp->xy)*dgxy);
	if(np==AXISYMMETRIC_MPM)
    {	workEnergy += sp->zz*dezz;
		//workEnergy += 0.5*(st0.zz+sp->zz)*dezz;
	}
    
    // total work
    mptr->AddWorkEnergy(workEnergy);
    
    // plastic strain work
    double plastEnergy = lambdak*(sp->xx*dfds.xx + sp->yy*dfds.yy + sp->zz*dfds.zz + 2.*sp->xy*dfds.xy);
    
    // dand subtract q dalpha to get isispated energy per unit mass (dPhi/(rho0 V0)) (nJ/g)
    double qdalphaTerm = lambdak*SQRT_TWOTHIRDS*plasticLaw->GetYieldIncrement(mptr,np,delTime,&alpha,p->hardProps);
    dispEnergy += plastEnergy - qdalphaTerm;
    
	// The cumulative dissipated energy is tracked in plastic energy
    mptr->AddPlastEnergy(dispEnergy);
    
    // heat energy is Cv(dT-dTq0) - dPhi
    // The dPhi is subtracted here because it will show up in next
    //		time step within Cv dT (if adibatic heating occurs)
    IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
    
	// update internal variables
	plasticLaw->UpdatePlasticInternal(mptr,np,&alpha,0);
}
Beispiel #14
0
/* Take increments in strain and calculate new Particle: strains, rotation strain,
        stresses, strain energy,
    dvij are (gradient rates X time increment) to give deformation gradient change
    For Axisymmetry: x->R, y->Z, z->theta, np==AXISYMMEtRIC_MPM, otherwise dvzz=0
    This material tracks pressure and stores deviatoric stress only in particle stress
        tensor
*/
void HEIsotropic::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,
									 ResidualStrains *res,int historyOffset) const
{
	HEPlasticProperties *p = (HEPlasticProperties *)properties;

    // store initial stress
    Tensor *sp = mptr->GetStressTensor();
    Tensor st0 = *sp;
    
    // Compute Elastic Predictor
    // ============================================
    
	// Update total deformation gradient, and calculate trial B
    Tensor Btrial;
	double detdF = IncrementDeformation(mptr,du,&Btrial,np);
    
	// Deformation gradients and Cauchy tensor differ in plane stress and plane strain
    // This code handles plane strain, axisymmetric, and 3D - Plane stress is blocked
	double J = detdF * mptr->GetHistoryDble(J_History,historyOffset);
	mptr->SetHistoryDble(J_History,J,historyOffset);						// Stocking J
    
    // J is determinant of F (or sqrt root of determinant of B), Jeff is normalized to residual stretch
	double dJres = GetIncrementalResJ(mptr,res);
	double Jres = dJres * mptr->GetHistoryDble(J_History+1,historyOffset);
	mptr->SetHistoryDble(J_History+1,Jres,historyOffset);
    double Jeff = J/Jres;
	
	// Get hydrostatic stress component in subroutine
	double dTq0 = 0.,dispEnergy = 0.;
    UpdatePressure(mptr,J,detdF,np,Jeff,delTime,p,res,dJres,historyOffset,dTq0,dispEnergy);
    
    // Others constants
    double J23 = pow(J, 2./3.)/Jres;
    
    // find Trial (Cauchy stress)/rho0
	// (Trial_s/rho0 = Trial_s*rho/(rho*rho0) = (Trial_tau*rho/rho0^2) = (1/J)*(Trial_tau/rho0)
    Tensor stk = GetTrialDevStressTensor(&Btrial,J*J23,np,p->Gred);
    
    // Checking for plastic loading
    // ============================================
    
    // Get magnitude of the deviatoric stress tensor
    // ||s|| = sqrt(s.s)
    
	// Set alpint for particle
	HardeningAlpha alpha;
	plasticLaw->UpdateTrialAlpha(mptr,np,&alpha,historyOffset);
	
