void
_MEDmeshnEntity236(int dummy, ...)
{

   med_int          _ret=-1,_n=0,_tmpn=0;
   med_size         _nn =0;
   med_data_type    _meddatatype;
   med_int          _nfaces=0;
   char             _meshpath[MED_TAILLE_MAA+MED_TAILLE_NOM+1]=MED_MAA;
   med_idt          _meshid=0,_datagroup1=0;
   char             _datagroupname1[MED_TAILLE_NOM_ENTITE+1]="";
   med_err          _err =0;
   med_bool         _datagroupexist=MED_FALSE;
   med_bool         _isasoftlink   =MED_FALSE;
   int              _cmodeit=0, _ncmode=1;
   med_connectivite _cmode[2] = { MED_NO_CMODE, MED_NO_CMODE };
 
  MED_VARGS_DECL(const, med_idt                , , fid           );
  MED_VARGS_DECL(const, char * , const           , meshname      );
  MED_VARGS_DECL(const, med_int                , , numdt         );
  MED_VARGS_DECL(const, med_int                , , numit         );
  MED_VARGS_DECL(const, med_entity_type        , , entitytype    );
  MED_VARGS_DECL(const, med_geometry_type      , , geotype       );
  MED_VARGS_DECL(const, med_data_type          , , meddatatype   );
  MED_VARGS_DECL(const, med_connectivity_mode  , , cmode         );
  MED_VARGS_DECL(const, med_storage_mode       , , storagemode   );
  MED_VARGS_DECL(, char     *, const       , profilename         );
  MED_VARGS_DECL(, med_int  *, const       , profilesize         );
  MED_VARGS_DECL(, med_bool *, const       , changement          );
  MED_VARGS_DECL(, med_bool *, const       , transformation      );
  MED_VARGS_DECL(, med_int  *             ,, fret                );

  va_list params;
  va_start(params,dummy);

  MED_VARGS_DEF(const, med_idt                , , fid           );
  MED_VARGS_DEF(const, char * , const           , meshname      );
  MED_VARGS_DEF(const, med_int                , , numdt         );
  MED_VARGS_DEF(const, med_int                , , numit         );
  MED_VARGS_DEF(const, med_entity_type        , , entitytype    );
  MED_VARGS_DEF(const, med_geometry_type      , , geotype       );
  MED_VARGS_DEF(const, med_data_type          , , meddatatype   );
  MED_VARGS_DEF(const, med_connectivity_mode  , , cmode         );
  MED_VARGS_DEF(const, med_storage_mode       , , storagemode   );
  MED_VARGS_DEF(, char     *, const       , profilename         );
  MED_VARGS_DEF(, med_int  *, const       , profilesize         );
  MED_VARGS_DEF(, med_bool *, const       , changement          );
  MED_VARGS_DEF(, med_bool *, const       , transformation      );
  MED_VARGS_DEF(, med_int  *             ,, fret                );

  _meddatatype=meddatatype;
   
 
  if ( (numdt != MED_NO_DT) || (numit != MED_NO_IT) ) {
    MED_ERR_(_ret,MED_ERR_RANGE,MED_ERR_COMPUTINGSTEP,MED_ERR_MESH_MSG);
    SSCRUTE(meshname);ISCRUTE(numdt);ISCRUTE(numit);
    goto ERROR;
  }

  _cmode[0]= (med_connectivite) cmode;

  if ( entitytype == MED_UNDEF_ENTITY_TYPE ) goto SORTIE;

  /*
   * Gestion entitytype == MED_ALL_ENTITY_TYPE
   */
  if ( entitytype == MED_ALL_ENTITY_TYPE ) {

    strcat(_meshpath,meshname);
    if ((_meshid = _MEDdatagroupOuvrir(fid,_meshpath)) < 0) {
      MED_ERR_(_ret,MED_ERR_OPEN,MED_ERR_DATAGROUP,_meshpath);
      ISCRUTE_id(_meshid);goto ERROR;
    }

    if( _MEDdatagroupExist(_meshid,MED_NOM_NOE,&_datagroupexist,&_isasoftlink) < 0 ) {
      MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"_MEDdatagroupExist");
      SSCRUTE(MED_NOM_NOE);goto ERROR;
    }
    if ( _datagroupexist ) _nn++;

