static bool ShouldCache(EShaderPlatform Platform)
	{
		if(!IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM5))
		{
			if(MSAASampleCount > 1)
			{
				return false;
			}
		}

		return IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4);
	}
	static bool ShouldCache(EShaderPlatform Platform,const FMaterial* Material,const FVertexFactoryType* VertexFactoryType)
	{
		// Only the local vertex factory supports the position-only stream
		if (bUsePositionOnlyStream)
		{
			return VertexFactoryType->SupportsPositionOnly() && Material->IsSpecialEngineMaterial() 
				&& IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM3);
		}

		// Only compile for the default material and masked materials
		return (Material->IsSpecialEngineMaterial() || Material->IsMasked() || Material->MaterialModifiesMeshPosition())
			 && IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM3);
	}
	static bool ShouldCache(EShaderPlatform Platform)
	{
		if( IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM5) )
		{
			return true;
		}
		else if( IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4) )
		{
			return NumSamples <= 16;
		}
		else
		{
			return NumSamples <= 7;
		}
	}
	static bool ShouldCache(EShaderPlatform Platform,const FMaterial* Material,const FVertexFactoryType* VertexFactoryType)
	{
		return IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM5) 
			&& DoesPlatformSupportDistanceFieldGI(Platform)
			&& (FCString::Strstr(VertexFactoryType->GetName(), TEXT("LocalVertexFactory")) != NULL
				|| FCString::Strstr(VertexFactoryType->GetName(), TEXT("InstancedStaticMeshVertexFactory")) != NULL);
	}
	/**
	  * Makes sure only shaders for materials that are explicitly flagged
	  * as 'UsedAsDeferredDecal' in the Material Editor gets compiled into
	  * the shader cache.
	  */
	static bool ShouldCache(EShaderPlatform Platform, const FMaterial* Material)
	{
		if (!Material->IsUsedWithDeferredDecal())
		{
			return false;
		}

		return IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4);
	}
	static bool ShouldCache(EShaderPlatform Platform,const FMaterial* Material,const FVertexFactoryType* VertexFactoryType)
	{
		//Only compile the velocity shaders for the default material or if it's masked,
		return ((Material->IsSpecialEngineMaterial() || Material->IsMasked() 
			//or if the material is opaque and two-sided,
			|| (Material->IsTwoSided() && !IsTranslucentBlendMode(Material->GetBlendMode()))
			// or if the material modifies meshes
			|| Material->MaterialMayModifyMeshPosition()))
			&& IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4) && !FVelocityRendering::OutputsToGBuffer();
	}
    static bool ShouldCache(EShaderPlatform Platform)
    {
        // Always allow simple bilinear upscale. (Provides upscaling for ES2 emulation)
        if (Method == 1)
        {
            return true;
        }

        return IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4);
    }
	static void ModifyCompilationEnvironment(EShaderPlatform Platform, FShaderCompilerEnvironment& OutEnvironment)
	{
		FGlobalShader::ModifyCompilationEnvironment(Platform, OutEnvironment);

		if( !IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM5) )
		{
			//Need to hack in exposure scale for < SM5
			OutEnvironment.SetDefine(TEXT("NO_EYEADAPTATION_EXPOSURE_FIX"), 1);
		}
	}
/** Updates the downsized depth buffer with the current full resolution depth buffer. */
void FDeferredShadingSceneRenderer::UpdateDownsampledDepthSurface()
{
	if (GSceneRenderTargets.UseDownsizedOcclusionQueries() && IsFeatureLevelSupported(GRHIShaderPlatform, ERHIFeatureLevel::SM3))
	{
		RHISetRenderTarget(NULL, GSceneRenderTargets.GetSmallDepthSurface());

		SCOPED_DRAW_EVENT(DownsampleDepth, DEC_SCENE_ITEMS);

		for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ViewIndex++)
		{
			const FViewInfo& View = Views[ViewIndex];
			// Set shaders and texture
			TShaderMapRef<FScreenVS> ScreenVertexShader(GetGlobalShaderMap());
			TShaderMapRef<FDownsampleSceneDepthPS> PixelShader(GetGlobalShaderMap());

			extern TGlobalResource<FFilterVertexDeclaration> GFilterVertexDeclaration;