	// Trial stress state
    double magnitude_strial = GetMagnitudeS(&stk,np);
    double gyld = plasticLaw->GetYield(mptr,np,delTime,&alpha,p->hardProps);
    double ftrial = magnitude_strial-SQRT_TWOTHIRDS*gyld;
    //cout << "  #magnitude_strial =   "<< magnitude_strial<< "  GetYield =   "<< gyld<< "  ftrial =   "<< ftrial<< endl;
    //cout << "  #yldred =   "<< yldred << "  Epred =   "<< Epred << "  gyld =   "<< gyld <<"  alpint =   "<< alpint<< "  ftrial =   "<< ftrial<< endl;
    
    // these will be needed for elastic or plastic
    Tensor *pB = mptr->GetAltStrainTensor();
    
    //============================
    //  TEST
    //============================
    if(ftrial<=0.)
	{	// if elastic
        //============================
		
		// save on particle
        *pB = Btrial;
        
        // Get specifique stress i.e. (Cauchy Stress)/rho = J*(Cauchy Stress)/rho0 = (Kirchoff Stress)/rho0
		// The deviatoric stress was calculated as (Cauchy Stress)/rho, so need to scale by J to get correct stress
        sp->xx = J*stk.xx;
		sp->yy = J*stk.yy;
        sp->xy = J*stk.xy;
        sp->zz = J*stk.zz;
       
        // work energy per unit mass (U/(rho0 V0)) and we are using
        // W(F) as the energy density per reference volume V0 (U/V0) and not current volume V
		double workEnergy = 0.5*((st0.xx+sp->xx)*du(0,0)
								  + (st0.yy+sp->yy)*du(1,1)
								  + (st0.zz+sp->zz)*du(2,2)
								  + (st0.xy+sp->xy)*(du(1,0)+du(0,1)));
        if(np==THREED_MPM)
		{	sp->xz = J*stk.xz;
			sp->yz = J*stk.yz;
			workEnergy += 0.5*((st0.yz+sp->yz)*(du(2,1)+du(1,2))
                                       + (st0.xz+sp->xz)*(du(2,0)+du(0,2)));
        }
        mptr->AddWorkEnergy(workEnergy);
		
		// residual energy or sigma.deres - it is zero here for isotropic material
		// because deviatoric stress is traceless and deres has zero shear terms
		// residual energy due to pressure was added in the pressure update
		
		// heat energy is Cv(dT-dTq0) - dPhi, all from pressure update
		IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
        
		// give material chance to update history variables that change in elastic updates
		plasticLaw->ElasticUpdateFinished(mptr,np,delTime,historyOffset);
		
        return;
    }
    
    // Plastic behavior - Return Mapping algorithm 
    //=====================================================
    // if plastic
    
	// JAN: Use hardening law method (which can now use other laws too)
    double Ie1bar = (Btrial.xx+Btrial.yy+Btrial.zz)/(3.*J23);
    double MUbar = Jres*p->Gred*Ie1bar;
    
    // Find  lambda for this plastic state
	double dlambda = plasticLaw->SolveForLambdaBracketed(mptr,np,magnitude_strial,&stk,
														 MUbar,1.,1.,delTime,&alpha,p->hardProps,historyOffset);
    
    // update deviatoric stress (need to scale by J to get to Kirchoff stress/rho
	Tensor nk = GetNormalTensor(&stk,magnitude_strial,np);
    //cout << "nk.xx  =    " << nk.xx << "nk.xy  =    " << nk.xy << endl;
	double twoMuLam = 2.*MUbar*dlambda;
    sp->xx = J*(stk.xx - twoMuLam*nk.xx);
    sp->yy = J*(stk.yy - twoMuLam*nk.yy);
    sp->zz = J*(stk.zz - twoMuLam*nk.zz);
    sp->xy = J*(stk.xy - twoMuLam*nk.xy);
    if(np == THREED_MPM)
    {   sp->xz = J*(stk.xz - twoMuLam*nk.xz);
        sp->yz = J*(stk.yz - twoMuLam*nk.yz);
    }
    