    if( _MEDdatagroupExist(_meshid,MED_NOM_MAI,&_datagroupexist,&_isasoftlink) < 0 ) {
      MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"_MEDdatagroupExist");
      SSCRUTE(MED_NOM_MAI);goto ERROR;
    }
    if ( _datagroupexist ) _nn++;

    if( _MEDdatagroupExist(_meshid,MED_NOM_FAC,&_datagroupexist,&_isasoftlink) < 0 ) {
      MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"_MEDdatagroupExist");
      SSCRUTE(MED_NOM_FAC);goto ERROR;
    }
    if ( _datagroupexist ) _nn++;

    if( _MEDdatagroupExist(_meshid,MED_NOM_ARE,&_datagroupexist,&_isasoftlink) < 0 ) {
      MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"_MEDdatagroupExist");
      SSCRUTE(MED_NOM_ARE);goto ERROR;
    }
    if ( _datagroupexist ) _nn++;

/* En 2.3.6 les familles, les équivalences ... sont stockées dans le groupe <meshname>*/
/*     _err=_MEDnObjects(_meshid,".",&_nn); */
/*     if ( _err == (MED_ERR_COUNT + MED_ERR_DATAGROUP) ) { */
/*       MED_ERR_(_ret,MED_ERR_COUNT,MED_ERR_DATAGROUP,_meshid); */
/*       goto ERROR; */
/*     } */
    _n = _nn;
    goto SORTIE;
  }

  if ( geotype == MED_GEO_ALL ) {

      strcat(_meshpath,meshname);
      if ((_meshid = _MEDdatagroupOuvrir(fid,_meshpath)) < 0) {
	MED_ERR_(_ret,MED_ERR_OPEN,MED_ERR_DATAGROUP,_meshpath);
	ISCRUTE_id(_meshid);goto ERROR;
      }

      if (_MEDgetEntityTypeName(_datagroupname1,entitytype) < 0) {
	MED_ERR_(_ret,MED_ERR_INVALID,MED_ERR_ENTITY,MED_ERR_VALUE_MSG);
	ISCRUTE_int(entitytype);SSCRUTE(meshname);goto ERROR;
      }

      if ((_datagroup1 = _MEDdatagroupOuvrir(_meshid,_datagroupname1)) < 0) {
	_n=0;_datagroup1=0;
	goto SORTIE;
      }

      _err=_MEDnObjects(_datagroup1,".",&_nn);
      if ( _err == (MED_ERR_COUNT + MED_ERR_DATAGROUP) ) {
	MED_ERR_(_ret,MED_ERR_COUNT,MED_ERR_DATAGROUP,_datagroupname1);
	goto ERROR;
      }
/*       SSCRUTE(_datagroupname1);ISCRUTE_long(_nn); */
      if ( ( entitytype == MED_NODE ) && (_nn > 0) ) _nn=1;
/*       SSCRUTE(_datagroupname1);ISCRUTE_long(_nn); */
      _n = _nn;
      goto SORTIE;

  }


  switch( meddatatype )
    {
    case MED_GLOBAL_NUMBER:
    case MED_NAME:
    case MED_NUMBER:
    case MED_FAMILY_NUMBER:

      switch (entitytype) {
      case MED_NODE:
	/*Pour connaître le nombre d'entités des attributs optionnels,
	  on se base sur le tableau de coordonnées */
/* 	_meddatatype = MED_COORDINATE; */
	break;
      case MED_CELL:
      case MED_DESCENDING_FACE:
      case MED_DESCENDING_EDGE:
	/*Pour connaître le nombre d'entités des attributs optionnels,
	  on se base sur le tableau de connectivité */
/* 	_meddatatype = MED_CONNECTIVITY; */