			SetGlobalBoundShaderState(DownsampleDepthBoundShaderState, GFilterVertexDeclaration.VertexDeclarationRHI, *ScreenVertexShader, *PixelShader);

			RHISetBlendState(TStaticBlendState<CW_NONE>::GetRHI());
			RHISetRasterizerState(TStaticRasterizerState<FM_Solid,CM_None>::GetRHI());
			RHISetDepthStencilState(TStaticDepthStencilState<true,CF_Always>::GetRHI());

			PixelShader->SetParameters(View);

			const uint32 DownsampledX = FMath::Trunc(View.ViewRect.Min.X / GSceneRenderTargets.GetSmallColorDepthDownsampleFactor());
			const uint32 DownsampledY = FMath::Trunc(View.ViewRect.Min.Y / GSceneRenderTargets.GetSmallColorDepthDownsampleFactor());
			const uint32 DownsampledSizeX = FMath::Trunc(View.ViewRect.Width() / GSceneRenderTargets.GetSmallColorDepthDownsampleFactor());
			const uint32 DownsampledSizeY = FMath::Trunc(View.ViewRect.Height() / GSceneRenderTargets.GetSmallColorDepthDownsampleFactor());

			RHISetViewport(DownsampledX, DownsampledY, 0.0f, DownsampledX + DownsampledSizeX, DownsampledY + DownsampledSizeY, 1.0f);

			DrawRectangle(
				0, 0,
				DownsampledSizeX, DownsampledSizeY,
				View.ViewRect.Min.X, View.ViewRect.Min.Y,
				View.ViewRect.Width(), View.ViewRect.Height(),
				FIntPoint(DownsampledSizeX, DownsampledSizeY),
				GSceneRenderTargets.GetBufferSizeXY(),
				EDRF_UseTriangleOptimization);
		}
	}
}
Beispiel #10
0
	static bool ShouldCache(EShaderPlatform Platform)
	{
		return IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4);
	}
 //@todo-rco: Remove this when reenabling for OpenGL
 static bool ShouldCache( EShaderPlatform Platform )		{
     return IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM5) && !IsOpenGLPlatform(Platform);
 }
bool FGPUSkinPassthroughVertexFactory::ShouldCache(EShaderPlatform Platform, const class FMaterial* Material, const class FShaderType* ShaderType)
{
	// Passhrough is only valid on platforms with Compute Shader support
	return GEnableGPUSkinCache && IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM5) && Super::ShouldCache(Platform, Material, ShaderType);
}
	static bool ShouldCache(EShaderPlatform Platform,const FMaterial* Material,const FVertexFactoryType* VertexFactoryType)
	{
		// Compile for materials that are masked.
		return Material->IsMasked() && IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM3);
	}
	static bool ShouldCache(EShaderPlatform Platform)
	{
		return bEnablePlanarReflectionPrefilter ? IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4) : true;
	}
/** 
* Renders the view family. 
*/
void FDeferredShadingSceneRenderer::Render()
{
	if(!ViewFamily.EngineShowFlags.Rendering)
	{
		return;
	}

	SCOPED_DRAW_EVENT(Scene,DEC_SCENE_ITEMS);

	// Initialize global system textures (pass-through if already initialized).
	GSystemTextures.InitializeTextures();

	// Allocate the maximum scene render target space for the current view family.
	GSceneRenderTargets.Allocate(ViewFamily);

	// Find the visible primitives.
	InitViews();

	const bool bIsWireframe = ViewFamily.EngineShowFlags.Wireframe;

	static const auto ClearMethodCVar = IConsoleManager::Get().FindTConsoleVariableDataInt(TEXT("r.ClearSceneMethod"));
	bool bRequiresRHIClear = true;
	bool bRequiresFarZQuadClear = false;

	if (ClearMethodCVar)
	{
		switch (ClearMethodCVar->GetValueOnRenderThread())
		{
		case 0: // No clear
			{
				bRequiresRHIClear = false;
				bRequiresFarZQuadClear = false;
				break;
			}
		
		case 1: // RHIClear
			{
				bRequiresRHIClear = true;
				bRequiresFarZQuadClear = false;
				break;
			}

		case 2: // Clear using far-z quad
			{
				bRequiresFarZQuadClear = true;
				bRequiresRHIClear = false;
				break;
			}
		}
	}