    // save on particle
	double twoThirdsLamI1bar = 2.*dlambda*Ie1bar;
    pB->xx = Btrial.xx - twoThirdsLamI1bar*nk.xx;
    pB->yy = Btrial.yy - twoThirdsLamI1bar*nk.yy;
    pB->zz = Btrial.zz - twoThirdsLamI1bar*nk.zz;
	pB->xy = Btrial.xy - twoThirdsLamI1bar*nk.xy;
    if(np == THREED_MPM)
    {   pB->xz = Btrial.xz - twoThirdsLamI1bar*nk.xz;
        pB->yz = Btrial.yz - twoThirdsLamI1bar*nk.yz;
    }
    /* Old method collecting B from stresses
	pB->xx = (sp->xx/p->Gred+Ie1bar)*J23;
	pB->yy = (sp->yy/p->Gred+Ie1bar)*J23;
	pB->zz = (sp->zz/p->Gred+Ie1bar)*J23;
	pB->xy = sp->xy*J23/p->Gred;
    if(np == THREED_MPM)
    {   pB->xz = sp->xz*J23/p->Gred;
        pB->yz = sp->yz*J23/p->Gred;
    }
    */
    
    // strain energy per unit mass (U/(rho0 V0)) and we are using
    double workEnergy = 0.5*((st0.xx+sp->xx)*du(0,0)
                               + (st0.yy+sp->yy)*du(1,1)
                               + (st0.zz+sp->zz)*du(2,2)
                               + (st0.xy+sp->xy)*(du(1,0)+du(0,1)));
    if(np==THREED_MPM)
    {   workEnergy += 0.5*((st0.yz+sp->yz)*(du(2,1)+du(1,2))
                                   + (st0.xz+sp->xz)*(du(2,0)+du(0,2)));
    }
    
    // total work
    mptr->AddWorkEnergy(workEnergy);
    
    // residual energy or sigma.deres - it is zero here for isotropic material
    // because deviatoric stress is traceless and deres has zero shear terms
    // residual energy due to pressure was added in the pressure update
    
    // Plastic work increment per unit mass (dw/(rho0 V0)) (nJ/g)
    dispEnergy += dlambda*(sp->xx*nk.xx + sp->yy*nk.yy + sp->zz*nk.zz + 2.*sp->xy*nk.xy);
    if(np==THREED_MPM)  dispEnergy += 2.*dlambda*(sp->xz*nk.xz + sp->yz*nk.yz);
	
    // Subtract q.dalpha to get final disispated energy per unit mass (dPhi/(rho0 V0)) (nJ/g)
    dispEnergy -= dlambda*SQRT_TWOTHIRDS*plasticLaw->GetYieldIncrement(mptr,np,delTime,&alpha,p->hardProps);
    
	// The cumulative dissipated energy is tracked in plastic energy
    mptr->AddPlastEnergy(dispEnergy);
    
    // heat energy is Cv(dT-dTq0) - dPhi
    IncrementHeatEnergy(mptr,res->dT,dTq0,dispEnergy);
    
	// update internal variables in the plastic law
	plasticLaw->UpdatePlasticInternal(mptr,np,&alpha,historyOffset);
}
Beispiel #15
0
/* For 2D MPM analysis, take increments in strain and calculate new
	Particle: strains, rotation strain, stresses, strain energy, angle
	dvij are (gradient rates X time increment) to give deformation gradient change
	Assumes linear elastic, uses hypoelastic correction
   For Axisymmetric MPM, x->R, y->Z, x->theta, and dvzz is change in hoop strain
	(i.e., du/r on particle and dvzz will be zero if not axisymmetric)
*/
void Elastic::MPMConstLaw(MPMBase *mptr,double dvxx,double dvyy,double dvxy,double dvyx,double dvzz,
                          double delTime,int np,void *properties,ResidualStrains *res) const
{
	// cast pointer to material-specific data
	ElasticProperties *p = (ElasticProperties *)properties;
	
	// Add to total strain
	Tensor *ep=mptr->GetStrainTensor();
    ep->xx+=dvxx;
    ep->yy+=dvyy;
    double dgam=dvxy+dvyx;
    ep->xy+=dgam;
	double dwrotxy=dvyx-dvxy;
	
