void AveragedTurbine<Mu>::element_time_derivative( bool compute_jacobian, AssemblyContext& context, CachedValues& /* cache */ ) { #ifdef GRINS_USE_GRVY_TIMERS this->_timer->BeginTimer("AveragedTurbine::element_time_derivative"); #endif // Element Jacobian * quadrature weights for interior integration const std::vector<libMesh::Real> &JxW = context.get_element_fe(this->_flow_vars.u())->get_JxW(); // The shape functions at interior quadrature points. const std::vector<std::vector<libMesh::Real> >& u_phi = context.get_element_fe(this->_flow_vars.u())->get_phi(); const std::vector<libMesh::Point>& u_qpoint = context.get_element_fe(this->_flow_vars.u())->get_xyz(); // The number of local degrees of freedom in each variable const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size(); // The subvectors and submatrices we need to fill: libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.u()); // R_{u},{u} libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.v()); // R_{u},{v} libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.u()); // R_{v},{u} libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.v()); // R_{v},{v} libMesh::DenseSubMatrix<libMesh::Number> &Kus = context.get_elem_jacobian(this->_flow_vars.u(), this->fan_speed_var()); // R_{u},{s} libMesh::DenseSubMatrix<libMesh::Number> &Ksu = context.get_elem_jacobian(this->fan_speed_var(), this->_flow_vars.u()); // R_{s},{u} libMesh::DenseSubMatrix<libMesh::Number> &Kvs = context.get_elem_jacobian(this->_flow_vars.v(), this->fan_speed_var()); // R_{v},{s} libMesh::DenseSubMatrix<libMesh::Number> &Ksv = context.get_elem_jacobian(this->fan_speed_var(), this->_flow_vars.v()); // R_{s},{v} libMesh::DenseSubMatrix<libMesh::Number> &Kss = context.get_elem_jacobian(this->fan_speed_var(), this->fan_speed_var()); // R_{s},{s} libMesh::DenseSubMatrix<libMesh::Number>* Kwu = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kwv = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kww = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kuw = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kvw = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Ksw = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kws = NULL; libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u()); // R_{u} libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v()); // R_{v} libMesh::DenseSubVector<libMesh::Number>* Fw = NULL; libMesh::DenseSubVector<libMesh::Number> &Fs = context.get_elem_residual(this->fan_speed_var()); // R_{s} if( this->mesh_dim(context) == 3 ) { Kuw = &context.get_elem_jacobian(this->_flow_vars.u(), this->_flow_vars.w()); // R_{u},{w} Kvw = &context.get_elem_jacobian(this->_flow_vars.v(), this->_flow_vars.w()); // R_{v},{w} Kwu = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.u()); // R_{w},{u} Kwv = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.v()); // R_{w},{v} Kww = &context.get_elem_jacobian(this->_flow_vars.w(), this->_flow_vars.w()); // R_{w},{w} Fw = &context.get_elem_residual(this->_flow_vars.w()); // R_{w} Ksw = &context.get_elem_jacobian(this->fan_speed_var(), this->_flow_vars.w()); // R_{s},{w} Kws = &context.get_elem_jacobian(this->_flow_vars.w(), this->fan_speed_var()); // R_{w},{s} Fw = &context.get_elem_residual(this->_flow_vars.w()); // R_{w} } unsigned int n_qpoints = context.get_element_qrule().n_points(); for (unsigned int qp=0; qp != n_qpoints; qp++) { // Compute the solution at the old Newton iterate. libMesh::Number u, v, s; u = context.interior_value(this->_flow_vars.u(), qp); v = context.interior_value(this->_flow_vars.v(), qp); s = context.interior_value(this->fan_speed_var(), qp); libMesh::NumberVectorValue U(u,v); if (this->mesh_dim(context) == 3) U(2) = context.interior_value(this->_flow_vars.w(), qp); // w libMesh::NumberVectorValue U_B_1; libMesh::NumberVectorValue F; libMesh::NumberTensorValue dFdU; libMesh::NumberTensorValue* dFdU_ptr = compute_jacobian ? &dFdU : NULL; libMesh::NumberVectorValue dFds; libMesh::NumberVectorValue* dFds_ptr = compute_jacobian ? &dFds : NULL; if (!this->compute_force(u_qpoint[qp], context.time, U, s, U_B_1, F, dFdU_ptr, dFds_ptr)) continue; libMesh::Real jac = JxW[qp]; // Using this dot product to derive torque *depends* on s=1 // and U_B_1 corresponding to 1 rad/sec base velocity; this // means that the length of U_B_1 is equal to radius. // F is the force on the air, so *negative* F is the force on // the turbine. Fs(0) -= U_B_1 * F * jac; if (compute_jacobian) { Kss(0,0) -= U_B_1 * dFds * jac; for (unsigned int j=0; j != n_u_dofs; j++) { libMesh::Real jac_j = JxW[qp] * u_phi[j][qp]; for (unsigned int d=0; d != 3; ++d) { Ksu(0,j) -= jac_j * U_B_1(d) * dFdU(d,0); Ksv(0,j) -= jac_j * U_B_1(d) * dFdU(d,1); } if (this->mesh_dim(context) == 3) { for (unsigned int d=0; d != 3; ++d) (*Ksw)(0,j) -= jac_j * U_B_1(d) * dFdU(d,2); } } // End j dof loop } for (unsigned int i=0; i != n_u_dofs; i++) { const libMesh::Number jac_i = jac * u_phi[i][qp]; Fu(i) += F(0)*jac_i; Fv(i) += F(1)*jac_i; if( this->mesh_dim(context) == 3 ) (*Fw)(i) += F(2)*jac_i; if( compute_jacobian ) { Kus(i,0) += dFds(0) * jac_i; Kvs(i,0) += dFds(1) * jac_i; if( this->mesh_dim(context) == 3 ) (*Kws)(i,0) += dFds(2) * jac_i; for (unsigned int j=0; j != n_u_dofs; j++) { const libMesh::Number jac_ij = jac_i * u_phi[j][qp]; Kuu(i,j) += jac_ij * dFdU(0,0); Kuv(i,j) += jac_ij * dFdU(0,1); Kvu(i,j) += jac_ij * dFdU(1,0); Kvv(i,j) += jac_ij * dFdU(1,1); if( this->mesh_dim(context) == 3 ) { (*Kuw)(i,j) += jac_ij * dFdU(0,2); (*Kvw)(i,j) += jac_ij * dFdU(1,2); (*Kwu)(i,j) += jac_ij * dFdU(2,0); (*Kwv)(i,j) += jac_ij * dFdU(2,1); (*Kww)(i,j) += jac_ij * dFdU(2,2); } } } } } #ifdef GRINS_USE_GRVY_TIMERS this->_timer->EndTimer("AveragedTurbine::element_time_derivative"); #endif return; }
