void CeilToZZ(ZZ& z, const RR& a) { if (a.e >= 0) LeftShift(z, a.x, a.e); else { long sgn = sign(a.x); RightShift(z, a.x, -a.e); if (sgn > 0) add(z, z, 1); } }
void conv(ZZ& z, const RR& a) { if (a.e >= 0) LeftShift(z, a.x, a.e); else { long sgn = sign(a.x); RightShift(z, a.x, -a.e); if (sgn < 0) sub(z, z, 1); } }
void add(RR& z, const RR& a, const RR& b) { NTL_TLS_LOCAL(RR, t); if (IsZero(a.x)) { xcopy(z, b); return; } if (IsZero(b.x)) { xcopy(z, a); return; } if (a.e > b.e) { if (a.e-b.e - max(RR::prec-NumBits(a.x),0) >= NumBits(b.x) + 2) normalize(z, a, sign(b)); else { LeftShift(t.x, a.x, a.e-b.e); add(t.x, t.x, b.x); t.e = b.e; normalize(z, t); } } else if (a.e < b.e) { if (b.e-a.e - max(RR::prec-NumBits(b.x),0) >= NumBits(a.x) + 2) normalize(z, b, sign(a)); else { LeftShift(t.x, b.x, b.e-a.e); add(t.x, t.x, a.x); t.e = a.e; normalize(z, t); } } else { add(t.x, a.x, b.x); t.e = a.e; normalize(z, t); } }
uint64_t physical_virtual(uint64_t physical_addr, analysisContext_t *context){ if (context->curMode == STOCK_VBOX_TYPE){ //TODO: function pointer return FDP_physical_virtual(physical_addr, context); } uint64_t offset = physical_addr & 0xFFF; uint64_t i; for (i = 0; i<512; i++){ uint64_t PDPBA = readPhysical64(context->p_DirectoryTableBase + (i * 8), context) & 0x000FFFFFFFFFF000; if (PDPBA>0 && PDPBA<context->physicalMemorySize - PAGE_SIZE){ uint64_t j; for (j = 0; j<512; j++){ uint64_t PDBA = readPhysical64(PDPBA + (j * 8), context) & 0x000FFFFFFFFFF000; if (PDBA && PDBA<context->physicalMemorySize - PAGE_SIZE){ uint64_t k; for (k = 0; k<512; k++){ uint64_t PTBA = readPhysical64(PDBA + (k * 8), context) & 0x000FFFFFFFFFF000; if (PTBA && PTBA<context->physicalMemorySize - PAGE_SIZE){ uint64_t l; for (l = 0; l<512; l++){ uint64_t PPBA = readPhysical64(PTBA + (l * 8), context) & 0x000FFFFFFFFFF000; if (PPBA && PPBA<context->physicalMemorySize - PAGE_SIZE){ if ((physical_addr & 0x000FFFFFFFFFF000) == (PPBA & 0x000FFFFFFFFFF000)){ uint64_t virtual_addr = (LeftShift(i, 39) | LeftShift(j, 30) | LeftShift(k, 21) | LeftShift(l, 12) | offset); if (virtual_addr & 0x0000F00000000000){ //Canonical ! virtual_addr = virtual_addr | 0xFFFFF00000000000; } //printf("virtualAddr = 0x%p => physicalAddr = 0x%016lX\n", virtual_addr, (PPBA&0x000FFFFFFFFFF000)|offset); return virtual_addr; } } } } } } } } } return 0; }
void div(RR& z, const RR& a, const RR& b) { if (IsZero(b)) ArithmeticError("RR: division by zero"); if (IsZero(a)) { clear(z); return; } long la = NumBits(a.x); long lb = NumBits(b.x); long neg = (sign(a) != sign(b)); long k = RR::prec - la + lb + 1; if (k < 0) k = 0; NTL_TLS_LOCAL(RR, t); NTL_ZZRegister(A); NTL_ZZRegister(B); NTL_ZZRegister(R); abs(A, a.x); LeftShift(A, A, k); abs(B, b.x); DivRem(t.x, R, A, B); t.e = a.e - b.e - k; normalize(z, t, !IsZero(R)); if (neg) negate(z.x, z.x); }