    // residual strains (thermal and moisture)
	double erxx = p->alpha[1]*res->dT;
	double eryy = p->alpha[2]*res->dT;
	double erxy = p->alpha[3]*res->dT;
	double erzz = CTE3*res->dT;
	if(DiffusionTask::active)
	{	erxx += p->beta[1]*res->dC;
		eryy += p->beta[2]*res->dC;
		erxy += p->beta[3]*res->dC;
		erzz += CME3*res->dC;
	}
	
    // moisture and thermal strain and temperature change
	//   (when diffusion, conduction, OR thermal ramp active)
    double dvxxeff = dvxx - erxx;
    double dvyyeff = dvyy - eryy;
	double dgameff = dgam - erxy;
    
    // save initial stresses
	Tensor *sp=mptr->GetStressTensor();
    Tensor st0=*sp;
	
	// find stress (Units N/m^2  cm^3/g)
	// this does xx, yy, ans xy only. zz do later if needed
	double c1,c2,c3;
	if(np==AXISYMMETRIC_MPM)
	{	// axisymmetric strain
		ep->zz += dvzz;
		
		// hoop stress affect on RR, ZZ, and RZ stresses
		double dvzzeff = dvzz - erzz;
		c1=p->C[1][1]*dvxxeff + p->C[1][2]*dvyyeff + p->C[4][1]*dvzzeff + p->C[1][3]*dgameff;
		c2=p->C[1][2]*dvxxeff + p->C[2][2]*dvyyeff + p->C[4][2]*dvzzeff + p->C[2][3]*dgameff;
		c3=p->C[1][3]*dvxxeff + p->C[2][3]*dvyyeff + p->C[4][3]*dvzzeff + p->C[3][3]*dgameff;
	}
	else
    {	c1=p->C[1][1]*dvxxeff + p->C[1][2]*dvyyeff + p->C[1][3]*dgameff;
		c2=p->C[1][2]*dvxxeff + p->C[2][2]*dvyyeff + p->C[2][3]*dgameff;
		c3=p->C[1][3]*dvxxeff + p->C[2][3]*dvyyeff + p->C[3][3]*dgameff;
	}
	Hypo2DCalculations(mptr,-dwrotxy,c1,c2,c3);
    
	// work and resdiaul strain energu increments
	double workEnergy = 0.5*((st0.xx+sp->xx)*dvxx + (st0.yy+sp->yy)*dvyy + (st0.xy+sp->xy)*dgam);
	double resEnergy = 0.5*((st0.xx+sp->xx)*erxx + (st0.yy+sp->yy)*eryy + (st0.xy+sp->xy)*erxy);
	if(np==PLANE_STRAIN_MPM)
	{	// need to add back terms to get from reduced cte to actual cte
		sp->zz += p->C[4][1]*(dvxx+p->alpha[5]*erzz)+p->C[4][2]*(dvyy+p->alpha[6]*erzz)
					+p->C[4][3]*(dgam+p->alpha[7]*erzz)-p->C[4][4]*erzz;
		
		// extra residual energy increment per unit mass (dU/(rho0 V0)) (by midpoint rule) (uJ/g)
		resEnergy += 0.5*(st0.zz+sp->zz)*erzz;
	}
	else if(np==PLANE_STRESS_MPM)
	{	ep->zz += p->C[4][1]*dvxxeff+p->C[4][2]*dvyyeff+p->C[4][3]*dgameff+erzz;
	}
	else
	{	// axisymmetric hoop stress
		sp->zz += p->C[4][1]*dvxxeff + p->C[4][2]*dvyyeff + p->C[4][4]*(dvzz - erzz) + p->C[4][3]*dgameff;
		
		// extra work and residual energy increment per unit mass (dU/(rho0 V0)) (by midpoint rule) (uJ/g)
		workEnergy += 0.5*(st0.zz+sp->zz)*dvzz;
		resEnergy += 0.5*(st0.zz+sp->zz)*erzz;
	}
	mptr->AddWorkEnergyAndResidualEnergy(workEnergy, resEnergy);
	