void ElasticCableRayleighDamping<StressStrainLaw>::damping_residual( bool compute_jacobian, AssemblyContext& context, CachedValues& /*cache*/) { // First, do the "mass" contribution this->mass_residual_impl(compute_jacobian, context, &libMesh::FEMContext::interior_rate, &libMesh::DiffContext::get_elem_solution_rate_derivative, _mu_factor); // Now do the stiffness contribution const unsigned int n_u_dofs = context.get_dof_indices(this->_disp_vars.u()).size(); const std::vector<libMesh::Real> &JxW = this->get_fe(context)->get_JxW(); // Residuals that we're populating libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_disp_vars.u()); libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_disp_vars.v()); libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(this->_disp_vars.w()); //Grab the Jacobian matrix as submatrices //libMesh::DenseMatrix<libMesh::Number> &K = context.get_elem_jacobian(); libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.u()); libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.v()); libMesh::DenseSubMatrix<libMesh::Number> &Kuw = context.get_elem_jacobian(this->_disp_vars.u(),this->_disp_vars.w()); libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.u()); libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.v()); libMesh::DenseSubMatrix<libMesh::Number> &Kvw = context.get_elem_jacobian(this->_disp_vars.v(),this->_disp_vars.w()); libMesh::DenseSubMatrix<libMesh::Number> &Kwu = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.u()); libMesh::DenseSubMatrix<libMesh::Number> &Kwv = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.v()); libMesh::DenseSubMatrix<libMesh::Number> &Kww = context.get_elem_jacobian(this->_disp_vars.w(),this->_disp_vars.w()); unsigned int n_qpoints = context.get_element_qrule().n_points(); // All shape function gradients are w.r.t. master element coordinates const std::vector<std::vector<libMesh::Real> >& dphi_dxi = this->get_fe(context)->get_dphidxi(); const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( this->_disp_vars.u() ); const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( this->_disp_vars.v() ); const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( this->_disp_vars.w() ); const libMesh::DenseSubVector<libMesh::Number>& dudt_coeffs = context.get_elem_solution_rate( this->_disp_vars.u() ); const libMesh::DenseSubVector<libMesh::Number>& dvdt_coeffs = context.get_elem_solution_rate( this->_disp_vars.v() ); const libMesh::DenseSubVector<libMesh::Number>& dwdt_coeffs = context.get_elem_solution_rate( this->_disp_vars.w() ); // Need these to build up the covariant and contravariant metric tensors const std::vector<libMesh::RealGradient>& dxdxi = this->get_fe(context)->get_dxyzdxi(); const unsigned int dim = 1; // The cable dimension is always 1 for this physics for (unsigned int qp=0; qp != n_qpoints; qp++) { // Gradients are w.r.t. master element coordinates libMesh::Gradient grad_u, grad_v, grad_w; libMesh::Gradient dgradu_dt, dgradv_dt, dgradw_dt; for( unsigned int d = 0; d < n_u_dofs; d++ ) { libMesh::RealGradient u_gradphi( dphi_dxi[d][qp] ); grad_u += u_coeffs(d)*u_gradphi; grad_v += v_coeffs(d)*u_gradphi; grad_w += w_coeffs(d)*u_gradphi; dgradu_dt += dudt_coeffs(d)*u_gradphi; dgradv_dt += dvdt_coeffs(d)*u_gradphi; dgradw_dt += dwdt_coeffs(d)*u_gradphi; } libMesh::RealGradient grad_x( dxdxi[qp](0) ); libMesh::RealGradient grad_y( dxdxi[qp](1) ); libMesh::RealGradient grad_z( dxdxi[qp](2) ); libMesh::TensorValue<libMesh::Real> a_cov, a_contra, A_cov, A_contra; libMesh::Real lambda_sq = 0; this->compute_metric_tensors( qp, *(this->get_fe(context)), context, grad_u, grad_v, grad_w, a_cov, a_contra, A_cov, A_contra, lambda_sq ); // Compute stress tensor libMesh::TensorValue<libMesh::Real> tau; ElasticityTensor C; this->_stress_strain_law.compute_stress_and_elasticity(dim,a_contra,a_cov,A_contra,A_cov,tau,C); libMesh::Real jac = JxW[qp]; for (unsigned int i=0; i != n_u_dofs; i++) { libMesh::RealGradient u_gradphi( dphi_dxi[i][qp] ); libMesh::Real u_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradu_dt(0)*u_gradphi(0); libMesh::Real v_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradv_dt(0)*u_gradphi(0); libMesh::Real w_diag_factor = _lambda_factor*this->_A*jac*tau(0,0)*dgradw_dt(0)*u_gradphi(0); const libMesh::Real C1 = _lambda_factor*this->_A*jac*C(0,0,0,0)*u_gradphi(0); const libMesh::Real gamma_u = (grad_x(0)+grad_u(0)); const libMesh::Real gamma_v = (grad_y(0)+grad_v(0)); const libMesh::Real gamma_w = (grad_z(0)+grad_w(0)); const libMesh::Real x_term = C1*gamma_u; const libMesh::Real y_term = C1*gamma_v; const libMesh::Real z_term = C1*gamma_w; const libMesh::Real dt_term = dgradu_dt(0)*gamma_u + dgradv_dt(0)*gamma_v + dgradw_dt(0)*gamma_w; Fu(i) += u_diag_factor + x_term*dt_term; Fv(i) += v_diag_factor + y_term*dt_term; Fw(i) += w_diag_factor + z_term*dt_term; } if( compute_jacobian ) { for(unsigned int i=0; i != n_u_dofs; i++) { libMesh::RealGradient u_gradphi_I( dphi_dxi[i][qp] ); for(unsigned int j=0; j != n_u_dofs; j++) { libMesh::RealGradient u_gradphi_J( dphi_dxi[j][qp] ); libMesh::Real common_factor = _lambda_factor*this->_A*jac*u_gradphi_I(0); const libMesh::Real diag_term_1 = common_factor*tau(0,0)*u_gradphi_J(0)*context.get_elem_solution_rate_derivative(); const libMesh::Real dgamma_du = ( u_gradphi_J(0)*(grad_x(0)+grad_u(0)) ); const libMesh::Real dgamma_dv = ( u_gradphi_J(0)*(grad_y(0)+grad_v(0)) ); const libMesh::Real dgamma_dw = ( u_gradphi_J(0)*(grad_z(0)+grad_w(0)) ); const libMesh::Real diag_term_2_factor = common_factor*C(0,0,0,0)*context.get_elem_solution_derivative(); Kuu(i,j) += diag_term_1 + dgradu_dt(0)*diag_term_2_factor*dgamma_du; Kuv(i,j) += dgradu_dt(0)*diag_term_2_factor*dgamma_dv; Kuw(i,j) += dgradu_dt(0)*diag_term_2_factor*dgamma_dw; Kvu(i,j) += dgradv_dt(0)*diag_term_2_factor*dgamma_du; Kvv(i,j) += diag_term_1 + dgradv_dt(0)*diag_term_2_factor*dgamma_dv; Kvw(i,j) += dgradv_dt(0)*diag_term_2_factor*dgamma_dw; Kwu(i,j) += dgradw_dt(0)*diag_term_2_factor*dgamma_du; Kwv(i,j) += dgradw_dt(0)*diag_term_2_factor*dgamma_dv; Kww(i,j) += diag_term_1 + dgradw_dt(0)*diag_term_2_factor*dgamma_dw; const libMesh::Real C1 = common_factor*C(0,0,0,0); const libMesh::Real gamma_u = (grad_x(0)+grad_u(0)); const libMesh::Real gamma_v = (grad_y(0)+grad_v(0)); const libMesh::Real gamma_w = (grad_z(0)+grad_w(0)); const libMesh::Real x_term = C1*gamma_u; const libMesh::Real y_term = C1*gamma_v; const libMesh::Real z_term = C1*gamma_w; const libMesh::Real ddtterm_du = u_gradphi_J(0)*(gamma_u*context.get_elem_solution_rate_derivative() + dgradu_dt(0)*context.get_elem_solution_derivative()); const libMesh::Real ddtterm_dv = u_gradphi_J(0)*(gamma_v*context.get_elem_solution_rate_derivative() + dgradv_dt(0)*context.get_elem_solution_derivative()); const libMesh::Real ddtterm_dw = u_gradphi_J(0)*(gamma_w*context.get_elem_solution_rate_derivative() + dgradw_dt(0)*context.get_elem_solution_derivative()); Kuu(i,j) += x_term*ddtterm_du; Kuv(i,j) += x_term*ddtterm_dv; Kuw(i,j) += x_term*ddtterm_dw; Kvu(i,j) += y_term*ddtterm_du; Kvv(i,j) += y_term*ddtterm_dv; Kvw(i,j) += y_term*ddtterm_dw; Kwu(i,j) += z_term*ddtterm_du; Kwv(i,j) += z_term*ddtterm_dv; Kww(i,j) += z_term*ddtterm_dw; const libMesh::Real dt_term = dgradu_dt(0)*gamma_u + dgradv_dt(0)*gamma_v + dgradw_dt(0)*gamma_w; // Here, we're missing derivatives of C(0,0,0,0) w.r.t. strain // Nonzero for hyperelasticity models const libMesh::Real dxterm_du = C1*u_gradphi_J(0)*context.get_elem_solution_derivative(); const libMesh::Real dyterm_dv = dxterm_du; const libMesh::Real dzterm_dw = dxterm_du; Kuu(i,j) += dxterm_du*dt_term; Kvv(i,j) += dyterm_dv*dt_term; Kww(i,j) += dzterm_dw*dt_term; } // end j-loop } // end i-loop } // end if(compute_jacobian) } // end qp loop }
