Beispiel #1
0
// choose random curve
// if IsZero(Z), then X is non-trivial factor of ZZ_p::modulus()
void ECM_random_curve(EC_pCurve& curve, ZZ_p& X, ZZ_p& Z) {
  ZZ sigma;
  RandomBnd(sigma,ZZ_p::modulus()-6);
  sigma+=6;
  ZZ_p u,v;
  u = sqr(to_ZZ_p(sigma))-5;
  v = 4*to_ZZ_p(sigma);
  ZZ_p C,Cd;
  C = (v-u)*sqr(v-u)*(3*u+v);
  Cd = 4*u*sqr(u)*v;
  // make sure Cd is invertible
  ZZ Cinv;
  if (InvModStatus(Cinv,rep(Cd),ZZ_p::modulus())!=0) {
    conv(X,Cinv);
    clear(Z);
    return;
  }
  C*=to_ZZ_p(Cinv);
  C-=2;

  // random curve
  ZZ_pX f;
  SetCoeff(f,3);
  SetCoeff(f,2,C);
  SetCoeff(f,1);
  conv(curve,f);
  curve.SetRepresentation(curve.MONTGOMERY);

  // initial point
  mul(X,u,sqr(u));
  mul(Z,v,sqr(v));
}
Beispiel #2
0
NTL::ZZ_pX YASHE::keyGen() {
  /**
   * The secret key is computed as
   *
   *      f' <- X_key
   *      f = (t*f' + 1) mod q
   *      secretKey = f
   * 
   * Secret keys are randomly generated until
   * an invertible key f^-1 is found
   */
  NTL::ZZ_pX secretKey, secretKeyInv;
  long inverseStatus;
  do {
    secretKey = pModulus * randomKeyPoly() + 1;
    inverseStatus = InvModStatus(secretKeyInv, secretKey, cycloMod);
  } while (inverseStatus == 1);

  /**
   * The public key is computed by
   *
   *      g <- X_key
   *      h = (t*g*f^-1) mod q
   *      publicKey = h
   */
  publicKey = MulMod(randomKeyPoly(), secretKeyInv, cycloMod);
  publicKey *= pModulus;

  /** 
   * The evaluation key is computed by
   *
   *        e, s <- X_err
   *        gamma = (powersOfRadix(f) + e + h*s) mod q
   *        evaluationKey = gamma
   */
  std::vector<NTL::ZZ_pX> evalKey;
  powersOfRadix(evalKey, secretKey);
  evalKeyMult.resize(decompSize);
  for (long i = 0; i < decompSize; i++) {
    evalKey[i] += randomErrPoly();
    evalKey[i] += MulMod(publicKey, randomErrPoly(), cycloMod);
    NTL::build(evalKeyMult[i], evalKey[i], cycloMod);
  }

  return secretKey;
}
Beispiel #3
0
// Процедура проверки подписи
void verifysign (ZZ &R, ZZ &r, ZZ &s, ZZ &e, Qxy &Q, Qxy &P, ZZ &q  )
{
    ZZ v, z1, z2;
    Qxy C;
    ZZ e1;
    if (InvModStatus( v, e, q ))
    {
        cout << "\nError in signature\n";
        goto end;
    }
    v = InvMod(e,q);
    z1 = (s*v)%q;
    z2 = (-r*v)%q;
    C = P*z1 + Q*z2;
    R = (conv<ZZ>(C.putx()))%q;

    cout << "\nv (dec) = \n" << v << endl;
    cout << "\nv (hex) = \n";
    show_dec_in_hex (v, L);
    cout << endl;

    cout << "\nz1 (dec) = \n" << z1 << endl;
    cout << "\nz1 (hex) = \n";
    show_dec_in_hex (z1, L);
    cout << endl;

    cout << "\nz2 (dec) = \n" << z2 << endl;
    cout << "\nz2 (hex) = \n";
    show_dec_in_hex (z2, L);
    cout << endl;

    cout << "\nPoint C:\n";
    C.putQxy();

    cout << "\nR (dec) = \n" << R << endl;
    cout << "\nR (hex) = \n";
    show_dec_in_hex (R, L);
    cout << endl;

end:
    if ( r == R )
        cout << "\nr = R\nSignature is OK";
    else
        cout << "\nSignature is FAILD";
    cout << endl;
}
Beispiel #4
0
// Note: poly is passed by value, not by reference, so the calling routine
// keeps its original polynomial
long evalPolyTopLevel(ZZX poly, long x, long p, long k=0)
{
  if (verbose)
  cerr << "\n* evalPolyTopLevel: p="<<p<<", x="<<x<<", poly="<<poly;

  if (deg(poly)<=2) { // nothing to optimize here
    if (deg(poly)<1) return to_long(coeff(poly, 0));
    DynamicPtxtPowers babyStep(x, p, deg(poly));
    long ret = simplePolyEval(poly, babyStep, p);
    totalDepth = babyStep.getDepth(deg(poly));
    return ret;
  }