    // track heat energy
    IncrementHeatEnergy(mptr,res->dT,0.,0.);
}
/* Take increments in strain and calculate new Particle: strains, rotation strain,
		stresses, strain energy,
	dvij are (gradient rates X time increment) to give deformation gradient change
	For Axisymmetry: x->R, y->Z, z->theta, np==AXISYMMEtRIC_MPM, otherwise dvzz=0
	This material tracks pressure and stores deviatoric stress only in particle stress tensor
 */
void ClampedNeohookean::MPMConstitutiveLaw(MPMBase *mptr,Matrix3 du,double delTime,int np,void *properties,
										   ResidualStrains *res,int historyOffset) const
{
	// Update total deformation gradient, and calculate trial B
    Tensor Btrial;
	double detDF = IncrementDeformation(mptr,du,&Btrial,np);
    
	// global J
	double J = detDF * mptr->GetHistoryDble(J_History,historyOffset);
	mptr->SetHistoryDble(J_History,J,historyOffset);
	
	// convert Btrial to matrix to get eigenvalues and check for clamping
	Matrix3 Belas(Btrial.xx,Btrial.xy,Btrial.xz,
				  Btrial.xy,Btrial.yy,Btrial.yz,
				  Btrial.xz,Btrial.yz,Btrial.zz);
	if(np!=THREED_MPM) Belas.setIs2D(true);
		
	// get Eigenvalues and Eigenvectors
	Vector lam2 = Belas.Eigenvalues();
	
	// clamp eigenvalues if needed
	bool clamped = false;
	if(lam2.x<lamMin2 || lam2.x>lamMax2 || lam2.y<lamMin2 || lam2.y>lamMax2 || lam2.z<lamMin2 || lam2.z>lamMax2)
		clamped = true;
	
	// Get Je and Jp, adjusting if clamped
	double Je,Jp;
	Matrix3 Ucol;
	if(clamped)
	{	// Find Belas = U.LAM.UT
		Ucol = Belas.Eigenvectors(lam2);
		// clamp values now
		if(lam2.x<lamMin2)
			lam2.x = lamMin2;
		else if(lam2.x>lamMax2)
			lam2.x = lamMax2;
		if(lam2.y<lamMin2)
			lam2.y = lamMin2;
		else if(lam2.y>lamMax2)
			lam2.y = lamMax2;
		if(lam2.z<lamMin2)
			lam2.z = lamMin2;
		else if(lam2.z>lamMax2)
			lam2.z = lamMax2;
		Matrix3 UcolT = Ucol.Transpose();
		Matrix3 Lam(lam2.x,0.,0.,lam2.y,lam2.z);
		Matrix3 LamUcolT = Lam*UcolT;
		Belas = Ucol*LamUcolT;
		
		// get Je and Jp
		Je = sqrt(lam2.x*lam2.y*lam2.z);
		Jp = J/Je;
		mptr->SetHistoryDble(JP_HISTORY,Jp,historyOffset);
	}
	else
	{	Jp = mptr->GetHistoryDble(JP_HISTORY,historyOffset);
		Je = J/Jp;
		if(elasticModel==ELASTIC_DISNEY)
			Ucol = Belas.Eigenvectors(lam2);
	}
	
	// store B elastic
	Tensor *sp=mptr->GetStressTensor();
    Tensor *B = mptr->GetAltStrainTensor();
	B->xx = Belas(0,0);
	B->yy = Belas(1,1);
	B->zz = Belas(2,2);
	B->xy = Belas(0,1);
	if(np==THREED_MPM)
	{	B->xz = Belas(0,2);
		B->yz = Belas(1,2);
	}
	
	// change mechanical properties by hardening
	double arg = exp(hardening*(1.-Jp));
	double altGsp = pr.Gsp*arg;
	double altLamesp = pr.Lamesp*arg;

	// account for residual stresses
	double dJres = GetIncrementalResJ(mptr,res);
	double Jres = dJres*mptr->GetHistoryDble(J_History+1,historyOffset);
	mptr->SetHistoryDble(J_History+1,Jres,historyOffset);
	double resStretch = pow(Jres,1./3.);
	double Jres23 = resStretch*resStretch;
		