void ElasticMembranePressure<PressureType>::element_time_derivative ( bool compute_jacobian, AssemblyContext & context ) { unsigned int u_var = this->_disp_vars.u(); unsigned int v_var = this->_disp_vars.v(); unsigned int w_var = this->_disp_vars.w(); const unsigned int n_u_dofs = context.get_dof_indices(u_var).size(); const std::vector<libMesh::Real> &JxW = this->get_fe(context)->get_JxW(); const std::vector<std::vector<libMesh::Real> >& u_phi = this->get_fe(context)->get_phi(); const MultiphysicsSystem & system = context.get_multiphysics_system(); unsigned int u_dot_var = system.get_second_order_dot_var(u_var); unsigned int v_dot_var = system.get_second_order_dot_var(v_var); unsigned int w_dot_var = system.get_second_order_dot_var(w_var); libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(u_dot_var); libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(v_dot_var); libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(w_dot_var); libMesh::DenseSubMatrix<libMesh::Number>& Kuv = context.get_elem_jacobian(u_dot_var,v_var); libMesh::DenseSubMatrix<libMesh::Number>& Kuw = context.get_elem_jacobian(u_dot_var,w_var); libMesh::DenseSubMatrix<libMesh::Number>& Kvu = context.get_elem_jacobian(v_dot_var,u_var); libMesh::DenseSubMatrix<libMesh::Number>& Kvw = context.get_elem_jacobian(v_dot_var,w_var); libMesh::DenseSubMatrix<libMesh::Number>& Kwu = context.get_elem_jacobian(w_dot_var,u_var); libMesh::DenseSubMatrix<libMesh::Number>& Kwv = context.get_elem_jacobian(w_dot_var,v_var); unsigned int n_qpoints = context.get_element_qrule().n_points(); // All shape function gradients are w.r.t. master element coordinates const std::vector<std::vector<libMesh::Real> >& dphi_dxi = this->get_fe(context)->get_dphidxi(); const std::vector<std::vector<libMesh::Real> >& dphi_deta = this->get_fe(context)->get_dphideta(); const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( u_var ); const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( v_var ); const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( w_var ); const std::vector<libMesh::RealGradient>& dxdxi = this->get_fe(context)->get_dxyzdxi(); const std::vector<libMesh::RealGradient>& dxdeta = this->get_fe(context)->get_dxyzdeta(); for (unsigned int qp=0; qp != n_qpoints; qp++) { // sqrt(det(a_cov)), a_cov being the covariant metric tensor of undeformed body libMesh::Real sqrt_a = sqrt( dxdxi[qp]*dxdxi[qp]*dxdeta[qp]*dxdeta[qp] - dxdxi[qp]*dxdeta[qp]*dxdeta[qp]*dxdxi[qp] ); // Gradients are w.r.t. master element coordinates libMesh::Gradient grad_u, grad_v, grad_w; for( unsigned int d = 0; d < n_u_dofs; d++ ) { libMesh::RealGradient u_gradphi( dphi_dxi[d][qp], dphi_deta[d][qp] ); grad_u += u_coeffs(d)*u_gradphi; grad_v += v_coeffs(d)*u_gradphi; grad_w += w_coeffs(d)*u_gradphi; } libMesh::RealGradient dudxi( grad_u(0), grad_v(0), grad_w(0) ); libMesh::RealGradient dudeta( grad_u(1), grad_v(1), grad_w(1) ); libMesh::RealGradient A_1 = dxdxi[qp] + dudxi; libMesh::RealGradient A_2 = dxdeta[qp] + dudeta; libMesh::RealGradient A_3 = A_1.cross(A_2); // Compute pressure at this quadrature point libMesh::Real press = (*_pressure)(context,qp); // Small optimization libMesh::Real p_over_sa = press/sqrt_a; /* The formula here is actually P*\sqrt{\frac{A}{a}}*A_3, where A_3 is a unit vector But, |A_3| = \sqrt{A} so the normalizing part kills the \sqrt{A} in the numerator, so we can leave it out and *not* normalize A_3. */ libMesh::RealGradient traction = p_over_sa*A_3; for (unsigned int i=0; i != n_u_dofs; i++) { // Small optimization libMesh::Real phi_times_jac = u_phi[i][qp]*JxW[qp]; Fu(i) -= traction(0)*phi_times_jac; Fv(i) -= traction(1)*phi_times_jac; Fw(i) -= traction(2)*phi_times_jac; if( compute_jacobian ) { for (unsigned int j=0; j != n_u_dofs; j++) { libMesh::RealGradient u_gradphi( dphi_dxi[j][qp], dphi_deta[j][qp] ); const libMesh::Real dt0_dv = p_over_sa*(u_gradphi(0)*A_2(2) - A_1(2)*u_gradphi(1)); const libMesh::Real dt0_dw = p_over_sa*(A_1(1)*u_gradphi(1) - u_gradphi(0)*A_2(1)); const libMesh::Real dt1_du = p_over_sa*(A_1(2)*u_gradphi(1) - u_gradphi(0)*A_2(2)); const libMesh::Real dt1_dw = p_over_sa*(u_gradphi(0)*A_2(0) - A_1(0)*u_gradphi(1)); const libMesh::Real dt2_du = p_over_sa*(u_gradphi(0)*A_2(1) - A_1(1)*u_gradphi(1)); const libMesh::Real dt2_dv = p_over_sa*(A_1(0)*u_gradphi(1) - u_gradphi(0)*A_2(0)); Kuv(i,j) -= dt0_dv*phi_times_jac; Kuw(i,j) -= dt0_dw*phi_times_jac; Kvu(i,j) -= dt1_du*phi_times_jac; Kvw(i,j) -= dt1_dw*phi_times_jac; Kwu(i,j) -= dt2_du*phi_times_jac; Kwv(i,j) -= dt2_dv*phi_times_jac; } } } } }
void VelocityPenalty<Mu>::element_time_derivative( bool compute_jacobian, AssemblyContext& context, CachedValues& /* cache */ ) { #ifdef GRINS_USE_GRVY_TIMERS this->_timer->BeginTimer("VelocityPenalty::element_time_derivative"); #endif // Element Jacobian * quadrature weights for interior integration const std::vector<libMesh::Real> &JxW = context.get_element_fe(this->_flow_vars.u_var())->get_JxW(); // The shape functions at interior quadrature points. const std::vector<std::vector<libMesh::Real> >& u_phi = context.get_element_fe(this->_flow_vars.u_var())->get_phi(); const std::vector<libMesh::Point>& u_qpoint = context.get_element_fe(this->_flow_vars.u_var())->get_xyz(); // The number of local degrees of freedom in each variable const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u_var()).size(); // The subvectors and submatrices we need to fill: libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.u_var()); // R_{u},{u} libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.v_var()); // R_{u},{v} libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.u_var()); // R_{v},{u} libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.v_var()); // R_{v},{v} libMesh::DenseSubMatrix<libMesh::Number>* Kwu = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kwv = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kww = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kuw = NULL; libMesh::DenseSubMatrix<libMesh::Number>* Kvw = NULL; libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u_var()); // R_{u} libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v_var()); // R_{v} libMesh::DenseSubVector<libMesh::Number>* Fw = NULL; if( this->_dim == 3 ) { Kuw = &context.get_elem_jacobian(this->_flow_vars.u_var(), this->_flow_vars.w_var()); // R_{u},{w} Kvw = &context.get_elem_jacobian(this->_flow_vars.v_var(), this->_flow_vars.w_var()); // R_{v},{w} Kwu = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.u_var()); // R_{w},{u} Kwv = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.v_var()); // R_{w},{v} Kww = &context.get_elem_jacobian(this->_flow_vars.w_var(), this->_flow_vars.w_var()); // R_{w},{w} Fw = &context.get_elem_residual(this->_flow_vars.w_var()); // R_{w} } unsigned int n_qpoints = context.get_element_qrule().n_points(); for (unsigned int qp=0; qp != n_qpoints; qp++) { // Compute the solution at the old Newton iterate. libMesh::Number u, v; u = context.interior_value(this->_flow_vars.u_var(), qp); v = context.interior_value(this->_flow_vars.v_var(), qp); libMesh::NumberVectorValue U(u,v); if (this->_dim == 3) U(2) = context.interior_value(this->_flow_vars.w_var(), qp); // w libMesh::NumberVectorValue F; libMesh::NumberTensorValue dFdU; libMesh::NumberTensorValue* dFdU_ptr = compute_jacobian ? &dFdU : NULL; if (!this->compute_force(u_qpoint[qp], context, U, F, dFdU_ptr)) continue; const libMesh::Real jac = JxW[qp]; for (unsigned int i=0; i != n_u_dofs; i++) { const libMesh::Number jac_i = jac * u_phi[i][qp]; Fu(i) += F(0)*jac_i; Fv(i) += F(1)*jac_i; if( this->_dim == 3 ) { (*Fw)(i) += F(2)*jac_i; } if( compute_jacobian ) { for (unsigned int j=0; j != n_u_dofs; j++) { const libMesh::Number jac_ij = context.get_elem_solution_derivative() * jac_i * u_phi[j][qp]; Kuu(i,j) += jac_ij * dFdU(0,0); Kuv(i,j) += jac_ij * dFdU(0,1); Kvu(i,j) += jac_ij * dFdU(1,0); Kvv(i,j) += jac_ij * dFdU(1,1); if( this->_dim == 3 ) { (*Kuw)(i,j) += jac_ij * dFdU(0,2); (*Kvw)(i,j) += jac_ij * dFdU(1,2); (*Kwu)(i,j) += jac_ij * dFdU(2,0); (*Kwv)(i,j) += jac_ij * dFdU(2,1); (*Kww)(i,j) += jac_ij * dFdU(2,2); } } } } } #ifdef GRINS_USE_GRVY_TIMERS this->_timer->EndTimer("VelocityPenalty::element_time_derivative"); #endif return; }
// The matrix assembly function to be called at each time step to // prepare for the linear solve. void assemble_solid (EquationSystems& es, const std::string& system_name) { //es.print_info(); #if LOG_ASSEMBLE_PERFORMANCE PerfLog perf_log("Assemble"); perf_log.push("assemble stiffness"); #endif // Get a reference to the auxiliary system //TransientExplicitSystem& aux_system = es.get_system<TransientExplicitSystem>("Newton-update"); // It is a good idea to make sure we are assembling // the proper system. libmesh_assert (system_name == "Newton-update"); // Get a constant reference to the mesh object. const MeshBase& mesh = es.get_mesh(); // The dimension that we are running const unsigned int dim = mesh.mesh_dimension(); // Get a reference to the Stokes system object. TransientLinearImplicitSystem & newton_update = es.get_system<TransientLinearImplicitSystem> ("Newton-update"); // New TransientLinearImplicitSystem & last_non_linear_soln = es.get_system<TransientLinearImplicitSystem> ("Last-non-linear-soln"); TransientLinearImplicitSystem & fluid_system_vel = es.get_system<TransientLinearImplicitSystem> ("fluid-system-vel"); #if VELOCITY TransientLinearImplicitSystem& velocity = es.get_system<TransientLinearImplicitSystem>("velocity-system"); #endif #if UN_MINUS_ONE TransientLinearImplicitSystem & unm1 = es.get_system<TransientLinearImplicitSystem> ("unm1-system"); #endif test(62); const System & ref_sys = es.get_system("Reference-Configuration"); test(63); // Numeric ids corresponding to each variable in the system const unsigned int u_var = last_non_linear_soln .variable_number ("u"); const unsigned int v_var = last_non_linear_soln .variable_number ("v"); const unsigned int w_var = last_non_linear_soln .variable_number ("w"); #if INCOMPRESSIBLE const unsigned int p_var = last_non_linear_soln .variable_number ("p"); #endif #if FLUID_P_CONST const unsigned int m_var = fluid_system_vel.variable_number ("fluid_M"); std::vector<unsigned int> dof_indices_m; #endif // Get the Finite Element type for "u". Note this will be // the same as the type for "v". FEType fe_vel_type = last_non_linear_soln.variable_type(u_var); test(64); #if INCOMPRESSIBLE // Get the Finite Element type for "p". FEType fe_pres_type = last_non_linear_soln .variable_type(p_var); #endif // Build a Finite Element object of the specified type for // the velocity variables. AutoPtr<FEBase> fe_vel (FEBase::build(dim, fe_vel_type)); #if INCOMPRESSIBLE // Build a Finite Element object of the specified type for // the pressure variables. AutoPtr<FEBase> fe_pres (FEBase::build(dim, fe_pres_type)); #endif // A Gauss quadrature rule for numerical integration. // Let the \p FEType object decide what order rule is appropriate. QGauss qrule (dim, fe_vel_type.default_quadrature_order()); // Tell the finite element objects to use our quadrature rule. fe_vel->attach_quadrature_rule (&qrule); test(65); // AutoPtr<QBase> qrule2(fe_vel_type.default_quadrature_rule(dim)); // fe_vel->attach_quadrature_rule (qrule2.get()); #if INCOMPRESSIBLE fe_pres->attach_quadrature_rule (&qrule); #endif // The element Jacobian * quadrature weight at each integration point. const std::vector<Real>& JxW = fe_vel->get_JxW(); // The element shape functions evaluated at the quadrature points. const std::vector<std::vector<Real> >& phi = fe_vel->get_phi(); // The element shape function gradients for the velocity // variables evaluated at the quadrature points. const std::vector<std::vector<RealGradient> >& dphi = fe_vel->get_dphi(); test(66); #if INCOMPRESSIBLE // The element shape functions for the pressure variable // evaluated at the quadrature points. const std::vector<std::vector<Real> >& psi = fe_pres->get_phi(); #endif const std::vector<Point>& coords = fe_vel->get_xyz(); // A reference to the \p DofMap object for this system. The \p DofMap // object handles the index translation from node and element numbers // to degree of freedom numbers. We will talk more about the \p DofMap // in future examples. const DofMap & dof_map = last_non_linear_soln .get_dof_map(); #if FLUID_P_CONST const DofMap & dof_map_fluid = fluid_system_vel .get_dof_map(); #endif // K will be the jacobian // F will be the Residual DenseMatrix<Number> Ke; DenseVector<Number> Fe; DenseSubMatrix<Number> Kuu(Ke), Kuv(Ke), Kuw(Ke), Kvu(Ke), Kvv(Ke), Kvw(Ke), Kwu(Ke), Kwv(Ke), Kww(Ke); #if INCOMPRESSIBLE DenseSubMatrix<Number> Kup(Ke),Kvp(Ke),Kwp(Ke), Kpu(Ke), Kpv(Ke), Kpw(Ke), Kpp(Ke); #endif; DenseSubVector<Number> Fu(Fe), Fv(Fe), Fw(Fe); #if