void ProjectorBase::setCameraParams(InputArray _K, InputArray _R, InputArray _T) { Mat K = _K.getMat(), R = _R.getMat(), T = _T.getMat(); CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F); Mat_<float> K_(K); k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2); k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2); k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2); Mat_<float> Rinv = R.t(); rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2); rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2); rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2); Mat_<float> R_Kinv = R * K.inv(); r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2); r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2); r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2); Mat_<float> K_Rinv = K * Rinv; k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2); k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2); k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2); Mat_<float> T_(T.reshape(0, 3)); t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0); }
void ProjectorBase::setCameraParams(const Mat &K, const Mat &R, const Mat &T) { CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F); Mat_<float> K_(K); k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2); k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2); k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2); Mat_<float> Rinv = R.t(); rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2); rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2); rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2); Mat_<float> R_Kinv = R * K.inv(); r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2); r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2); r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2); Mat_<float> K_Rinv = K * Rinv; k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2); k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2); k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2); Mat_<float> T_(T.reshape(0, 3)); t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0); }
gaussian_process::gaussian_process( const Eigen::MatrixXd& domains , const Eigen::VectorXd& targets , const gaussian_process::covariance& covariance , double self_covariance ) : domains_( domains ) , targets_( targets ) , covariance_( covariance ) , self_covariance_( self_covariance ) , offset_( targets.sum() / targets.rows() ) , K_( domains.rows(), domains.rows() ) { if( domains.rows() != targets.rows() ) { COMMA_THROW( comma::exception, "expected " << domains.rows() << " row(s) in targets, got " << targets.rows() << " row(s)" ); } targets_.array() -= offset_; // normalise //use m_K as Kxx + variance*I, then invert it //fill Kxx with values from covariance function //for elements r,c in upper triangle for( std::size_t r = 0; r < std::size_t( domains.rows() ); ++r ) { K_( r, r ) = self_covariance_; const Eigen::VectorXd& row = domains.row( r ); for( std::size_t c = r + 1; c < std::size_t( domains.rows() ); ++c ) { K_( c, r ) = K_( r, c ) = covariance_( row, domains.row( c ) ); } } L_.compute( K_ ); // invert Kxx + variance * I to become (by definition) B alpha_ = L_.solve( targets_ ); }
bool CameraProjection ::write(std::ostream& os) const { double f_x, f_y, c_x, c_y; f_x = K_(0,0); f_y = K_(1,1); c_x = K_(0,2); c_y = K_(1,2); os << f_x << " "; os << f_y << " "; os << c_x << " "; os << c_y << " "; return true; }