	// Always perform a full buffer clear for wireframe, shader complexity view mode, and stationary light overlap viewmode.
	if (bIsWireframe || ViewFamily.EngineShowFlags.ShaderComplexity || ViewFamily.EngineShowFlags.StationaryLightOverlap)
	{
		bRequiresRHIClear = true;
	}

	// force using occ queries for wireframe if rendering is parented or frozen in the first view
	check(Views.Num());
	#if (UE_BUILD_SHIPPING || UE_BUILD_TEST)
		const bool bIsViewFrozen = false;
		const bool bHasViewParent = false;
	#else
		const bool bIsViewFrozen = Views[0].State && ((FSceneViewState*)Views[0].State)->bIsFrozen;
		const bool bHasViewParent = Views[0].State && ((FSceneViewState*)Views[0].State)->HasViewParent();
	#endif
	const bool bIsOcclusionTesting = DoOcclusionQueries() && (!bIsWireframe || bIsViewFrozen || bHasViewParent);

	// Dynamic vertex and index buffers need to be committed before rendering.
	FGlobalDynamicVertexBuffer::Get().Commit();
	FGlobalDynamicIndexBuffer::Get().Commit();

	// Notify the FX system that the scene is about to be rendered.
	if (Scene->FXSystem)
	{
		Scene->FXSystem->PreRender();
	}

	// Draw the scene pre-pass / early z pass, populating the scene depth buffer and HiZ
	RenderPrePass();
	
	// Clear scene color buffer if necessary.
	if ( bRequiresRHIClear )
	{
		ClearView();

		// Only clear once.
		bRequiresRHIClear = false;
	}

	// Clear LPVs for all views
	if ( IsFeatureLevelSupported(GRHIShaderPlatform, ERHIFeatureLevel::SM5) )
	{
		ClearLPVs();
	}

	// only temporarily available after early z pass and until base pass
	check(!GSceneRenderTargets.DBufferA);
	check(!GSceneRenderTargets.DBufferB);
	check(!GSceneRenderTargets.DBufferC);

	if(IsDBufferEnabled())
	{
		GSceneRenderTargets.ResolveSceneDepthTexture();

		// Resolve the scene depth to an auxiliary texture when SM3/SM4 is in use. This needs to happen so the auxiliary texture can be bound as a shader parameter
		// while the primary scene depth texture can be bound as the target. Simultaneously binding a single DepthStencil resource as a parameter and target
		// is unsupported in d3d feature level 10.
		if(!(GRHIFeatureLevel >= ERHIFeatureLevel::SM5) && GRHIFeatureLevel >= ERHIFeatureLevel::SM4)
		{
			GSceneRenderTargets.ResolveSceneDepthToAuxiliaryTexture();
		}

		// e.g. ambient cubemaps, ambient occlusion, deferred decals
		for(int32 ViewIndex = 0;ViewIndex < Views.Num();ViewIndex++)
		{	
			SCOPED_CONDITIONAL_DRAW_EVENTF(EventView,Views.Num() > 1, DEC_SCENE_ITEMS, TEXT("View%d"), ViewIndex);
			GCompositionLighting.ProcessBeforeBasePass(Views[ViewIndex]);
		}
	}

	if(bIsWireframe && FDeferredShadingSceneRenderer::ShouldCompositeEditorPrimitives(Views[0]))
	{
		// In Editor we want wire frame view modes to be MSAA for better quality. Resolve will be done with EditorPrimitives
		RHISetRenderTarget(GSceneRenderTargets.GetEditorPrimitivesColor(), GSceneRenderTargets.GetEditorPrimitivesDepth());
		RHIClear(true, FLinearColor(0, 0, 0, 0), true, 0.0f, false, 0, FIntRect());
	}
	else
	{
		// Begin rendering to scene color
		GSceneRenderTargets.BeginRenderingSceneColor(true);
	}