INCOMPRESSIBLE DenseSubVector<Number> Fp(Fe); #endif // This vector will hold the degree of freedom indices for // the element. These define where in the global system // the element degrees of freedom get mapped. std::vector<unsigned int> dof_indices; std::vector<unsigned int> dof_indices_u; std::vector<unsigned int> dof_indices_v; std::vector<unsigned int> dof_indices_w; #if INCOMPRESSIBLE std::vector<unsigned int> dof_indices_p; #endif #if INERTIA test(67); const unsigned int a_var = last_non_linear_soln.variable_number ("a"); const unsigned int b_var = last_non_linear_soln.variable_number ("b"); const unsigned int c_var = last_non_linear_soln.variable_number ("c"); //B block DenseSubMatrix<Number> Kua(Ke), Kub(Ke), Kuc(Ke), Kva(Ke), Kvb(Ke), Kvc(Ke), Kwa(Ke), Kwb(Ke), Kwc(Ke); //C block DenseSubMatrix<Number> Kau(Ke), Kav(Ke), Kaw(Ke), Kbu(Ke), Kbv(Ke), Kbw(Ke), Kcu(Ke), Kcv(Ke), Kcw(Ke); //D block DenseSubMatrix<Number> Kaa(Ke), Kab(Ke), Kac(Ke), Kba(Ke), Kbb(Ke), Kbc(Ke), Kca(Ke), Kcb(Ke), Kcc(Ke); DenseSubVector<Number> Fa(Fe), Fb(Fe), Fc(Fe); std::vector<unsigned int> dof_indices_a; std::vector<unsigned int> dof_indices_b; std::vector<unsigned int> dof_indices_c; test(68); #endif DenseMatrix<Real> stiff; DenseVector<Real> res; VectorValue<Gradient> grad_u_mat; VectorValue<Gradient> grad_u_mat_old; const Real dt = es.parameters.get<Real>("dt"); const Real progress = es.parameters.get<Real>("progress"); #if PORO DenseVector<Real> p_stiff; DenseVector<Real> p_res; PoroelasticConfig material(dphi,psi); #endif // Just calculate jacobian contribution when we need to material.calculate_linearized_stiffness = true; MeshBase::const_element_iterator el = mesh.active_local_elements_begin(); const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end(); for ( ; el != end_el; ++el) { test(69); const Elem* elem = *el; dof_map.dof_indices (elem, dof_indices); dof_map.dof_indices (elem, dof_indices_u, u_var); dof_map.dof_indices (elem, dof_indices_v, v_var); dof_map.dof_indices (elem, dof_indices_w, w_var); #if INCOMPRESSIBLE dof_map.dof_indices (elem, dof_indices_p, p_var); #endif const unsigned int n_dofs = dof_indices.size(); const unsigned int n_u_dofs = dof_indices_u.size(); const unsigned int n_v_dofs = dof_indices_v.size(); const unsigned int n_w_dofs = dof_indices_w.size(); #if INCOMPRESSIBLE const unsigned int n_p_dofs = dof_indices_p.size(); #endif #if FLUID_P_CONST dof_map_fluid.dof_indices (elem, dof_indices_m, m_var); #endif //elem->print_info(); fe_vel->reinit (elem); #if INCOMPRESSIBLE fe_pres->reinit (elem); #endif Ke.resize (n_dofs, n_dofs); Fe.resize (n_dofs); Kuu.reposition (u_var*n_u_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs); Kuv.reposition (u_var*n_u_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs); Kuw.reposition (u_var*n_u_dofs, w_var*n_u_dofs, n_u_dofs, n_w_dofs); #if INCOMPRESSIBLE Kup.reposition (u_var*n_u_dofs, p_var*n_u_dofs, n_u_dofs, n_p_dofs); #endif Kvu.reposition (v_var*n_v_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs); Kvv.reposition (v_var*n_v_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs); Kvw.reposition (v_var*n_v_dofs, w_var*n_v_dofs, n_v_dofs, n_w_dofs); #if INCOMPRESSIBLE Kvp.reposition (v_var*n_v_dofs, p_var*n_v_dofs, n_v_dofs, n_p_dofs); #endif Kwu.reposition (w_var*n_w_dofs, u_var*n_w_dofs, n_w_dofs, n_u_dofs); Kwv.reposition (w_var*n_w_dofs, v_var*n_w_dofs, n_w_dofs, n_v_dofs); Kww.reposition (w_var*n_w_dofs, w_var*n_w_dofs, n_w_dofs, n_w_dofs); #if INCOMPRESSIBLE Kwp.reposition (w_var*n_w_dofs, p_var*n_w_dofs, n_w_dofs, n_p_dofs); Kpu.reposition (p_var*n_u_dofs, u_var*n_u_dofs, n_p_dofs, n_u_dofs); Kpv.reposition (p_var*n_u_dofs, v_var*n_u_dofs, n_p_dofs, n_v_dofs); Kpw.reposition (p_var*n_u_dofs, w_var*n_u_dofs, n_p_dofs, n_w_dofs); Kpp.reposition (p_var*n_u_dofs, p_var*n_u_dofs, n_p_dofs, n_p_dofs); #endif Fu.reposition (u_var*n_u_dofs, n_u_dofs); Fv.reposition (v_var*n_u_dofs, n_v_dofs); Fw.reposition (w_var*n_u_dofs, n_w_dofs); #if INCOMPRESSIBLE Fp.reposition (p_var*n_u_dofs, n_p_dofs); #endif #if INERTIA //B block Kua.reposition (u_var*n_u_dofs, 3*n_u_dofs + n_p_dofs, n_u_dofs, n_u_dofs); Kub.reposition (u_var*n_u_dofs, 4*n_u_dofs + n_p_dofs, n_u_dofs, n_v_dofs); Kuc.reposition (u_var*n_u_dofs, 5*n_u_dofs + n_p_dofs, n_u_dofs, n_w_dofs); Kva.reposition (v_var*n_v_dofs, 3*n_u_dofs + n_p_dofs, n_v_dofs, n_u_dofs); Kvb.reposition (v_var*n_v_dofs, 4*n_u_dofs + n_p_dofs, n_v_dofs, n_v_dofs); Kvc.reposition (v_var*n_v_dofs, 5*n_u_dofs + n_p_dofs, n_v_dofs, n_w_dofs); Kwa.reposition (w_var*n_w_dofs, 3*n_u_dofs + n_p_dofs, n_w_dofs, n_u_dofs); Kwb.reposition (w_var*n_w_dofs, 4*n_u_dofs + n_p_dofs, n_w_dofs, n_v_dofs); Kwc.reposition (w_var*n_w_dofs, 5*n_u_dofs + n_p_dofs, n_w_dofs, n_w_dofs); test(701); //C block Kau.reposition (3*n_u_dofs + n_p_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs); Kav.reposition (3*n_u_dofs + n_p_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs); Kaw.reposition (3*n_u_dofs + n_p_dofs, w_var*n_u_dofs, n_u_dofs, n_w_dofs); Kbu.reposition (4*n_u_dofs + n_p_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs); Kbv.reposition (4*n_u_dofs + n_p_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs); Kbw.reposition (4*n_u_dofs + n_p_dofs, w_var*n_v_dofs, n_v_dofs, n_w_dofs); Kcu.reposition (5*n_u_dofs + n_p_dofs, u_var*n_w_dofs, n_w_dofs, n_u_dofs); Kcv.reposition (5*n_u_dofs + n_p_dofs, v_var*n_w_dofs, n_w_dofs, n_v_dofs); Kcw.reposition (5*n_u_dofs + n_p_dofs, w_var*n_w_dofs, n_w_dofs, n_w_dofs); //D block Kaa.reposition (3*n_u_dofs + n_p_dofs, 3*n_u_dofs + n_p_dofs, n_u_dofs, n_u_dofs); Kab.reposition (3*n_u_dofs + n_p_dofs, 4*n_u_dofs + n_p_dofs, n_u_dofs, n_v_dofs); Kac.reposition (3*n_u_dofs + n_p_dofs, 5*n_u_dofs + n_p_dofs, n_u_dofs, n_w_dofs); Kba.reposition (4*n_u_dofs + n_p_dofs, 3*n_u_dofs + n_p_dofs, n_v_dofs, n_u_dofs); Kbb.reposition (4*n_u_dofs + n_p_dofs, 4*n_u_dofs + n_p_dofs, n_v_dofs, n_v_dofs); Kbc.reposition (4*n_u_dofs + n_p_dofs, 5*n_u_dofs + n_p_dofs, n_v_dofs, n_w_dofs); Kca.reposition (5*n_u_dofs + n_p_dofs, 3*n_u_dofs + n_p_dofs, n_w_dofs, n_u_dofs); Kcb.reposition (5*n_u_dofs + n_p_dofs, 4*n_u_dofs + n_p_dofs, n_w_dofs, n_v_dofs); Kcc.reposition (5*n_u_dofs + n_p_dofs, 5*n_u_dofs + n_p_dofs, n_w_dofs, n_w_dofs); Fa.reposition (3*n_u_dofs + n_p_dofs, n_u_dofs); Fb.reposition (4*n_u_dofs + n_p_dofs, n_v_dofs); Fc.reposition (5*n_u_dofs + n_p_dofs, n_w_dofs); dof_map.dof_indices (elem, dof_indices_a, a_var); dof_map.dof_indices (elem, dof_indices_b, b_var); dof_map.dof_indices (elem, dof_indices_c, c_var); test(71); #endif System& aux_system = es.get_system<System>("Reference-Configuration"); std::vector<unsigned int> undefo_index; std::vector<unsigned int> vel_index; for (unsigned int qp=0; qp<qrule.n_points(); qp++) { Point rX; for (unsigned int l=0; l<n_u_dofs; l++) { rX(0) += phi[l][qp]*ref_sys.current_local_solution->el(dof_indices_u[l]); rX(1) += phi[l][qp]*ref_sys.current_local_solution->el(dof_indices_v[l]); rX(2) += phi[l][qp]*ref_sys.current_local_solution->el(dof_indices_w[l]); } #if INERTIA || DT test(72); Real rho_s=15; Point current_x; for (unsigned int l=0; l<n_u_dofs; l++) { current_x(0) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_u[l]); current_x(1) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_v[l]); current_x(2) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_w[l]); } Point old_x; for (unsigned int l=0; l<n_u_dofs; l++) { old_x(0) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_u[l]); old_x(1) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_v[l]); old_x(2) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_w[l]); } #if INERTIA Point old_vel; for (unsigned int l=0; l<n_u_dofs; l++) { old_vel(0) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_a[l]); old_vel(1) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_b[l]); old_vel(2) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_c[l]); } Point current_vel; for (unsigned int l=0; l<n_u_dofs; l++) { current_vel(0) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_a[l]); current_vel(1) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_b[l]); current_vel(2) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_c[l]); } #endif #if UN_MINUS_ONE Point unm1_x; for (unsigned int l=0; l<n_u_dofs; l++) { unm1_x(0) += phi[l][qp]*unm1.old_local_solution->el(dof_indices_u[l]); unm1_x(1) += phi[l][qp]*unm1.old_local_solution->el(dof_indices_v[l]); unm1_x(2) += phi[l][qp]*unm1.old_local_solution->el(dof_indices_w[l]); } #endif Point value_acc; Point value_acc_alt; #if DT for (unsigned int d = 0; d < dim; ++d) { value_acc_alt(d) = (rho_s)*( ((current_x(d)-rX(d))-(old_x(d)-rX(d)))-((old_x(d)-rX(d))- (unm1_x(d)-rX(d))) ); value_acc(d) = (rho_s)*((current_x(d))-2*(old_x(d))+ (unm1_x(d))); value_acc(d) = (rho_s)*((current_x(d))-(old_x(d))); } #endif Point res_1; Point res_2; #if INERTIA for (unsigned int d = 0; d < dim; ++d) { res_1(d) = (rho_s)*((current_vel(d))-(old_vel(d))); res_2(d) = current_x(d)-dt*current_vel(d)-old_x(d); } /* std::cout<<" current_vel "<<current_vel<<std::endl; std::cout<<" res_1 "<<res_1<<std::endl; std::cout<<" res_2 "<<res_2<<std::endl; */ #endif test(73); #endif Number p_solid = 0.; #if MOVING_MESH grad_u_mat(0) = grad_u_mat(1) = grad_u_mat(2) = 0; for (unsigned int d = 0; d < dim; ++d) { std::vector<Number> u_undefo; //Fills the vector di with the global degree of freedom indices for the element. :dof_indicies aux_system.get_dof_map().dof_indices(elem, undefo_index,d); aux_system.current_local_solution->get(undefo_index, u_undefo); for (unsigned int l = 0; l != n_u_dofs; l++) grad_u_mat(d).add_scaled(dphi[l][qp], u_undefo[l]); } #endif //#include "fixed_mesh_in_solid_assemble_code.txt" #if INCOMPRESSIBLE for (unsigned int l=0; l<n_p_dofs; l++) { p_solid += psi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_p[l]); } #endif #if INCOMPRESSIBLE Real m=0; Real p_fluid=0; #if FLUID_VEL for (unsigned int l=0; l<n_p_dofs; l++) { p_fluid += psi[l][qp]*fluid_system_vel.current_local_solution->el(dof_indices_p[l]); } //As outlined in Chappel p=(p_curr-p_old)/2 Real p_fluid_old=0; for (unsigned int l=0; l<n_p_dofs; l++) { p_fluid_old += psi[l][qp]*fluid_system_vel.old_local_solution->el(dof_indices_p[l]); } p_fluid=0.5*p_fluid+0.5*p_fluid_old; Real m_old=0; #if FLUID_P_CONST for (unsigned int l=0; l<n_p_dofs; l++) { m += psi[l][qp]*fluid_system_vel.current_local_solution->el(dof_indices_m[l]); } for (unsigned int l=0; l<n_p_dofs; l++) { m_old += psi[l][qp]*fluid_system_vel.old_local_solution->el(dof_indices_m[l]); } #endif material.init_for_qp(grad_u_mat, p_solid, qp, 1.0*m+0.0*m_old, p_fluid); #endif #endif //#if INCOMPRESSIBLE #if INCOMPRESSIBLE && ! PORO material.init_for_qp(grad_u_mat, p_solid, qp); #endif for (unsigned int i=0; i<n_u_dofs; i++) { res.resize(dim); material.get_residual(res, i); res.scale(JxW[qp]); #if INERTIA res.scale(dt); #endif #if DT res.scale(dt); #endif //std::cout<< "res "<<res<<std::endl; Fu(i) += res(0); Fv(i) += res(1) ; Fw(i) += res(2); #if GRAVITY Real grav=0.0; Fu(i) += progress*grav*JxW[qp]*phi[i][qp]; #endif #if INERTIA Fu(i) += JxW[qp]*phi[i][qp]*res_1(0); Fv(i) += JxW[qp]*phi[i][qp]*res_1(1); Fw(i) += JxW[qp]*phi[i][qp]*res_1(2); Fa(i) += JxW[qp]*phi[i][qp]*res_2(0); Fb(i) += JxW[qp]*phi[i][qp]*res_2(1); Fc(i) += JxW[qp]*phi[i][qp]*res_2(2); #endif // Matrix contributions for the uu and vv couplings. for (unsigned int j=0; j<n_u_dofs; j++) { material.get_linearized_stiffness(stiff, i, j); stiff.scale(JxW[qp]); #if DT res.scale(dt); #endif #if INERTIA stiff.scale(dt); Kua(i,j)+= rho_s*JxW[qp]*phi[i][qp]*phi[j][qp]; Kvb(i,j)+= rho_s*JxW[qp]*phi[i][qp]*phi[j][qp]; Kwc(i,j)+= rho_s*JxW[qp]*phi[i][qp]*phi[j][qp]; Kau(i,j)+= JxW[qp]*phi[i][qp]*phi[j][qp]; Kbv(i,j)+= JxW[qp]*phi[i][qp]*phi[j][qp]; Kcw(i,j)+= JxW[qp]*phi[i][qp]*phi[j][qp]; Kaa(i,j)+= -dt*JxW[qp]*phi[i][qp]*phi[j][qp]; Kbb(i,j)+= -dt*JxW[qp]*phi[i][qp]*phi[j][qp]; Kcc(i,j)+= -dt*JxW[qp]*phi[i][qp]*phi[j][qp]; #endif Kuu(i,j)+= stiff(u_var, u_var); Kuv(i,j)+= stiff(u_var, v_var); Kuw(i,j)+= stiff(u_var, w_var); Kvu(i,j)+= stiff(v_var, u_var); Kvv(i,j)+= stiff(v_var, v_var); Kvw(i,j)+= stiff(v_var, w_var); Kwu(i,j)+= stiff(w_var, u_var); Kwv(i,j)+= stiff(w_var, v_var); Kww(i,j)+= stiff(w_var, w_var); #if GRAVITY Kuu(i,j)+= 1*JxW[qp]*phi[i][qp]*phi[j][qp]; #endif } } #if INCOMPRESSIBLE && FLUID_P_CONST for (unsigned int i = 0; i < n_p_dofs; i++) { material.get_p_residual(p_res, i); p_res.scale(JxW[qp]); Fp(i) += p_res(0); } for (unsigned int i = 0; i < n_u_dofs; i++) { for (unsigned int j = 0; j < n_p_dofs; j++) { material.get_linearized_uvw_p_stiffness(p_stiff, i, j); p_stiff.scale(JxW[qp]); Kup(i, j) += p_stiff(0); Kvp(i, j) += p_stiff(1); Kwp(i, j) += p_stiff(2); } } for (unsigned int i = 0; i < n_p_dofs; i++) { for (unsigned int j = 0; j < n_u_dofs; j++) { material.get_linearized_p_uvw_stiffness(p_stiff, i, j); p_stiff.scale(JxW[qp]); Kpu(i, j) += p_stiff(0); Kpv(i, j) += p_stiff(1); Kpw(i, j) += p_stiff(2); } } #endif #if CHAP && ! FLUID_P_CONST for (unsigned int i = 0; i < n_p_dofs; i++) { Fp(i) += 0*JxW[qp]*psi[i][qp]; } for (unsigned int i = 0; i < n_p_dofs; i++) { for (unsigned int j = 0; j < n_p_dofs; j++) { Kpp(i, j) += 1*JxW[qp]*psi[i][qp]*psi[j][qp]; } } #endif }//end of qp loop newton_update.matrix->add_matrix (Ke, dof_indices); newton_update.rhs->add_vector (Fe, dof_indices); } // end of element loop // dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices); newton_update.rhs->close(); newton_update.matrix->close(); #if LOG_ASSEMBLE_PERFORMANCE perf_log.pop("assemble stiffness"); #endif #if LOG_ASSEMBLE_PERFORMANCE perf_log.push("assemble bcs"); #endif //Assemble the boundary conditions. assemble_bcs(es); #if LOG_ASSEMBLE_PERFORMANCE perf_log.pop("assemble bcs"); #endif std::ofstream lhs_out("lhsoutS3.dat"); Ke.print(lhs_out); lhs_out.close(); return; }