void Foam::constHTemperatureFvPatchScalarField::updateCoeffs() { if (this->updated()) { return; } // scalarField K_ = patch().lookupPatchField<volScalarField, scalar>("K"); const fvMesh& mesh = patch().boundaryMesh().mesh(); const solidThermo& thermo = mesh.lookupObject<solidThermo>("thermophysicalProperties"); scalarField K_(thermo.kappa(patch().index())); refValue() = Tinf_; refGrad() = 0.0; valueFraction() = 1.0/(1.0 + K_/max(h_,SMALL)*patch().deltaCoeffs()); mixedFvPatchField<scalar>::updateCoeffs(); }
cv::Point2d PinholeCameraModel::unrectifyPoint(const cv::Point2d& uv_rect) const { assert( initialized() ); if (cache_->distortion_state == NONE) return uv_rect; if (cache_->distortion_state == UNKNOWN) throw Exception("Cannot call unrectifyPoint when distortion is unknown."); assert(cache_->distortion_state == CALIBRATED); /// @todo Make this just call projectPixelTo3dRay followed by cv::projectPoints. But /// cv::projectPoints requires 32-bit float, which is annoying. // Formulae from docs for cv::initUndistortRectifyMap, // http://opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html // x <- (u - c'x) / f'x // y <- (v - c'y) / f'y // c'x, f'x, etc. (primed) come from "new camera matrix" P[0:3, 0:3]. double x = (uv_rect.x - cx() - Tx()) / fx(); double y = (uv_rect.y - cy() - Ty()) / fy(); // [X Y W]^T <- R^-1 * [x y 1]^T double X = R_(0,0)*x + R_(1,0)*y + R_(2,0); double Y = R_(0,1)*x + R_(1,1)*y + R_(2,1); double W = R_(0,2)*x + R_(1,2)*y + R_(2,2); // x' <- X/W, y' <- Y/W double xp = X / W; double yp = Y / W; // x'' <- x'(1+k1*r^2+k2*r^4+k3*r^6) + 2p1*x'*y' + p2(r^2+2x'^2) // y'' <- y'(1+k1*r^2+k2*r^4+k3*r^6) + p1(r^2+2y'^2) + 2p2*x'*y' // where r^2 = x'^2 + y'^2 double r2 = xp*xp + yp*yp; double r4 = r2*r2; double r6 = r4*r2; double a1 = 2*xp*yp; double k1 = D_(0,0), k2 = D_(0,1), p1 = D_(0,2), p2 = D_(0,3), k3 = D_(0,4); double barrel_correction = 1 + k1*r2 + k2*r4 + k3*r6; if (D_.cols == 8) barrel_correction /= (1.0 + D_(0,5)*r2 + D_(0,6)*r4 + D_(0,7)*r6); double xpp = xp*barrel_correction + p1*a1 + p2*(r2+2*(xp*xp)); double ypp = yp*barrel_correction + p1*(r2+2*(yp*yp)) + p2*a1; // map_x(u,v) <- x''fx + cx // map_y(u,v) <- y''fy + cy // cx, fx, etc. come from original camera matrix K. return cv::Point2d(xpp*K_(0,0) + K_(0,2), ypp*K_(1,1) + K_(1,2)); }
bool CameraProjection ::read(std::istream& is) { K_ = Eigen::Matrix3d::Identity(); double f_x, f_y, c_x, c_y; is >> f_x; is >> f_y; is >> c_x; is >> c_y; //populate K with these values K_(0,0) = f_x; K_(1,1) = f_y; K_(0,2) = c_x; K_(1,2) = c_y; K_(2,2) = 1.0; if(K_(0,0) == 0.0 || K_(1,1) == 0.0) //check K is populated { std::cout << " error loading projection pointer\n"; return false; } return true; }
bool PinholeCameraModel::fromCameraInfo(const sensor_msgs::CameraInfo& msg) { // Create our repository of cached data (rectification maps, etc.) if (!cache_) cache_ = boost::make_shared<Cache>(); // Binning = 0 is considered the same as binning = 1 (no binning). uint32_t binning_x = msg.binning_x ? msg.binning_x : 1; uint32_t binning_y = msg.binning_y ? msg.binning_y : 1; // ROI all zeros is considered the same as full resolution. sensor_msgs::RegionOfInterest roi = msg.roi; if (roi.x_offset == 0 && roi.y_offset == 0 && roi.width == 0 && roi.height == 0) { roi.width = msg.width; roi.height = msg.height; } // Update time stamp (and frame_id if that changes for some reason) cam_info_.header = msg.header; // Update any parameters that have changed. The full rectification maps are // invalidated by any change in the calibration parameters OR binning. bool &full_dirty = cache_->full_maps_dirty; full_dirty |= update(msg.height, cam_info_.height); full_dirty |= update(msg.width, cam_info_.width); full_dirty |= update(msg.distortion_model, cam_info_.distortion_model); full_dirty |= updateMat(msg.D, cam_info_.D, D_, 1, msg.D.size()); full_dirty |= updateMat(msg.K, cam_info_.K, K_full_); full_dirty |= updateMat(msg.R, cam_info_.R, R_); full_dirty |= updateMat(msg.P, cam_info_.P, P_full_); full_dirty |= update(binning_x, cam_info_.binning_x); full_dirty |= update(binning_y, cam_info_.binning_y); // The reduced rectification maps are invalidated by any of the above or a // change in ROI. bool &reduced_dirty = cache_->reduced_maps_dirty; reduced_dirty = full_dirty; reduced_dirty |= update(roi.x_offset, cam_info_.roi.x_offset); reduced_dirty |= update(roi.y_offset, cam_info_.roi.y_offset); reduced_dirty |= update(roi.height, cam_info_.roi.height); reduced_dirty |= update(roi.width, cam_info_.roi.width); reduced_dirty |= update(roi.do_rectify, cam_info_.roi.do_rectify); // As is the rectified ROI cache_->rectified_roi_dirty = reduced_dirty; // Figure out how to handle the distortion if (cam_info_.distortion_model == sensor_msgs::distortion_models::PLUMB_BOB || cam_info_.distortion_model == sensor_msgs::distortion_models::RATIONAL_POLYNOMIAL) { cache_->distortion_state = (cam_info_.D.size() == 0 || (cam_info_.D[0] == 0.0)) ? NONE : CALIBRATED; } else cache_->distortion_state = UNKNOWN; // If necessary, create new K_ and P_ adjusted for binning and ROI /// @todo Calculate and use rectified ROI bool adjust_binning = (binning_x > 1) || (binning_y > 1); bool adjust_roi = (roi.x_offset != 0) || (roi.y_offset != 0); if (!adjust_binning && !adjust_roi) { K_ = K_full_; P_ = P_full_; } else { K_ = K_full_; P_ = P_full_; // ROI is in full image coordinates, so change it first if (adjust_roi) { // Move principal point by the offset /// @todo Adjust P by rectified ROI instead K_(0,2) -= roi.x_offset; K_(1,2) -= roi.y_offset; P_(0,2) -= roi.x_offset; P_(1,2) -= roi.y_offset; } if (binning_x > 1) { double scale_x = 1.0 / binning_x; K_(0,0) *= scale_x; K_(0,2) *= scale_x; P_(0,0) *= scale_x; P_(0,2) *= scale_x; P_(0,3) *= scale_x; } if (binning_y > 1) { double scale_y = 1.0 / binning_y; K_(1,1) *= scale_y; K_(1,2) *= scale_y; P_(1,1) *= scale_y; P_(1,2) *= scale_y; P_(1,3) *= scale_y; } } return reduced_dirty; }
void Image3D::GenNewViews(){ char fn[128]; static int no = 0; Eigen::Matrix3d R, R_, K, K_, H; Eigen::Vector3d t; cam.GetK(K); cam.GetRT(R, t); double scale = 2.0; double scale_ = 1.0 / scale, scale2_ = scale_ * scale_; int w_ = cam.W(), w = w_ * scale; int h_ = cam.H(), h = h_ * scale; K_(0, 0) = 1.0 / K(0, 0); K_(0, 1) = 0.0; K_(0, 2) = -K(0, 2) / K(0, 0); K_(1, 0) = 0.0; K_(1, 1) = 1.0 / K(1, 1); K_(1, 2) = -K(1, 2) / K(1, 1); K_(2, 0) = 0.0; K_(2, 1) = 0.0; K_(2, 2) = 1.0; //K_ = K.inverse(); //Eigen::Vector3d axis(R(axis, 0), R(axis, 1), R(axis, 2)); Eigen::Vector3d axis(R(ParamParser::axis, 0), R(ParamParser::axis, 1), R(ParamParser::axis, 2)); std::vector<double> angle; for (int i = ParamParser::view_count / 2; i > 0; --i){ angle.push_back(-ParamParser::rot_angle * i); } for (int i = 0; i <= ParamParser::view_count / 2; ++i){ angle.push_back(ParamParser::rot_angle * i); } std::cout << "Generating views#: "; for (int k = 0; k < ParamParser::view_count; ++k){ std::cout << k << " "; std::vector<int> texIndex_(w_ * h_, -1); cv::Mat img(h_, w_, CV_8UC3); RotationMatrix(angle[k] / 180 * M_PI, axis, R_); H = K * (R_ * K_); std::vector<Eigen::Vector2d> xy(w * h); double minu, minv, maxu, maxv; minu = minv = 1000000000.0; maxu = maxv = -1000000000.0; for (int i = 0; i < w * h; ++i){ int u = i % w - w * scale2_; int v = i / w - h * scale2_; double wf = H(2, 0) * u + H(2, 1) * v + H(2, 2); double uf = (H(0, 0) * u + H(0, 1) * v + H(0, 2)) / wf; double vf = (H(1, 0) * u + H(1, 1) * v + H(1, 2)) / wf; if (CheckRange(uf, vf, w_, h_)){ minu = min(minu, u + w * scale2_); minv = min(minv, v + h * scale2_); maxu = max(maxu, u + w * scale2_); maxv = max(maxv, v + h * scale2_); } xy[i] = Eigen::Vector2d(uf, vf); } double centerx = (maxu + minu) * 0.5; double centery = (maxv + minv) * 0.5; double offsetx = centerx - w * scale2_; double offsety = centery - h * scale2_; for (int i = 0; i < w * h; ++i){ double uf = xy[i][0]; double vf = xy[i][1]; double u11 = floor(uf), v11 = floor(vf); double u22 = ceil(uf), v22 = ceil(vf); int u = int(i % w - offsetx + 0.5); int v = int(i / w - offsety + 0.5); if (CheckRange(u11, v11, w_, h_) && CheckRange(u22, v22, w_, h_) && CheckRange(u, v, w_, h_)){ if (fabs(u11 - u22) <= 1e-9 && fabs(v11 - v22) <= 1e-9){ img.at<cv::Vec3b>(v, u) = image.at<cv::Vec3b>(v11, u11); texIndex_[v * w_ + u] = (v11 * w_ + u11); } else{ cv::Vec3b rgb11 = image.at<cv::Vec3b>(v11, u11); cv::Vec3b rgb12 = image.at<cv::Vec3b>(v22, u11); cv::Vec3b rgb21 = image.at<cv::Vec3b>(v11, u22); cv::Vec3b rgb22 = image.at<cv::Vec3b>(v22, u22); cv::Vec3b rgb; if (fabs(u11 - u22) <= 1e-9){ double s1 = (vf - v11) / (v22 - v11); double s2 = 1 - s1; rgb[0] = uchar(rgb11[0] * s2 + rgb12[0] * s1); rgb[1] = uchar(rgb11[1] * s2 + rgb12[1] * s1); rgb[2] = uchar(rgb11[2] * s2 + rgb12[2] * s1); } else if (fabs(v11 - v22) <= 1e-9){ double s1 = (uf - u11) / (u22 - u11); double s2 = 1 - s1; rgb[0] = uchar(rgb11[0] * s2 + rgb21[0] * s1); rgb[1] = uchar(rgb11[1] * s2 + rgb21[1] * s1); rgb[2] = uchar(rgb11[2] * s2 + rgb21[2] * s1); } else{ double s1 = (u22 - uf) * (v22 - vf); double s2 = (uf - u11) * (v22 - vf); double s3 = (u22 - uf) * (vf - v11); double s4 = (uf - u11) * (vf - v11); rgb[0] = uchar(rgb11[0] * s1 + rgb21[0] * s2 + rgb12[0] * s3 + rgb22[0] * s4); rgb[1] = uchar(rgb11[1] * s1 + rgb21[1] * s2 + rgb12[1] * s3 + rgb22[1] * s4); rgb[2] = uchar(rgb11[2] * s1 + rgb21[2] * s2 + rgb12[2] * s3 + rgb22[2] * s4); } img.at<cv::Vec3b>(v, u) = rgb; texIndex_[v * w_ + u] = (int(vf + 0.5) * w_ + int(uf + 0.5)); } } } texIndex.push_back(texIndex_); sprintf_s(fn, "%s/proj%d_%d.jpg", path.c_str(), frmNo, k); cv::imwrite(fn, img); } std::cout << std::endl; }
void Foam::kineticTheoryModel::solve(const volTensorField& gradUat) { if(kineticTheory_) { //if (!kineticTheory_) //{ // return; //} //const scalar sqrtPi = sqrt(mathematicalConstant::pi); if(Berzi_) { Info << "Berzi Model is used" << endl; } else{ const scalar sqrtPi = sqrt(constant::mathematical::pi); surfaceScalarField phi = 1.5*rhoa_*phia_*fvc::interpolate(alpha_); volTensorField dU = gradUat.T();//fvc::grad(Ua_); volSymmTensorField D = symm(dU); // NB, drag = K*alpha*beta, // (the alpha and beta has been extracted from the drag function for // numerical reasons) volScalarField Ur = mag(Ua_ - Ub_); volScalarField betaPrim = alpha_*(1.0 - alpha_)*draga_.K(Ur); // Calculating the radial distribution function (solid volume fraction is // limited close to the packing limit, but this needs improvements) // The solution is higly unstable close to the packing limit. gs0_ = radialModel_->g0 ( min(max(alpha_, 1e-6), alphaMax_ - 0.01), alphaMax_ ); // particle pressure - coefficient in front of Theta (Eq. 3.22, p. 45) volScalarField PsCoeff = granularPressureModel_->granularPressureCoeff ( alpha_, gs0_, rhoa_, e_ ); // 'thermal' conductivity (Table 3.3, p. 49) kappa_ = conductivityModel_->kappa(alpha_, Theta_, gs0_, rhoa_, da_, e_); // particle viscosity (Table 3.2, p.47) mua_ = viscosityModel_->mua(alpha_, Theta_, gs0_, rhoa_, da_, e_); dimensionedScalar Tsmall ( "small", dimensionSet(0 , 2 ,-2 ,0 , 0, 0, 0), 1.0e-6 ); dimensionedScalar TsmallSqrt = sqrt(Tsmall); volScalarField ThetaSqrt = sqrt(Theta_); // dissipation (Eq. 3.24, p.50) volScalarField gammaCoeff = 12.0*(1.0 - sqr(e_))*sqr(alpha_)*rhoa_*gs0_*(1.0/da_)*ThetaSqrt/sqrtPi; // Eq. 