	// account for residual stresses relative to elastic J
	double Jeff = Je/Jres;
		
	// for incremental energy, store initial stress and pressure
	Tensor *sporig=mptr->GetStressTensor();
	Tensor st0 = *sporig;
	double Pfinal,p0=mptr->GetPressure();
	
	if(elasticModel==ELASTIC_DISNEY)
	{	// Use model from Disney paper
		
		// Get Cauchy stress/rho0
		double sig[3][3];
		double lam[3];
		lam[0]=sqrt(lam2.x)/resStretch;
		lam[1]=sqrt(lam2.y)/resStretch;
		lam[2]=sqrt(lam2.z)/resStretch;
		for(int i=0;i<3;i++)
		{	for(int j=i;j<3;j++)
			{	sig[i][j] = 0.;
				for(int k=0;k<3;k++)
				{	sig[i][j] += (2.*altGsp*lam[k]*(lam[k]-1)/Jeff + altLamesp*(Jeff-1))*Ucol(i,k)*Ucol(j,k);
				}
			}
		}
		
		// update pressure (*J to get Kirchoff pressure)
		Pfinal = -J*(sig[0][0]+sig[1][1]+sig[2][2])/3.;
		mptr->SetPressure(Pfinal);

		// get and set deviatoric stress
		// find eviatoric (Kirchoff stress)/rho0 = deviatoric (Cauchy stress)J/rho0
		sp->xx = J*sig[0][0]+Pfinal;
		sp->yy = J*sig[1][1]+Pfinal;
		sp->zz = J*sig[2][2]+Pfinal;
		sp->xy = J*sig[0][1];
		if(np==THREED_MPM)
		{	sp->xz = J*sig[0][2];
			sp->yz = J*sig[1][2];
		}
	}
	else
	{	// Use standard neo-Hookean law
		
		// update pressure (*J to get Kirchoff pressure)
		Pfinal = -J*(GetVolumetricTerms(Jeff,altLamesp) + (altGsp/Jeff)*((B->xx+B->yy+B->zz)/(3.*Jres23) - 1.));
		mptr->SetPressure(Pfinal);
		
		// Account for density change in specific stress
		// i.e.. Get (Kirchoff Stress)/rho0
		double GJeff = J*resStretch*altGsp/Je;		// = J*(Jres^(1/3) G/Je) to get Kirchoff
		
		// find deviatoric (Kirchoff stress)/rho0 = deviatoric (Cauchy stress)J/rho0
		double I1third = (B->xx+B->yy+B->zz)/3.;
		sp->xx = GJeff*(B->xx-I1third);
		sp->yy = GJeff*(B->yy-I1third);
		sp->zz = GJeff*(B->zz-I1third);
		sp->xy = GJeff*B->xy;
		if(np==THREED_MPM)
		{	sp->xz = GJeff*B->xz;
			sp->yz = GJeff*B->yz;
		}
	}
	
	// work and residual energies
    double delV = 1. - 1./detDF;                        // total volume change
    double avgP = 0.5*(p0+Pfinal);
    double dilEnergy = -avgP*delV;
	
	// incremental residual energy
	double delVres = 1. - 1./dJres;
	double resEnergy = -avgP*delVres;

	// incremental work energy = shear energy
    double shearEnergy = 0.5*((sp->xx+st0.xx)*du(0,0) + (sp->yy+st0.yy)*du(1,1) + (sp->zz+st0.zz)*du(2,2)+
							  (sp->xy+st0.xy)*(du(0,1)+du(1,0)));
    if(np==THREED_MPM)
    {   shearEnergy += 0.5*((sp->xz+st0.xz)*(du(0,2)+du(2,0)) + (sp->yz+st0.yz)*(du(1,2)+du(2,1)));
    }
	
    // strain energy
    double dU = dilEnergy + shearEnergy;
    mptr->AddWorkEnergyAndResidualEnergy(dU,resEnergy);
	