	RenderBasePass();

	if(ViewFamily.EngineShowFlags.VisualizeLightCulling)
	{
		// clear out emissive and baked lighting (not too efficient but simple and only needed for this debug view)
		GSceneRenderTargets.BeginRenderingSceneColor(false);
		RHIClear(true, FLinearColor(0, 0, 0, 0), false, 0, false, 0, FIntRect());
	}

	GSceneRenderTargets.DBufferA.SafeRelease();
	GSceneRenderTargets.DBufferB.SafeRelease();
	GSceneRenderTargets.DBufferC.SafeRelease();

	// only temporarily available after early z pass and until base pass
	check(!GSceneRenderTargets.DBufferA);
	check(!GSceneRenderTargets.DBufferB);
	check(!GSceneRenderTargets.DBufferC);

	if (bRequiresFarZQuadClear)
	{
		// Clears view by drawing quad at maximum Z
		// TODO: if all the platforms have fast color clears, we can replace this with an RHIClear.
		ClearGBufferAtMaxZ();

		bRequiresFarZQuadClear = false;
	}
	
	GSceneRenderTargets.ResolveSceneColor(FResolveRect(0, 0, ViewFamily.FamilySizeX, ViewFamily.FamilySizeY));
	GSceneRenderTargets.ResolveSceneDepthTexture();

	// Resolve the scene depth to an auxiliary texture when SM3/SM4 is in use. This needs to happen so the auxiliary texture can be bound as a shader parameter
	// while the primary scene depth texture can be bound as the target. Simultaneously binding a single DepthStencil resource as a parameter and target
	// is unsupported in d3d feature level 10.
	if(!GSupportsDepthFetchDuringDepthTest)
	{
		GSceneRenderTargets.ResolveSceneDepthToAuxiliaryTexture();
	}
	
	RenderCustomDepthPass();

	// Notify the FX system that opaque primitives have been rendered and we now have a valid depth buffer.
	if (Scene->FXSystem && Views.IsValidIndex(0))
	{
		Scene->FXSystem->PostRenderOpaque(
			Views.GetTypedData(),
			GSceneRenderTargets.GetSceneDepthTexture(),
			GSceneRenderTargets.GetGBufferATexture()
			);
	}

	// Update the quarter-sized depth buffer with the current contents of the scene depth texture.
	// This needs to happen before occlusion tests, which makes use of the small depth buffer.
	UpdateDownsampledDepthSurface();

	// Issue occlusion queries
	// This is done after the downsampled depth buffer is created so that it can be used for issuing queries
	if ( bIsOcclusionTesting )
	{
		BeginOcclusionTests();
	}
	
	// Render lighting.
	if (ViewFamily.EngineShowFlags.Lighting
		&& GRHIFeatureLevel >= ERHIFeatureLevel::SM4
		&& ViewFamily.EngineShowFlags.DeferredLighting
		)
	{
		// Pre-lighting composition lighting stage
		// e.g. deferred decals, blurred GBuffer
		for(int32 ViewIndex = 0;ViewIndex < Views.Num();ViewIndex++)
		{	
			SCOPED_CONDITIONAL_DRAW_EVENTF(EventView,Views.Num() > 1, DEC_SCENE_ITEMS, TEXT("View%d"), ViewIndex);
			GCompositionLighting.ProcessAfterBasePass(Views[ViewIndex]);
		}
		
		// Clear the translucent lighting volumes before we accumulate
		ClearTranslucentVolumeLighting();

		RenderLights();

		InjectAmbientCubemapTranslucentVolumeLighting();

		CompositeIndirectTranslucentVolumeLighting();

		// Filter the translucency lighting volume now that it is complete
		FilterTranslucentVolumeLighting();

		// Clear LPVs for all views
		if ( IsFeatureLevelSupported(GRHIShaderPlatform, ERHIFeatureLevel::SM5) )
		{
			PropagateLPVs();
		}

		// Render reflections that only operate on opaque pixels
		RenderDeferredReflections();