3.25, p. 50 Js = J1 - J2 volScalarField J1 = 3.0*betaPrim; volScalarField J2 = 0.25*sqr(betaPrim)*da_*sqr(Ur) /(max(alpha_, 1e-6)*rhoa_*sqrtPi*(ThetaSqrt + TsmallSqrt)); // bulk viscosity p. 45 (Lun et al. 1984). lambda_ = (4.0/3.0)*sqr(alpha_)*rhoa_*da_*gs0_*(1.0+e_)*ThetaSqrt/sqrtPi; // stress tensor, Definitions, Table 3.1, p. 43 volSymmTensorField tau = 2.0*mua_*D + (lambda_ - (2.0/3.0)*mua_)*tr(D)*I; if (!equilibrium_) { // construct the granular temperature equation (Eq. 3.20, p. 44) // NB. note that there are two typos in Eq. 3.20 // no grad infront of Ps // wrong sign infront of laplacian fvScalarMatrix ThetaEqn ( fvm::ddt(1.5*alpha_*rhoa_, Theta_) + fvm::div(phi, Theta_, "div(phi,Theta)") == fvm::SuSp(-((PsCoeff*I) && dU), Theta_) + (tau && dU) + fvm::laplacian(kappa_, Theta_, "laplacian(kappa,Theta)") + fvm::Sp(-gammaCoeff, Theta_) + fvm::Sp(-J1, Theta_) + fvm::Sp(J2/(Theta_ + Tsmall), Theta_) ); ThetaEqn.relax(); ThetaEqn.solve(); } else { // equilibrium => dissipation == production // Eq. 4.14, p.82 volScalarField K1 = 2.0*(1.0 + e_)*rhoa_*gs0_; volScalarField K3 = 0.5*da_*rhoa_* ( (sqrtPi/(3.0*(3.0-e_))) *(1.0 + 0.4*(1.0 + e_)*(3.0*e_ - 1.0)*alpha_*gs0_) +1.6*alpha_*gs0_*(1.0 + e_)/sqrtPi ); volScalarField K2 = 4.0*da_*rhoa_*(1.0 + e_)*alpha_*gs0_/(3.0*sqrtPi) - 2.0*K3/3.0; volScalarField K4 = 12.0*(1.0 - sqr(e_))*rhoa_*gs0_/(da_*sqrtPi); volScalarField trD = tr(D); volScalarField tr2D = sqr(trD); volScalarField trD2 = tr(D & D); volScalarField t1 = K1*alpha_ + rhoa_; volScalarField l1 = -t1*trD; volScalarField l2 = sqr(t1)*tr2D; volScalarField l3 = 4.0*K4*max(alpha_, 1e-6)*(2.0*K3*trD2 + K2*tr2D); Theta_ = sqr((l1 + sqrt(l2 + l3))/(2.0*(alpha_ + 1.0e-4)*K4)); } Theta_.max(1.0e-15); Theta_.min(1.0e+3); volScalarField pf = frictionalStressModel_->frictionalPressure ( alpha_, alphaMinFriction_, alphaMax_, Fr_, eta_, p_ ); PsCoeff += pf/(Theta_+Tsmall); PsCoeff.min(1.0e+10); PsCoeff.max(-1.0e+10); // update particle pressure pa_ = PsCoeff*Theta_; // frictional shear stress, Eq. 3.30, p. 52 volScalarField muf = frictionalStressModel_->muf ( alpha_, alphaMax_, pf, D, phi_ ); // add frictional stress mua_ += muf; //-AO Inconsistency of equations const scalar constSMALL = 0.001; //1.e-06; mua_ /= (fvc::average(alpha_) + scalar(constSMALL)); lambda_ /= (fvc::average(alpha_) + scalar(constSMALL)); //-AO mua_.min(1.0e+2); mua_.max(0.0); Info<< "kinTheory: max(Theta) = " << max(Theta_).value() << endl; volScalarField ktn = mua_/rhoa_; Info<< "kinTheory: min(nua) = " << min(ktn).value() << ", max(nua) = " << max(ktn).value() << endl; Info<< "kinTheory: min(pa) = " << min(pa_).value() << ", max(pa) = " << max(pa_).value() << endl; //} /* volScalarField& Foam::kineticTheoryModel::ppMagf(const volScalarField& alphaUpdate) { volScalarField alpha = alphaUpdate; gs0_ = radialModel_->g0(min(alpha, alphaMinFriction_), alphaMax_); gs0Prime_ = radialModel_->g0prime(min(alpha, alphaMinFriction_), alphaMax_); // Computing ppMagf ppMagf_ = Theta_*granularPressureModel_->granularPressureCoeffPrime ( alpha, gs0_, gs0Prime_, rhoa_, e_ ); volScalarField ppMagfFriction = frictionalStressModel_->frictionalPressurePrime ( alpha, alphaMinFriction_, alphaMax_, Fr_, eta_, p_ ); // NOTE: this might not be appropriate if J&J model is used (verify) forAll(alpha, cellI) { if(alpha[cellI] >= alphaMinFriction_.value()) { ppMagf_[cellI] = ppMagfFriction[cellI]; } } ppMagf_.correctBoundaryConditions(); return ppMagf_; } */} } else if(mofidiedKineticTheoryPU_) { //if (!mofidiedKineticTheoryPU_) //{ // return; //} Info << " " << endl; Info << "Modified kinetic theory model - Chialvo-Sundaresan " << endl; bool testMKTimp(false); if(kineticTheoryProperties_.found("testMKTimp")) { testMKTimp = true; Info << "Modified kinetic theory model - testing implementation (chi=1,eEff=e, ksi=1) " << endl; } bool diluteCorrection(false); if(kineticTheoryProperties_.found("diluteCorrection")) { testMKTimp = false; diluteCorrection = true; Info << "Modified kinetic theory model - Only dilute correction " << endl; } bool denseCorrection(false); if(kineticTheoryProperties_.found("denseCorrection")) { testMKTimp = false; diluteCorrection = false; denseCorrection = true; Info << "Modified kinetic theory model - Only dense correction " << endl; } bool frictionBlending(false); if(kineticTheoryProperties_.found("frictionBlending")) { frictionBlending = true; Info << "Modified kinetic theory model - Include Friction Blneding " << endl; } if(decomposePp_) Info << "Decompose Pp into Pp - PpStar " << endl; bool verboseMKT(false); if(kineticTheoryProperties_.found("verboseMKT")) verboseMKT = true; const scalar Pi = constant::mathematical::pi; const scalar sqrtPi = sqrt(constant::mathematical::pi); const scalar constSMALL = 1.e-06; //1.e-06; 1.e-03; // Read from dictionary muFric_ = readScalar(kineticTheoryProperties_.lookup("muFriction")); eEff_ = e_ - 3.0 / 2.0 * muFric_ * exp(-3.0 * muFric_); // If only test MKT implementation if(testMKTimp) eEff_ = e_; alphaf_ = readScalar(kineticTheoryProperties_.lookup("alphaDiluteInertialUpperLimit")); alphac_ = readScalar(kineticTheoryProperties_.lookup("alphaCritical")); alphad_ = readScalar(kineticTheoryProperties_.lookup("alphaDelta")); upsilons_ = readScalar(kineticTheoryProperties_.lookup("yieldStressRatio")); // Model parameters dimensionedScalar I0(0.2); // Table 2, p.15 dimensionedScalar const_alpha(0.36); // Table 2, p.15 dimensionedScalar const_alpha1(0.06); // Table 2, p.15 // Calculating the radial distribution function (solid volume fraction is // limited close to the packing limit, but this needs improvements) // The solution is higly unstable close to the packing limit. gs0_ = radialModel_->g0jamming ( Ua_.mesh(), //max(alpha, scalar(constSMALL)), min(max(alpha_, scalar(constSMALL)),alphaMax_ - 0.01), //changed by YG alphaMax_, alphad_, ///changed by YG alphac_ ); // particle pressure - coefficient in front of T (Eq. 1, p. 3) volScalarField PsCoeff // -> rho_p * H ( granularPressureModel_->granularPressureCoeff ( alpha_, gs0_, rhoa_, e_ ) ); PsCoeff.max(1.0e-15); // PsCoeff.min(1.0e+10); // PsCoeff.max(-1.0e+10); // Solid kinetic+collisional viscosity mua_ = nu_k^star + nu_c^star, Eq. 8,9, p.4 // If Garzo-Dufty viscosity is used (viscosity is dimensionless), there is issue with dimension of mu1 mua_ = viscosityModel_->mua(alpha_, Theta_, gs0_, rhoa_, da_, e_); // Solid bulk viscosity mua_ = nu_k^star + nu_c^star, Eq. 10, p.4 // If Garzo-Dufty viscosity is used (viscosity is dimensionless), there is issue with dimension of mu1 // Create dimensionedScalar dimensionedScalar viscDim("zero", dimensionSet(1, -1, -1, 0, 0), 1.0); lambda_ = viscDim * 384.0 / ( 25.0 * Pi ) * ( 1.0 + e_ ) * alpha_ * alpha_ * gs0_ ; //lambda_ = (4.0/3.0)*sqr(alpha_)*rhoa_*da_*gs0_*(1.0+e_)*sqrt(Theta_)/sqrtPi; volScalarField ratioBulkShearVisc(lambda_/(mua_+lambda_)); // J Eq.5, p3 volScalarField J_( 5.0 * sqrtPi / 96.0 * ( mua_ + lambda_ ) / viscDim ); // Dimension issue // K Eq.6, p3 volScalarField K_(12.0/sqrtPi*alpha_*alpha_*gs0_*(1.0-e_*e_)); // K' Eq.26, p8 modified dissipation due to friction volScalarField Kmod_(K_*(1.0 - eEff_*eEff_)/(1.0 - e_*e_)); // M Eq.30 p.9 volScalarField M_( max( J_ / max( Kmod_, constSMALL) , const_alpha1 / sqrt( max(alphac_ - alpha_, constSMALL) ) ) ); // Shear stress rate tensor volTensorField dU(gradUat.T()); volSymmTensorField D(symm(dU)); // Shear stress rate (gammaDot) volScalarField gammaDot(sqrt(2.