	// thermodynamics heat and temperature
	// Should find energy dissipated by plasticity and add in third term
	IncrementHeatEnergy(mptr,res->dT,0.,0.);
}
Beispiel #17
0
// Once stress deformation has been decomposed, finish calculations in the material axis system
// When stress are found, they are rotated back to the global axes (using Rtot and dR)
// Similar, strain increments are rotated back to find work energy (done in global system)
void Elastic::LRElasticConstitutiveLaw(MPMBase *mptr,Matrix3 de,Matrix3 er,Matrix3 Rtot,Matrix3 dR,
									   Matrix3 *Rnmatot,int np,void *properties,ResidualStrains *res) const
{
	// effective strains
	double dvxxeff = de(0,0)-er(0,0);
	double dvyyeff = de(1,1)-er(1,1);
	double dvzzeff = de(2,2)-er(2,2);
	double dgamxy = 2.*de(0,1);
	
    // save initial stresses
	Tensor *sp=mptr->GetStressTensor();
    //Tensor st0=*sp;
	
	// stress increments
	// cast pointer to material-specific data
	ElasticProperties *p = GetElasticPropertiesPointer(properties);
	if(np==THREED_MPM)
	{	double dgamyz = 2.*de(1,2);
		double dgamxz = 2.*de(0,2);
		
		// update sigma = dR signm1 dRT + Rtot dsigma RtotT
		double dsigyz = p->C[3][3]*dgamyz;
		double dsigxz = p->C[4][4]*dgamxz;
		double dsigxy = p->C[5][5]*dgamxy;
		Matrix3 dsig(p->C[0][0]*dvxxeff + p->C[0][1]*dvyyeff + p->C[0][2]*dvzzeff, dsigxy, dsigxz,
					 dsigxy, p->C[1][0]*dvxxeff + p->C[1][1]*dvyyeff + p->C[1][2]*dvzzeff, dsigyz,
					 dsigxz, dsigyz, p->C[2][0]*dvxxeff + p->C[2][1]*dvyyeff + p->C[2][2]*dvzzeff);
		Matrix3 dsigrot = dsig.RMRT(Rtot);
		Matrix3 stn(sp->xx,sp->xy,sp->xz,sp->xy,sp->yy,sp->yz,sp->xz,sp->yz,sp->zz);
		Matrix3 str = stn.RMRT(dR);
		sp->xx = str(0,0) + dsigrot(0,0);
		sp->yy = str(1,1) + dsigrot(1,1);
		sp->zz = str(2,2) + dsigrot(2,2);
		sp->xy = str(0,1) + dsigrot(0,1);
		sp->xz = str(0,2) + dsigrot(0,2);
		sp->yz = str(1,2) + dsigrot(1,2);
		
		// stresses are in global coordinates so need to rotate strain and residual
		// strain to get work energy increment per unit mass (dU/(rho0 V0))
		Matrix3 derot = de.RMRT(Rtot);
		Matrix3 errot = er.RMRT(Rtot);
		mptr->AddWorkEnergyAndResidualEnergy(sp->xx*derot(0,0) + sp->yy*derot(1,1) + sp->zz*derot(2,2)
											  + 2.*(sp->yz*derot(1,2) + sp->xz*derot(0,2) + sp->xy*derot(0,1)),
											 sp->xx*errot(0,0) + sp->yy*errot(1,1) + sp->zz*errot(2,2)
											  + 2.*(sp->yz*errot(1,2) + sp->xz*errot(0,2) + sp->xy*errot(0,1)) );
		//mptr->AddWorkEnergyAndResidualEnergy(0.5*((st0.xx+sp->xx)*derot(0,0) + (st0.yy+sp->yy)*derot(1,1)
		//										  + (st0.zz+sp->zz)*derot(2,2)) + (st0.yz+sp->yz)*derot(1,2)
		//										  + (st0.xz+sp->xz)*derot(0,2) + (st0.xy+sp->xy)*derot(0,1),
		//									 0.5*((st0.xx+sp->xx)*errot(0,0) + (st0.yy+sp->yy)*errot(1,1)
		//										  + (st0.zz+sp->zz)*errot(2,2)) + (st0.yz+sp->yz)*errot(1,2)
		//										  + (st0.xz+sp->xz)*errot(0,2) + (st0.xy+sp->xy)*errot(0,1));
	}
	else
	{	// find stress increment
		// this does xx, yy, and xy only. zz done later if needed
		double dsxx,dsyy;
		if(np==AXISYMMETRIC_MPM)
		{	dsxx = p->C[1][1]*dvxxeff + p->C[1][2]*dvyyeff + p->C[4][1]*dvzzeff ;
			dsyy = p->C[1][2]*dvxxeff + p->C[2][2]*dvyyeff + p->C[4][2]*dvzzeff;
		}
		else
		{	dsxx = p->C[1][1]*dvxxeff + p->C[1][2]*dvyyeff;
			dsyy = p->C[1][2]*dvxxeff + p->C[2][2]*dvyyeff;
		}
		double dsxy = p->C[3][3]*dgamxy;
		