		// Post-lighting composition lighting stage
		// e.g. ambient cubemaps, ambient occlusion, LPV indirect
		for(int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex)
		{	
			SCOPED_CONDITIONAL_DRAW_EVENTF(EventView,Views.Num() > 1, DEC_SCENE_ITEMS, TEXT("View%d"), ViewIndex);
			GCompositionLighting.ProcessLighting(Views[ViewIndex]);
		}
	}

	if( ViewFamily.EngineShowFlags.StationaryLightOverlap &&
		GRHIFeatureLevel >= ERHIFeatureLevel::SM4)
	{
		RenderStationaryLightOverlap();
	}

	FLightShaftsOutput LightShaftOutput;

	// Draw Lightshafts
	if (ViewFamily.EngineShowFlags.LightShafts)
	{
		LightShaftOutput = RenderLightShaftOcclusion();
	}

	// Draw atmosphere
	if(ShouldRenderAtmosphere(ViewFamily))
	{
		if (Scene->AtmosphericFog)
		{
			// Update RenderFlag based on LightShaftTexture is valid or not
			if (LightShaftOutput.bRendered)
			{
				Scene->AtmosphericFog->RenderFlag &= EAtmosphereRenderFlag::E_LightShaftMask;
			}
			else
			{
				Scene->AtmosphericFog->RenderFlag |= EAtmosphereRenderFlag::E_DisableLightShaft;
			}
#if WITH_EDITOR
			if (Scene->bIsEditorScene)
			{
				// Precompute Atmospheric Textures
				Scene->AtmosphericFog->PrecomputeTextures(Views.GetTypedData(), &ViewFamily);
			}
#endif
			RenderAtmosphere(LightShaftOutput);
		}
	}

	// Draw fog.
	if(ShouldRenderFog(ViewFamily))
	{
		RenderFog(LightShaftOutput);
	}

	// No longer needed, release
	LightShaftOutput.LightShaftOcclusion = NULL;

	// Draw translucency.
	if(ViewFamily.EngineShowFlags.Translucency)
	{
		SCOPE_CYCLE_COUNTER(STAT_TranslucencyDrawTime);

		if(ViewFamily.EngineShowFlags.Refraction)
		{
			// to apply refraction effect by distorting the scene color
			RenderDistortion();
		}
		RenderTranslucency();
	}

	if (ViewFamily.EngineShowFlags.LightShafts)
	{
		RenderLightShaftBloom();
	}

	// Resolve the scene color for post processing.
	GSceneRenderTargets.ResolveSceneColor(FResolveRect(0, 0, ViewFamily.FamilySizeX, ViewFamily.FamilySizeY));

#if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
	if(CVarTestUIBlur.GetValueOnRenderThread() > 0)
	{
		Views[0].UIBlurOverrideRectangles.Add(FIntRect(20, 20, 400, 400));
	}
#endif

	// Finish rendering for each view.
	if(ViewFamily.bResolveScene)
	{
		SCOPED_DRAW_EVENT(FinishRendering, DEC_SCENE_ITEMS);
		SCOPE_CYCLE_COUNTER(STAT_FinishRenderViewTargetTime);
		for(int32 ViewIndex = 0;ViewIndex < Views.Num();ViewIndex++)
		{	
			SCOPED_CONDITIONAL_DRAW_EVENTF(EventView, Views.Num() > 1, DEC_SCENE_ITEMS, TEXT("View%d"), ViewIndex);
			FinishRenderViewTarget(&Views[ViewIndex], ViewIndex == (Views.Num() - 1));
		}
	}

	RenderFinish();
}
	/**
	  * Only compile these shaders for post processing domain materials
	  */
	static bool ShouldCache(EShaderPlatform Platform, const FMaterial* Material)
	{
		return (Material->GetMaterialDomain() == MD_PostProcess) && IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM4);
	}
	/**
	  * Makes sure only shaders for materials that are explicitly flagged
	  * as 'UsedAsLightFunction' in the Material Editor gets compiled into
	  * the shader cache.
	  */
	static bool ShouldCache(EShaderPlatform Platform, const FMaterial* Material)
	{
		return Material->IsLightFunction() && IsFeatureLevelSupported(Platform, ERHIFeatureLevel::SM3);
	}