*magSqr(D))); dimensionedScalar gammaDotSmall("gammaDotSmall",dimensionSet(0 , 0 , -1 , 0 , 0, 0, 0), constSMALL); // Dilute inertia temperature Eq.24, p8 volScalarField ThetaDil_ = ( J_ / max ( Kmod_ , 1e-1 ) ) * ( gammaDot * da_ ) * ( gammaDot * da_ ); // Dense inertia temperature Eq.27, p8 // volScalarField ThetaDense_ = const_alpha1 * ( gammaDot * da_ ) * ( gammaDot * da_ ) // / sqrt( max(alphac_ - alpha_, constSMALL) ); volScalarField ThetaDense_ = const_alpha1 * ( gammaDot * da_ ) * ( gammaDot * da_ ) / sqrt( max(alphac_ - alpha_, alphad_) ) + max(alpha_ - (alphac_ - alphad_),0.0) * 0.5 *const_alpha1*( gammaDot * da_ ) * ( gammaDot * da_)*pow(alphad_,-1.5); // Theta Theta_ = max(ThetaDil_,ThetaDense_) ; if(testMKTimp || diluteCorrection) Theta_ = ThetaDil_; if(denseCorrection) Theta_ = ThetaDense_; // Limit granular temperature Theta_.max(1.0e-15); Theta_.min(1.0e+3); // Particle pressure pa_ = PsCoeff * Theta_; if(frictionBlending) { /* volScalarField pf = frictionalStressModel_->frictionalPressure ( alpha_, alphaMinFriction_-0.001, alphaMax_, Fr_, eta_, p_ ); pa_ = pa_ + pf; */ // pa_ =pa_ + dimensionedScalar("1e24", dimensionSet(1, -1, -2, 0, 0), Fr_.value())*pow(max(alpha_ - (alphaMinFriction_), scalar(0)), 2/3); pa_ =pa_ + dimensionedScalar("5810", dimensionSet(1, 0, -2, 0, 0), 581.0)/da_*pow(max(alpha_ - (alphaMinFriction_-0.0), scalar(0)), 2.0/3.0); // pa_ =pa_ + dimensionedScalar("4.7e9", dimensionSet(1, -1, -2, 0, 0), 4.7e9)*pow(max(alpha_ - (alphaMinFriction_-0.0), scalar(0)), 1.56); // forAll(alpha_, cellI) // { // if(alpha_[cellI] >= (alphaMinFriction_.value()-0.00001)) // { // pa_[cellI] = pa_[cellI] + 581.0/da_.value()*pow(alpha_[cellI] - (alphaMinFriction_.value()-0.00001), 2.0/3.0); // } // } } // Psi Eq.32, p.12 dimensionedScalar psi(1.0 + 3.0/10.0*pow((1.0-e_*e_),-1.5)*(1.0-exp(-8.0*muFric_))); if(testMKTimp) psi = 1.0; // Shear stress ratio in dilute regime, Eq.33, p.12 dimensionedScalar paSmall("paSmall",dimensionSet(1, -1, -2, 0, 0), constSMALL); volScalarField inertiaNumber( gammaDot * da_ / sqrt( (pa_ + paSmall) / rhoa_ ) ); // Modified inertia number Eq.35, p.13 volScalarField modInertiaNumber( inertiaNumber / max( alpha_, constSMALL ) ); // Model parameters volScalarField chi( 1.0 / ( pow( I0 / max( modInertiaNumber,constSMALL ) , 1.5 ) + 1.0 )); if(testMKTimp || diluteCorrection) chi = max( modInertiaNumber,constSMALL ) / max( modInertiaNumber,constSMALL ) ; if(denseCorrection) chi= modInertiaNumber - modInertiaNumber; // Beta + Sigma_tau Eq.49 p.14 volScalarField beta(alpha_ * psi * J_ * sqrt( K_ /( max ( (Kmod_ * ( PsCoeff / rhoa_)), constSMALL ) ) ) ); volScalarField sigmaTau( const_alpha / max( beta, constSMALL ) + ( 1 - const_alpha / max( beta, constSMALL ) ) * chi); // Sigma_gamma Eq.51 p.14 volScalarField sigmaGamma( beta * sqrt( PsCoeff/rhoa_ ) / max( ( Kmod_ * M_ ), constSMALL ) * sigmaTau); // dissipation volScalarField gammaCoeff ( // van Wachem (Eq. 3.24, p.50) 12.0*(1.0 - sqr(e_))*sqr(alpha_)*rhoa_*gs0_*(1.0/da_)*ThetaSqrt/sqrtPi // Chialvo & Sundaresan Eq.50 p.14 //rhoa_ / da_ * Kmod_ * Theta_ * sqrt(Theta_) * sigmaGamma rhoa_ / da_ * Kmod_ * sqrt(Theta_) * sigmaGamma ); // Blending function volScalarField func_B( const_alpha + ( beta-const_alpha ) * chi ); // Shear stress ratio upsilon_ = upsilons_ * (1 - chi) + func_B * modInertiaNumber; // Shear stress volSymmTensorField S( D - 1./3.