int main() { RR::SetPrecision(150); long n, b, size; cerr << "n: "; cin >> n; cerr << "b: "; cin >> b; cerr << "size: "; cin >> size; cerr << "prune: "; long prune; cin >> prune; ZZ seed; cerr << "seed: "; cin >> seed; if (seed != 0) SetSeed(seed); char alg; cerr << "alg [fqQxr]: "; cin >> alg; double TotalTime = 0; long TotalSucc = 0; long iter; for (iter = 1; iter <= 20; iter++) { vec_ZZ a; a.SetLength(n); ZZ bound; LeftShift(bound, to_ZZ(1), b); long i; for (i = 1; i <= n; i++) { RandomBnd(a(i), bound); a(i) += 1; } ZZ S; do { RandomLen(S, n+1); } while (weight(S) != n/2+1); ZZ s; clear(s); for (i = 1; i <= n; i++) if (bit(S, i-1)) s += a(i); mat_ZZ B(INIT_SIZE, n+1, n+3); for (i = 1; i <= n; i++) { B(i, i) = 2; B(i, n+1) = a(i) * n; B(i, n+3) = n; } for (i = 1; i <= n; i++) B(n+1, i) = 1; B(n+1, n+1) = s * n; B(n+1, n+2) = 1; B(n+1, n+3) = n; B(n+1, n+3) *= n/2; swap(B(1), B(n+1)); for (i = 2; i <= n; i++) { long j = RandomBnd(n-i+2) + i; swap(B(i), B(j)); } double t; LLLStatusInterval = 10; t = GetTime(); switch (alg) { case 'f': BKZ_FP(B, 0.99, size, prune, SubsetSumSolution); break; case 'q': BKZ_QP(B, 0.99, size, prune, SubsetSumSolution); break; case 'Q': BKZ_QP1(B, 0.99, size, prune, SubsetSumSolution); break; case 'x': BKZ_XD(B, 0.99, size, prune, SubsetSumSolution); break; case 'r': BKZ_RR(B, 0.99, size, prune, SubsetSumSolution); break; default: Error("invalid algorithm"); } t = GetTime()-t; long succ = 0; for (i = 1; i <= n+1; i++) if (SubsetSumSolution(B(i))) succ = 1; TotalTime += t; TotalSucc += succ; if (succ) cerr << "+"; else cerr << "-"; } cerr << "\n"; cerr << "number of success: " << TotalSucc << "\n"; cerr << "average time: " << TotalTime/20 << "\n"; return 0; }
static void RowTransform(vec_ZZ& A, vec_ZZ& B, const ZZ& MU1) // x = x - y*MU { NTL_ZZRegister(T); NTL_ZZRegister(MU); long k; long n = A.length(); long i; MU = MU1; if (MU == 1) { for (i = 1; i <= n; i++) sub(A(i), A(i), B(i)); return; } if (MU == -1) { for (i = 1; i <= n; i++) add(A(i), A(i), B(i)); return; } if (MU == 0) return; if (NumTwos(MU) >= NTL_ZZ_NBITS) k = MakeOdd(MU); else k = 0; if (MU.WideSinglePrecision()) { long mu1; conv(mu1, MU); if (k > 0) { for (i = 1; i <= n; i++) { mul(T, B(i), mu1); LeftShift(T, T, k); sub(A(i), A(i), T); } } else { for (i = 1; i <= n; i++) { MulSubFrom(A(i), B(i), mu1); } } } else { for (i = 1; i <= n; i++) { mul(T, B(i), MU); if (k > 0) LeftShift(T, T, k); sub(A(i), A(i), T); } } }
void ZZ_p::DoInstall() { SmartPtr<ZZ_pTmpSpaceT> tmps = 0; do { // NOTE: thread safe lazy init Lazy<ZZ_pFFTInfoT>::Builder builder(ZZ_pInfo->FFTInfo); if (!builder()) break; UniquePtr<ZZ_pFFTInfoT> FFTInfo; FFTInfo.make(); ZZ B, M, M1, M2, M3; long n, i; long q, t; mulmod_t qinv; sqr(B, ZZ_pInfo->p); LeftShift(B, B, NTL_FFTMaxRoot+NTL_FFTFudge); // FIXME: the following is quadratic time...would // be nice to get a faster solution... // One could estimate the # of primes by summing logs, // then multiply using a tree-based multiply, then // adjust up or down... // Assuming IEEE floating point, the worst case estimate // for error guarantees a correct answer +/- 1 for // numprimes up to 2^25...for sure we won't be // using that many primes...we can