  // How many baby steps: set k~sqrt(n/2), rounded up/down to a power of two

  // FIXME: There may be some room for optimization here: it may be possible
  // to choose k as something other than a power of two and still maintain
  // optimal depth, in principle we can try all possible values of k between
  // the two powers of two and choose the one that goves the least number
  // of multiplies, conditioned on minimum depth.

  if (k<=0) {
    long kk = (long) sqrt(deg(poly)/2.0);
    k = 1L << NextPowerOfTwo(kk);

    // heuristic: if k>>kk then use a smaler power of two
    if ((k==16 && deg(poly)>167) || (k>16 && k>(1.44*kk)))
      k /= 2;
  }
  cerr << ", k="<<k;

  long n = divc(deg(poly),k);          // deg(p) = k*n +delta
  if (verbose) cerr << ", n="<<n<<endl;

  DynamicPtxtPowers babyStep(x, p, k);
  long x2k = babyStep.getPower(k);

  // Special case when deg(p)>k*(2^e -1)
  if (n==(1L << NextPowerOfTwo(n))) { // n is a power of two
    DynamicPtxtPowers giantStep(x2k, p, n/2, babyStep.getDepth(k));
    if (verbose)
      cerr << "babyStep="<<babyStep<<", giantStep="<<giantStep<<endl;
    long ret = degPowerOfTwo(poly, k, babyStep, giantStep, p, totalDepth);

    if (verbose) {
      cerr << "  degPowerOfTwo("<<poly<<") returns "<<ret<<", depth="<<totalDepth<<endl;
      if (ret != polyEvalMod(poly,babyStep[0], p)) {
	cerr << "  ## recursive call failed, ret="<<ret<<"!=" 
	     << polyEvalMod(poly,babyStep[0], p)<<endl;
	exit(0);
      }
      // cerr << "  babyStep depth=[";
      // for (long i=0; i<babyStep.size(); i++) 
      // 	cerr << babyStep.getDepth(i+1)<<" ";
      // cerr << "]\n";
      // cerr << "  giantStep depth=[";
      // for (long i=0; i<giantStep.size(); i++)
      // 	cerr<<giantStep.getDepth(i+1)<<" ";
      // cerr << "]\n";
    }
    return ret;
  }

  // If n is not a power of two, ensure that poly is monic and that
  // its degree is divisible by k, then call the recursive procedure

  ZZ topInv; // the inverse mod p of the top coefficient of poly (if any)
  bool divisible = (n*k == deg(poly)); // is the degree divisible by k?
  long nonInvertibe = InvModStatus(topInv, LeadCoeff(poly), to_ZZ(p));
       // 0 if invertible, 1 if not

  // FIXME: There may be some room for optimization below: instead of
  // adding a term X^{n*k} we can add X^{n'*k} for some n'>n, so long
  // as n' is smaller than the next power of two. We could save a few
  // multiplications since giantStep[n'] may be easier to compute than
  // giantStep[n] when n' has fewer 1's than n in its binary expansion.

  long extra = 0;        // extra!=0 denotes an added term extra*X^{n*k}
  if (!divisible || nonInvertibe) {  // need to add a term
    // set extra = 1 - current-coeff-of-X^{n*k}
    extra = SubMod(1, to_long(coeff(poly,n*k)), p);
    SetCoeff(poly, n*k); // set the top coefficient of X^{n*k} to one
    topInv = to_ZZ(1);   // inverse of new top coefficient is one
  }

  long t = (extra==0)? divc(n,2) : n;
  DynamicPtxtPowers giantStep(x2k, p, t, babyStep.getDepth(k));

  if (verbose)
    cerr << "babyStep="<<babyStep<<", giantStep="<<giantStep<<endl;

  long y; // the value to return
  long subDepth1 =0;
  if (!IsOne(topInv)) {
    long top = to_long(poly[n*k]); // record the current top coefficient
    //    cerr << ", top-coeff="<<top;

    // Multiply by topInv modulo p to make into a monic polynomial
    poly *= topInv;
    for (long i=0; i<=n*k; i++) rem(poly[i], poly[i], to_ZZ(p));
    poly.normalize();

    y = recursivePolyEval(poly, k, babyStep, giantStep, p, subDepth1);
    if (verbose) {
      cerr << "  recursivePolyEval("<<poly<<") returns "<<y<<", depth="<<subDepth1<<endl;
      if (y != polyEvalMod(poly,babyStep[0], p)) {
	cerr << "## recursive call failed, ret="<<y<<"!=" 
	     << polyEvalMod(poly,babyStep[0], p)<<endl;
	exit(0);
      }
    }
    y = MulMod(y, top, p); // multiply by the original top coefficient
  }
  else {
    y = recursivePolyEval(poly, k, babyStep, giantStep, p, subDepth1);
    if (verbose) {
      cerr << "  recursivePolyEval("<<poly<<") returns "<<y<<", depth="<<subDepth1<<endl;
      if (y != polyEvalMod(poly,babyStep[0], p)) {
	cerr << "## recursive call failed, ret="<<y<<"!=" 
	     << polyEvalMod(poly,babyStep[0], p)<<endl;
	exit(0);
      }
    }
  }