void BoussinesqBuoyancyAdjointStabilization<Mu>::element_time_derivative( bool compute_jacobian, AssemblyContext& context, CachedValues& /*cache*/ ) { #ifdef GRINS_USE_GRVY_TIMERS this->_timer->BeginTimer("BoussinesqBuoyancyAdjointStabilization::element_time_derivative"); #endif // The number of local degrees of freedom in each variable. const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size(); const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size(); // Element Jacobian * quadrature weights for interior integration. const std::vector<libMesh::Real> &JxW = context.get_element_fe(_flow_vars.u_var())->get_JxW(); const std::vector<std::vector<libMesh::Real> >& T_phi = context.get_element_fe(this->_temp_vars.T_var())->get_phi(); const std::vector<std::vector<libMesh::Real> >& u_phi = context.get_element_fe(this->_flow_vars.u_var())->get_phi(); const std::vector<std::vector<libMesh::RealGradient> >& u_gradphi = context.get_element_fe(this->_flow_vars.u_var())->get_dphi(); const std::vector<std::vector<libMesh::RealTensor> >& u_hessphi = context.get_element_fe(this->_flow_vars.u_var())->get_d2phi(); // Get residuals and jacobians libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(_flow_vars.u_var()); // R_{u} libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(_flow_vars.v_var()); // R_{v} libMesh::DenseSubVector<libMesh::Number> *Fw = NULL; libMesh::DenseSubMatrix<libMesh::Number> &KuT = context.get_elem_jacobian(_flow_vars.u_var(), _temp_vars.T_var()); // J_{uT} libMesh::DenseSubMatrix<libMesh::Number> &KvT = context.get_elem_jacobian(_flow_vars.v_var(), _temp_vars.T_var()); // J_{vT} libMesh::DenseSubMatrix<libMesh::Number> &Kuu = context.get_elem_jacobian(_flow_vars.u_var(), _flow_vars.u_var()); // J_{uu} libMesh::DenseSubMatrix<libMesh::Number> &Kuv = context.get_elem_jacobian(_flow_vars.u_var(), _flow_vars.v_var()); // J_{uv} libMesh::DenseSubMatrix<libMesh::Number> &Kvu = context.get_elem_jacobian(_flow_vars.v_var(), _flow_vars.u_var()); // J_{vu} libMesh::DenseSubMatrix<libMesh::Number> &Kvv = context.get_elem_jacobian(_flow_vars.v_var(), _flow_vars.v_var()); // J_{vv} libMesh::DenseSubMatrix<libMesh::Number> *KwT = NULL; libMesh::DenseSubMatrix<libMesh::Number> *Kuw = NULL; libMesh::DenseSubMatrix<libMesh::Number> *Kvw = NULL; libMesh::DenseSubMatrix<libMesh::Number> *Kwu = NULL; libMesh::DenseSubMatrix<libMesh::Number> *Kwv = NULL; libMesh::DenseSubMatrix<libMesh::Number> *Kww = NULL; if(this->_dim == 3) { Fw = &context.get_elem_residual(this->_flow_vars.w_var()); // R_{w} KwT = &context.get_elem_jacobian (_flow_vars.w_var(), _temp_vars.T_var()); // J_{wT} Kuw = &context.get_elem_jacobian (_flow_vars.u_var(), _flow_vars.w_var()); // J_{uw} Kvw = &context.get_elem_jacobian (_flow_vars.v_var(), _flow_vars.w_var()); // J_{vw} Kwu = &context.get_elem_jacobian (_flow_vars.w_var(), _flow_vars.u_var()); // J_{wu} Kwv = &context.get_elem_jacobian (_flow_vars.w_var(), _flow_vars.v_var()); // J_{wv} Kww = &context.get_elem_jacobian (_flow_vars.w_var(), _flow_vars.w_var()); // J_{ww} } // Now we will build the element Jacobian and residual. // Constructing the residual requires the solution and its // gradient from the previous timestep. This must be // calculated at each quadrature point by summing the // solution degree-of-freedom values by the appropriate // weight functions. unsigned int n_qpoints = context.get_element_qrule().n_points(); libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u_var()); for (unsigned int qp=0; qp != n_qpoints; qp++) { libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp ); libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp ); libMesh::RealGradient U( context.interior_value( this->_flow_vars.u_var(), qp ), context.interior_value( this->_flow_vars.v_var(), qp ) ); if( this->_dim == 3 ) { U(2) = context.interior_value( this->_flow_vars.w_var(), qp ); } // Compute the viscosity at this qp libMesh::Real mu_qp = this->_mu(context, qp); libMesh::Real tau_M; libMesh::Real d_tau_M_d_rho; libMesh::Gradient d_tau_M_dU; if (compute_jacobian) this->_stab_helper.compute_tau_momentum_and_derivs ( context, qp, g, G, this->_rho, U, mu_qp, tau_M, d_tau_M_d_rho, d_tau_M_dU, this->_is_steady ); else tau_M = this->_stab_helper.compute_tau_momentum ( context, qp, g, G, this->_rho, U, mu_qp, this->_is_steady ); // Compute the solution & its gradient at the old Newton iterate. libMesh::Number T; T = context.interior_value(_temp_vars.T_var(), qp); libMesh::RealGradient d_residual_dT = _rho_ref*_beta_T*_g; // d_residual_dU = 0 libMesh::RealGradient residual = (T-_T_ref)*d_residual_dT; for (unsigned int i=0; i != n_u_dofs; i++) { libMesh::Real test_func = this->_rho*U*u_gradphi[i][qp] + mu_qp*( u_hessphi[i][qp](0,0) + u_hessphi[i][qp](1,1) + u_hessphi[i][qp](2,2) ); Fu(i) += -tau_M*residual(0)*test_func*JxW[qp]; Fv(i) += -tau_M*residual(1)*test_func*JxW[qp]; if (_dim == 3) { (*Fw)(i) += -tau_M*residual(2)*test_func*JxW[qp]; } if (compute_jacobian) { libMesh::Gradient d_test_func_dU = this->_rho*u_gradphi[i][qp]; // d_test_func_dT = 0 for (unsigned int j=0; j != n_u_dofs; ++j) { Kuu(i,j) += -tau_M*residual(0)*d_test_func_dU(0)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); Kuu(i,j) += -d_tau_M_dU(0)*u_phi[j][qp]*residual(0)*test_func*JxW[qp] * context.get_elem_solution_derivative(); Kuv(i,j) += -tau_M*residual(0)*d_test_func_dU(1)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); Kuv(i,j) += -d_tau_M_dU(1)*u_phi[j][qp]*residual(0)*test_func*JxW[qp] * context.get_elem_solution_derivative(); Kvu(i,j) += -tau_M*residual(1)*d_test_func_dU(0)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); Kvu(i,j) += -d_tau_M_dU(0)*u_phi[j][qp]*residual(1)*test_func*JxW[qp] * context.get_elem_solution_derivative(); Kvv(i,j) += -tau_M*residual(1)*d_test_func_dU(1)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); Kvv(i,j) += -d_tau_M_dU(1)*u_phi[j][qp]*residual(1)*test_func*JxW[qp] * context.get_elem_solution_derivative(); } for (unsigned int j=0; j != n_T_dofs; ++j) { // KuT(i,j) += -tau_M*residual(0)*dtest_func_dT[j]*JxW[qp] * context.get_elem_solution_derivative(); KuT(i,j) += -tau_M*d_residual_dT(0)*T_phi[j][qp]*test_func*JxW[qp] * context.get_elem_solution_derivative(); // KvT(i,j) += -tau_M*residual(1)*dtest_func_dT[j]*JxW[qp] * context.get_elem_solution_derivative(); KvT(i,j) += -tau_M*d_residual_dT(1)*T_phi[j][qp]*test_func*JxW[qp] * context.get_elem_solution_derivative(); } if (_dim == 3) { for (unsigned int j=0; j != n_T_dofs; ++j) { // KwT(i,j) += -tau_M*residual(2)*dtest_func_dT[j]*JxW[qp] * context.get_elem_solution_derivative(); (*KwT)(i,j) += -tau_M*d_residual_dT(2)*T_phi[j][qp]*test_func*JxW[qp] * context.get_elem_solution_derivative(); } for (unsigned int j=0; j != n_u_dofs; ++j) { (*Kuw)(i,j) += -tau_M*residual(0)*d_test_func_dU(2)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); (*Kuw)(i,j) += -d_tau_M_dU(2)*u_phi[j][qp]*residual(0)*test_func*JxW[qp] * context.get_elem_solution_derivative(); (*Kvw)(i,j) += -tau_M*residual(1)*d_test_func_dU(2)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); (*Kvw)(i,j) += -d_tau_M_dU(2)*u_phi[j][qp]*residual(1)*test_func*JxW[qp] * context.get_elem_solution_derivative(); (*Kwu)(i,j) += -tau_M*residual(2)*d_test_func_dU(0)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); (*Kwu)(i,j) += -d_tau_M_dU(0)*u_phi[j][qp]*residual(2)*test_func*JxW[qp] * context.get_elem_solution_derivative(); (*Kwv)(i,j) += -tau_M*residual(2)*d_test_func_dU(1)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); (*Kwv)(i,j) += -d_tau_M_dU(1)*u_phi[j][qp]*residual(2)*test_func*JxW[qp] * context.get_elem_solution_derivative(); (*Kww)(i,j) += -tau_M*residual(2)*d_test_func_dU(2)*u_phi[j][qp]*JxW[qp] * context.get_elem_solution_derivative(); (*Kww)(i,j) += -d_tau_M_dU(2)*u_phi[j][qp]*residual(2)*test_func*JxW[qp] * context.get_elem_solution_derivative(); } } } // End compute_jacobian check } // End i dof loop } // End quadrature loop #ifdef GRINS_USE_GRVY_TIMERS this->_timer->EndTimer("BoussinesqBuoyancyAdjointStabilization::element_time_derivative"); #endif return; }
void ElasticMembraneConstantPressure::element_time_derivative( bool compute_jacobian, AssemblyContext& context, CachedValues& /*cache*/ ) { const unsigned int n_u_dofs = context.get_dof_indices(_disp_vars.u()).size(); const std::vector<libMesh::Real> &JxW = this->get_fe(context)->get_JxW(); const std::vector<std::vector<libMesh::Real> >& u_phi = this->get_fe(context)->get_phi(); libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(_disp_vars.u()); libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(_disp_vars.v()); libMesh::DenseSubVector<libMesh::Number> &Fw = context.get_elem_residual(_disp_vars.w()); libMesh::DenseSubMatrix<libMesh::Number>& Kuv = context.get_elem_jacobian(_disp_vars.u(),_disp_vars.v()); libMesh::DenseSubMatrix<libMesh::Number>& Kuw = context.get_elem_jacobian(_disp_vars.u(),_disp_vars.w()); libMesh::DenseSubMatrix<libMesh::Number>& Kvu = context.get_elem_jacobian(_disp_vars.v(),_disp_vars.u()); libMesh::DenseSubMatrix<libMesh::Number>& Kvw = context.get_elem_jacobian(_disp_vars.v(),_disp_vars.w()); libMesh::DenseSubMatrix<libMesh::Number>& Kwu = context.get_elem_jacobian(_disp_vars.w(),_disp_vars.u()); libMesh::DenseSubMatrix<libMesh::Number>& Kwv = context.get_elem_jacobian(_disp_vars.w(),_disp_vars.v()); unsigned int n_qpoints = context.get_element_qrule().n_points(); // All shape function gradients are w.r.t. master element coordinates const std::vector<std::vector<libMesh::Real> >& dphi_dxi = this->get_fe(context)->get_dphidxi(); const std::vector<std::vector<libMesh::Real> >& dphi_deta = this->get_fe(context)->get_dphideta(); const libMesh::DenseSubVector<libMesh::Number>& u_coeffs = context.get_elem_solution( _disp_vars.u() ); const libMesh::DenseSubVector<libMesh::Number>& v_coeffs = context.get_elem_solution( _disp_vars.v() ); const libMesh::DenseSubVector<libMesh::Number>& w_coeffs = context.get_elem_solution( _disp_vars.w() ); const std::vector<libMesh::RealGradient>& dxdxi = this->get_fe(context)->get_dxyzdxi(); const std::vector<libMesh::RealGradient>& dxdeta = this->get_fe(context)->get_dxyzdeta(); for (unsigned int qp=0; qp != n_qpoints; qp++) { // sqrt(det(a_cov)), a_cov being the covariant metric tensor of undeformed body libMesh::Real sqrt_a = sqrt( dxdxi[qp]*dxdxi[qp]*dxdeta[qp]*dxdeta[qp] - dxdxi[qp]*dxdeta[qp]*dxdeta[qp]*dxdxi[qp] ); // Gradients are w.r.t. master element coordinates libMesh::Gradient grad_u, grad_v, grad_w; for( unsigned int d = 0; d < n_u_dofs; d++ ) { libMesh::RealGradient u_gradphi( dphi_dxi[d][qp], dphi_deta[d][qp] ); grad_u += u_coeffs(d)*u_gradphi; grad_v += v_coeffs(d)*u_gradphi; grad_w += w_coeffs(d)*u_gradphi; } libMesh::RealGradient dudxi( grad_u(0), grad_v(0), grad_w(0) ); libMesh::RealGradient dudeta( grad_u(1), grad_v(1), grad_w(1) ); libMesh::RealGradient A_1 = dxdxi[qp] + dudxi; libMesh::RealGradient A_2 = dxdeta[qp] + dudeta; libMesh::RealGradient A_3 = A_1.cross(A_2); /* The formula here is actually P*\sqrt{\frac{A}{a}}*A_3, where A_3 is a unit vector But, |A_3| = \sqrt{A} so the normalizing part kills the \sqrt{A} in the numerator, so we can leave it out and *not* normalize A_3. */ libMesh::RealGradient traction = _pressure/sqrt_a*A_3; libMesh::Real jac = JxW[qp]; for (unsigned int i=0; i != n_u_dofs; i++) { Fu(i) -= traction(0)*u_phi[i][qp]*jac; Fv(i) -= traction(1)*u_phi[i][qp]*jac; Fw(i) -= traction(2)*u_phi[i][qp]*jac; if( compute_jacobian ) { for (unsigned int j=0; j != n_u_dofs; j++) { libMesh::RealGradient u_gradphi( dphi_dxi[j][qp], dphi_deta[j][qp] ); const libMesh::Real dt0_dv = _pressure/sqrt_a*(u_gradphi(0)*A_2(2) - A_1(2)*u_gradphi(1)); const libMesh::Real dt0_dw = _pressure/sqrt_a*(A_1(1)*u_gradphi(1) - u_gradphi(0)*A_2(1)); const libMesh::Real dt1_du = _pressure/sqrt_a*(A_1(2)*u_gradphi(1) - u_gradphi(0)*A_2(2)); const libMesh::Real dt1_dw = _pressure/sqrt_a*(u_gradphi(0)*A_2(0) - A_1(0)*u_gradphi(1)); const libMesh::Real dt2_du = _pressure/sqrt_a*(u_gradphi(0)*A_2(1) - A_1(1)*u_gradphi(1)); const libMesh::Real dt2_dv = _pressure/sqrt_a*(A_1(0)*u_gradphi(1) - u_gradphi(0)*A_2(0)); Kuv(i,j) -= dt0_dv*u_phi[i][qp]*jac; Kuw(i,j) -= dt0_dw*u_phi[i][qp]*jac; Kvu(i,j) -= dt1_du*u_phi[i][qp]*jac; Kvw(i,j) -= dt1_dw*u_phi[i][qp]*jac; Kwu(i,j) -= dt2_du*u_phi[i][qp]*jac; Kwv(i,j) -= dt2_dv*u_phi[i][qp]*jac; } } } } return; }