certainly put in // a sanity check, though. // If I want a more accuaruate summation (with using Kahan, // which has some portability issues), I could represent // numbers as x = a + f, where a is integer and f is the fractional // part. Summing in this representation introduces an *absolute* // error of 2 epsilon n, which is just as good as Kahan // for this application. // same strategy could also be used in the ZZX HomMul routine, // if we ever want to make that subquadratic set(M); n = 0; while (M <= B) { UseFFTPrime(n); q = GetFFTPrime(n); n++; mul(M, M, q); } FFTInfo->NumPrimes = n; FFTInfo->MaxRoot = CalcMaxRoot(q); double fn = double(n); if (8.0*fn*(fn+48) > NTL_FDOUBLE_PRECISION) ResourceError("modulus too big"); if (8.0*fn*(fn+48) <= NTL_FDOUBLE_PRECISION/double(NTL_SP_BOUND)) FFTInfo->QuickCRT = true; else FFTInfo->QuickCRT = false; // FIXME: some of this stuff does not need to be initialized // at all if FFTInfo->crt_struct.special() FFTInfo->x.SetLength(n); FFTInfo->u.SetLength(n); FFTInfo->uqinv.SetLength(n); FFTInfo->rem_struct.init(n, ZZ_pInfo->p, GetFFTPrime); FFTInfo->crt_struct.init(n, ZZ_pInfo->p, GetFFTPrime); if (!FFTInfo->crt_struct.special()) { ZZ qq, rr; DivRem(qq, rr, M, ZZ_pInfo->p); NegateMod(FFTInfo->MinusMModP, rr, ZZ_pInfo->p); for (i = 0; i < n; i++) { q = GetFFTPrime(i); qinv = GetFFTPrimeInv(i); long tt = rem(qq, q); mul(M2, ZZ_pInfo->p, tt); add(M2, M2, rr); div(M2, M2, q); // = (M/q) rem p div(M1, M, q); t = rem(M1, q); t = InvMod(t, q); mul(M3, M2, t); rem(M3, M3, ZZ_pInfo->p); FFTInfo->crt_struct.insert(i, M3); FFTInfo->x[i] = ((double) t)/((double) q); FFTInfo->u[i] = t; FFTInfo->uqinv[i] = PrepMulModPrecon(FFTInfo->u[i], q, qinv); } } tmps = MakeSmart<ZZ_pTmpSpaceT>(); tmps->crt_tmp_vec.fetch(FFTInfo->crt_struct); tmps->rem_tmp_vec.fetch(FFTInfo->rem_struct); builder.move(FFTInfo); } while (0); if (!tmps) { const ZZ_pFFTInfoT *FFTInfo = ZZ_pInfo->FFTInfo.get(); tmps = MakeSmart<ZZ_pTmpSpaceT>(); tmps->crt_tmp_vec.fetch(FFTInfo->crt_struct); tmps->rem_tmp_vec.fetch(FFTInfo->rem_struct); } ZZ_pTmpSpace = tmps; }
static CYTHON_INLINE struct ZZX* ZZX_left_shift(struct ZZX* x, long n) { struct ZZX* y = new ZZX(); LeftShift(*y, *x, n); return y; }
newNTL_START_IMPL zz_pInfoT::zz_pInfoT(long NewP, long maxroot) { ref_count = 1; if (maxroot < 0) Error("zz_pContext: maxroot may not be negative"); if (NewP <= 1) Error("zz_pContext: p must be > 1"); if (NumBits(NewP) > newNTL_SP_NBITS) Error("zz_pContext: modulus too big"); ZZ P, B, M, M1, MinusM; long n, i; long q, t; p = NewP; pinv = 1/double(p); index = -1; conv(P, p); sqr(B, P); LeftShift(B, B, maxroot+newNTL_FFTFudge); set(M); n = 0; while (M <= B) { UseFFTPrime(n); q = FFTPrime[n]; n++; mul(M, M, q); } if (n > 4) Error("zz_pInit: too many primes"); NumPrimes = n; PrimeCnt = n; MaxRoot = CalcMaxRoot(q); if (maxroot < MaxRoot) MaxRoot = maxroot; negate(MinusM, M); MinusMModP = rem(MinusM, p); if (!(CoeffModP = (long *) newNTL_MALLOC(n, sizeof(long), 0))) Error("out of space"); if (!(x = (double *) newNTL_MALLOC(n, sizeof(double), 0))) Error("out of space"); if (!(u = (long *) newNTL_MALLOC(n, sizeof(long), 0))) Error("out of space"); for (i = 0; i < n; i++) { q = FFTPrime[i]; div(M1, M, q); t = rem(M1, q); t = InvMod(t, q); mul(M1, M1, t); CoeffModP[i] = rem(M1, p); x[i] = ((double) t)/((double) q); u[i] = t; } }