  if (extra != 0) { // if we added a term, now is the time to subtract back
    if (verbose) cerr << ", subtracting "<<extra<<"*X^"<<k*n;
    extra = MulMod(extra, giantStep.getPower(n), p);
    totalDepth = max(subDepth1, giantStep.getDepth(n));
    y = SubMod(y, extra, p);
  }
  else totalDepth = subDepth1;
  if (verbose) cerr << endl;
  return y;
}
Beispiel #5
0
// Main entry point: Evaluate a cleartext polynomial on an encrypted input
void polyEval(Ctxt& ret, ZZX poly, const Ctxt& x, long k)
     // Note: poly is passed by value, so caller keeps the original
{
  if (deg(poly)<=2) {  // nothing to optimize here
    if (deg(poly)<1) { // A constant
      ret.clear();
      ret.addConstant(coeff(poly, 0));
    } else {           // A linear or quadratic polynomial
      DynamicCtxtPowers babyStep(x, deg(poly));
      simplePolyEval(ret, poly, babyStep);
    }
    return;
  }

  // How many baby steps: set k~sqrt(n/2), rounded up/down to a power of two

  // FIXME: There may be some room for optimization here: it may be possible
  // to choose k as something other than a power of two and still maintain
  // optimal depth, in principle we can try all possible values of k between
  // two consecutive powers of two and choose the one that gives the least
  // number of multiplies, conditioned on minimum depth.

  if (k<=0) {
    long kk = (long) sqrt(deg(poly)/2.0);
    k = 1L << NextPowerOfTwo(kk);

    // heuristic: if k>>kk then use a smaler power of two
    if ((k==16 && deg(poly)>167) || (k>16 && k>(1.44*kk)))
      k /= 2;
  }
#ifdef DEBUG_PRINTOUT
  cerr << "  k="<<k;
#endif

  long n = divc(deg(poly),k);      // n = ceil(deg(p)/k), deg(p) >= k*n
  DynamicCtxtPowers babyStep(x, k);
  const Ctxt& x2k = babyStep.getPower(k);

  // Special case when deg(p)>k*(2^e -1)
  if (n==(1L << NextPowerOfTwo(n))) { // n is a power of two
    DynamicCtxtPowers giantStep(x2k, n/2);
    degPowerOfTwo(ret, poly, k, babyStep, giantStep);
    return;
  }

  // If n is not a power of two, ensure that poly is monic and that
  // its degree is divisible by k, then call the recursive procedure

  const ZZ p = to_ZZ(x.getPtxtSpace());
  ZZ top = LeadCoeff(poly);
  ZZ topInv; // the inverse mod p of the top coefficient of poly (if any)
  bool divisible = (n*k == deg(poly)); // is the degree divisible by k?
  long nonInvertibe = InvModStatus(topInv, top, p);
       // 0 if invertible, 1 if not

  // FIXME: There may be some room for optimization below: instead of
  // adding a term X^{n*k} we can add X^{n'*k} for some n'>n, so long
  // as n' is smaller than the next power of two. We could save a few
  // multiplications since giantStep[n'] may be easier to compute than
  // giantStep[n] when n' has fewer 1's than n in its binary expansion.

  ZZ extra = ZZ::zero();    // extra!=0 denotes an added term extra*X^{n*k}
  if (!divisible || nonInvertibe) {  // need to add a term
    top = to_ZZ(1);  // new top coefficient is one
    topInv = top;    // also the new inverse is one
    // set extra = 1 - current-coeff-of-X^{n*k}
    extra = SubMod(top, coeff(poly,n*k), p);
    SetCoeff(poly, n*k); // set the top coefficient of X^{n*k} to one
  }

  long t = IsZero(extra)? divc(n,2) : n;
  DynamicCtxtPowers giantStep(x2k, t);

  if (!IsOne(top)) {
    poly *= topInv; // Multiply by topInv to make into a monic polynomial
    for (long i=0; i<=n*k; i++) rem(poly[i], poly[i], p);
    poly.normalize();
  }
  recursivePolyEval(ret, poly, k, babyStep, giantStep);

  if (!IsOne(top)) {
    ret.multByConstant(top);
  }

  if (!IsZero(extra)) { // if we added a term, now is the time to subtract back
    Ctxt topTerm = giantStep.getPower(n);
    topTerm.multByConstant(extra);
    ret -= topTerm;
  }
}