		// update sigma = dR signm1 dRT + Rtot dsigma RtotT
		Matrix3 dsig(dsxx,dsxy,dsxy,dsyy,0.);
		Matrix3 dsigrot = dsig.RMRT(Rtot);
		Matrix3 stn(sp->xx,sp->xy,sp->xy,sp->yy,sp->zz);
		Matrix3 str = stn.RMRT(dR);
		sp->xx = str(0,0) + dsigrot(0,0);
		sp->yy = str(1,1) + dsigrot(1,1);
		sp->xy = str(0,1) + dsigrot(0,1);
		
		// stresses are in global coordinate so need to rotate strain and residual
		// strain to get work energy increment per unit mass (dU/(rho0 V0))
		double ezzr = er(2,2);
		Matrix3 derot = de.RMRT(Rtot);
		Matrix3 errot = er.RMRT(Rtot);
		
		// work and residual strain energy increments and sigma or F in z direction
		double workEnergy = sp->xx*derot(0,0) + sp->yy*derot(1,1) + 2.0*sp->xy*derot(0,1);
		double resEnergy = sp->xx*errot(0,0) + sp->yy*errot(1,1) + 2.*sp->xy*errot(0,1);
		//double workEnergy = 0.5*((st0.xx+sp->xx)*derot(0,0) + (st0.yy+sp->yy)*derot(1,1)) + (st0.xy+sp->xy)*derot(0,1);
		//double resEnergy = 0.5*((st0.xx+sp->xx)*errot(0,0) + (st0.yy+sp->yy)*errot(1,1)) + (st0.xy+sp->xy)*errot(0,1);
		if(np==PLANE_STRAIN_MPM)
		{	// need to add back terms to get from reduced cte to actual cte
			sp->zz += p->C[4][1]*(dvxxeff+p->alpha[5]*ezzr) + p->C[4][2]*(dvyyeff+p->alpha[6]*ezzr) - p->C[4][4]*ezzr;
			
			// extra residual energy increment per unit mass (dU/(rho0 V0)) (by midpoint rule) (nJ/g)
			resEnergy += sp->zz*ezzr;
			//resEnergy += 0.5*(st0.zz+sp->zz)*ezzr;
		}
		else if(np==PLANE_STRESS_MPM)
		{	// zz deformation
			mptr->IncrementDeformationGradientZZ(p->C[4][1]*dvxxeff + p->C[4][2]*dvyyeff + ezzr);
		}
		else
		{	// axisymmetric hoop stress
			sp->zz += p->C[4][1]*dvxxeff + p->C[4][2]*dvyyeff + p->C[4][4]*dvzzeff;
			
			// extra work and residual energy increment per unit mass (dU/(rho0 V0)) (by midpoint rule) (nJ/g)
			workEnergy += sp->zz*de(2,2);
			resEnergy += sp->zz*ezzr;
			//workEnergy += 0.5*(st0.zz+sp->zz)*de(2,2);
			//resEnergy += 0.5*(st0.zz+sp->zz)*ezzr;
		}
		mptr->AddWorkEnergyAndResidualEnergy(workEnergy, resEnergy);
		
	}
    
    // track heat energy
    IncrementHeatEnergy(mptr,res->dT,0.,0.);
}