void ZZ_pInfoT::init() { ZZ B, M, M1, M2, M3; long n, i; long q, t; initialized = 1; sqr(B, p); LeftShift(B, B, NTL_FFTMaxRoot+NTL_FFTFudge); set(M); n = 0; while (M <= B) { UseFFTPrime(n); q = FFTPrime[n]; n++; mul(M, M, q); } NumPrimes = n; MaxRoot = CalcMaxRoot(q); double fn = double(n); if (8.0*fn*(fn+32) > NTL_FDOUBLE_PRECISION) Error("modulus too big"); if (8.0*fn*(fn+32) > NTL_FDOUBLE_PRECISION/double(NTL_SP_BOUND)) QuickCRT = 0; else QuickCRT = 1; if (!(x = (double *) NTL_MALLOC(n, sizeof(double), 0))) Error("out of space"); if (!(u = (long *) NTL_MALLOC(n, sizeof(long), 0))) Error("out of space"); ZZ_p_rem_struct_init(&rem_struct, n, p, FFTPrime); ZZ_p_crt_struct_init(&crt_struct, n, p, FFTPrime); if (ZZ_p_crt_struct_special(crt_struct)) return; ZZ qq, rr; DivRem(qq, rr, M, p); NegateMod(MinusMModP, rr, p); for (i = 0; i < n; i++) { q = FFTPrime[i]; long tt = rem(qq, q); mul(M2, p, tt); add(M2, M2, rr); div(M2, M2, q); // = (M/q) rem p div(M1, M, q); t = rem(M1, q); t = InvMod(t, q); mul(M3, M2, t); rem(M3, M3, p); ZZ_p_crt_struct_insert(crt_struct, i, M3); x[i] = ((double) t)/((double) q); u[i] = t; } }
} template <T1 t1, T2 t2, T1 result = LeftShift( t1, t2 )> static constexpr bool isDefinedHelper(int) { return true ; } template <T1 t1, T2 t2> static constexpr bool isDefinedHelper(...) { return false ; } }; template <unsigned int e1, int shift, unsigned int result = LeftShift(e1, shift)> constexpr bool uLeftShiftDefinedHelper(int) { return true ; } template <unsigned int e1, int shift> constexpr bool uLeftShiftDefinedHelper(...) { return false; } template <unsigned int e1, int shift> constexpr bool uLeftShiftDefined() {
NTL_START_IMPL void CharPoly(ZZ_pX& f, const mat_ZZ_p& M) { long n = M.NumRows(); if (M.NumCols() != n) Error("CharPoly: nonsquare matrix"); if (n == 0) { set(f); return; } ZZ_p t; if (n == 1) { SetX(f); negate(t, M(1, 1)); SetCoeff(f, 0, t); return; } mat_ZZ_p H; H = M; long i, j, m; ZZ_p u, t1; for (m = 2; m <= n-1; m++) { i = m; while (i <= n && IsZero(H(i, m-1))) i++; if (i <= n) { t = H(i, m-1); if (i > m) { swap(H(i), H(m)); // swap columns i and m for (j = 1; j <= n; j++) swap(H(j, i), H(j, m)); } for (i = m+1; i <= n; i++) { div(u, H(i, m-1), t); for (j = m; j <= n; j++) { mul(t1, u, H(m, j)); sub(H(i, j), H(i, j), t1); } for (j = 1; j <= n; j++) { mul(t1, u, H(j, i)); add(H(j, m), H(j, m), t1); } } } } vec_ZZ_pX F; F.SetLength(n+1); ZZ_pX T; T.SetMaxLength(n); set(F[0]); for (m = 1; m <= n; m++) { LeftShift(F[m], F[m-1], 1); mul(T, F[m-1], H(m, m)); sub(F[m], F[m], T); set(t); for (i = 1; i <= m-1; i++) { mul(t, t, H(m-i+1, m-i)); mul(t1, t, H(m-i, m)); mul(T, F[m-i-1], t1); sub(F[m], F[m], T); } } f = F[n]; }