*tr(D)*I ); volSymmTensorField hatS( 2. * S / max( gammaDot, gammaDotSmall ) ); // Shear stress based on pressure and ratio tau_ = pa_ * upsilon_ * hatS; // Viscosity mua_ = ( pa_ * upsilon_ ) / (max( gammaDot, gammaDotSmall )) ; // Divide by alpha (to be consistent with OpenFOAM implementation) /* mua_ /= (fvc::average(alpha_) + scalar(0.001)); tau_ /= (fvc::average(alpha_) + scalar(0.001)); lambda_ /= (fvc::average(alpha_) + scalar(0.001)); */ mua_ /= max(alpha_, scalar(constSMALL)); // Limit mua mua_.min(3e+02); mua_.max(0.0); // Limit lambda lambda_ = mua_ * ratioBulkShearVisc; // Limit shear stress tau_ = mua_ * gammaDot * hatS; // tau_ /= max(alpha_, scalar(constSMALL)); // lambda_ /= max(alpha_, scalar(constSMALL)); //mua_ /= max(alpha_, scalar(constSMALL)); //tau_ /= max(alpha_, scalar(constSMALL)); //lambda_ /= max(alpha_, scalar(constSMALL)); if(verboseMKT) { #include "verboseMKT.H" } //-AO, YG - Decompose particle pressure, Sundar's idea if(decomposePp_) { pa_ /= (fvc::average(alpha_) + scalar(0.001)); //pa_.correctBoundaryConditions(); pa_.max(1.0e-15); } } else { return; } }
/** Estimate monocular visual odometry. * @param std::vector<Match> vector with matches * @param Eigen::Matrix3f& (output) estimated rotation matrix * @param Eigen::Vector3f& (output) estimated translation vector * @param bool show optical flow (true), don't show otherwise * @param std::vector<Match> output vector with all inlier matches * @param std::vector<Eigen::Vector3f> output vector with 3D points, triangulated from all inlier matches * @return bool true is motion successfully estimated, false otherwise */ bool MonoOdometer5::estimateMotion(std::vector<Match> matches, Eigen::Matrix3f &R, Eigen::Vector3f &t, bool showOpticalFlow, std::vector<Match> &inlierMatches, std::vector<Eigen::Vector3f> &points3D) { counter_total++; // check number of correspondences int N = matches.size(); if(N < param_odometerMinNumberMatches_) { // too few matches to compute F std::cout << "------------ NOT ENOUGH MATCHES" << std::endl; R = Eigen::Matrix3f::Identity(); t << 0.0, 0.0, 0.0; std::cout << "SINGULARITIES / TOTAL: " << counter_sing << " / " << counter_total << std::endl; return false; } std::vector<cv::Point2f> prevPoints = getPrevPoints(matches); std::vector<cv::Point2f> currPoints = getCurrPoints(matches); cv::Mat E, Rcv, tcv, mask; double focal = K_(0, 0); cv::Point2f pp(K_(0, 2), K_(1, 2)); E = cv::findEssentialMat(currPoints, prevPoints, focal, pp, cv::RANSAC, 0.999, 1.0, mask); if(!testE(E)) { // too few matches to compute F std::cout << "------------ SINGULARITY IN ESSENTIAL MATRIX" << std::endl; counter_sing++; R = Eigen::Matrix3f::Identity(); t << 0.0, 0.0, 0.0; std::cout << "SINGULARITIES / TOTAL: " << counter_sing << " / " << counter_total << std::endl; return false; } cv::recoverPose(E, currPoints, prevPoints, Rcv, tcv, focal, pp, mask); R << Rcv.at<double>(0,0), Rcv.at<double>(0,1), Rcv.at<double>(0,2), Rcv.at<double>(1,0), Rcv.at<double>(1,1), Rcv.at<double>(1,2), Rcv.at<double>(2,0), Rcv.at<double>(2,1), Rcv.at<double>(2,2); t << tcv.at<double>(0,0), tcv.at<double>(1,0), tcv.at<double>(2,0); // save inlier and outlier matches std::vector<Match> outlierMatches; for(int i=0; i<matches.size(); i++) { if(mask.at<char>(i, 0) == 1) { inlierMatches.push_back(matches[i]); } else { outlierMatches.push_back(matches[i]); } } if(showOpticalFlow) { //std::cout << "R" << std::endl << R << std::endl; //std::cout << "t" << std::endl << t << std::endl; cv::Mat image(1024, 768, CV_8UC3, cv::Scalar(0,0,0)); cv::Mat of1 = highlightOpticalFlow(image, inlierMatches, cv::Scalar(0, 255, 0)); cv::Mat of2 = highlightOpticalFlow(of1, outlierMatches, cv::Scalar(0, 0, 255)); cv::namedWindow("Optical flow", CV_WINDOW_AUTOSIZE); cv::imshow("Optical flow", of1); cv::waitKey(10); } //std::cout << "SINGULARITIES / TOTAL: " << counter_sing << " / " << counter_total << std::endl; return true; }