	/*
	 * Positionne un mode de connectivité _cmode si le meddatatype demandé
	 * est autre chose que des coordonnées ou des connectivités et le cmode non
	 * positionné.
	 * Cette Information est necessaire pour construire le nom du datatset.
	 */
	if ( _cmode[0] == MED_NO_CMODE ) {
	  _ncmode =2;_cmode[0]=MED_NOD;_cmode[1]=MED_DESC;
	}
	break;
      default:
	MED_ERR_(_ret,MED_ERR_RANGE,MED_ERR_ENTITY,MED_ERR_VALUE_MSG);
	ISCRUTE_int(entitytype);goto ERROR;
      }
      goto CALL_NENT;

    case MED_COORDINATE: /*Par extension au CONNECTIVITY mais ne devrait pas être utilisé.*/
    case MED_CONNECTIVITY:
      if ( geotype == MED_POLYGON2 ) {_n=0; break;}
      if ( geotype == MED_POLYGON ) {
	  if ( MEDpolygoneInfo( fid,(char *)meshname, (med_entite_maillage) entitytype, (med_connectivite) _cmode[0],
				&_n) < 0) {
/* 	    MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"MEDpolygoneInfo");SSCRUTE(meshname); */
/* 	    ISCRUTE(meddatatype);ISCRUTE(entitytype);ISCRUTE(geotype);goto ERROR; */
	    _n=0;
	  }
	  break;
      }

      if ( geotype == MED_POLYHEDRON ) {
	if (    MEDpolyedreInfo(fid,(char *) meshname, (med_connectivite) _cmode[0]
				,&_nfaces,&_n) < 0) {
/* 	  MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"MEDpolyedreInfo");SSCRUTE(meshname); */
/* 	  ISCRUTE(meddatatype);ISCRUTE(entitytype);ISCRUTE(geotype);goto ERROR; */
	  _n=0;
	}
	break;
      }
      goto CALL_NENT;

    case MED_INDEX_FACE:
      if ( geotype == MED_POLYHEDRON ) {

	_meddatatype = MED_CONNECTIVITY;
	_n=1 ;

	goto CALL_NENT;

/* 	if ( (_n = MEDnEntMaa(fid,meshname,(med_table) MED_CONNECTIVITY, (med_entite_maillage) MED_CELL, */
/* 			      (med_geometrie_element) MED_POLYHEDRON, (med_connectivite) MED_NOD)) < 0) { */
/* 	  MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"MEDnEntMaa");SSCRUTE(meshname); */
/* 	  ISCRUTE(meddatatype);ISCRUTE(entitytype);ISCRUTE(geotype);goto ERROR; */
/* 	} */

	_n+=1;
	break;
      } else {
	MED_ERR_(_ret,MED_ERR_RANGE,MED_ERR_GEOMETRIC,MED_ERR_VALUE_MSG);
	ISCRUTE_int(geotype);
	goto ERROR;
      }
    case MED_INDEX_NODE:
      if ( geotype == MED_POLYHEDRON ) {
	if ( MEDpolyedreInfo(fid,(char *) meshname, (med_connectivite) _cmode[0],&_nfaces, &_n) < 0) {
/* 	  MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"MEDpolyedreInfo");SSCRUTE(meshname); */
/* 	  ISCRUTE(meddatatype);ISCRUTE(entitytype);ISCRUTE(geotype);goto ERROR; */
	  _nfaces=0;
	}
	_n=_nfaces;
	break;
      } else
	if ( (geotype == MED_POLYGON) || (geotype == MED_POLYGON2) ) {
	  _meddatatype = MED_CONNECTIVITY;
	  _n = 1;
	} else {
	  MED_ERR_(_ret,MED_ERR_RANGE,MED_ERR_GEOMETRIC,MED_ERR_VALUE_MSG);
	  ISCRUTE_int(geotype);goto ERROR;
	}
    case MED_COORDINATE_AXIS1:
    case MED_COORDINATE_AXIS2:
    case MED_COORDINATE_AXIS3:

    CALL_NENT:

      for (_cmodeit=0; _cmodeit < _ncmode; ++_cmodeit)
	if ( (_tmpn =  MEDnEntMaa( fid, (char *) meshname,
				   (med_table)             _meddatatype,
				   (med_entite_maillage)   entitytype,
				   (med_geometrie_element) geotype,
				   (med_connectivite)      _cmode[_cmodeit]) ) > 0 )
	  break;

      if ( _tmpn < 0 ) {
	MED_ERR_(_ret,MED_ERR_CALL,MED_ERR_API,"MEDnEntMaa");SSCRUTE(meshname);
	ISCRUTE_int(_meddatatype);ISCRUTE_int(entitytype);ISCRUTE_int(geotype);goto ERROR;
      }

      _n+=_tmpn;
      break;

    default:
      MED_ERR_(_ret,MED_ERR_RANGE,MED_ERR_MEDDATATYPE,MED_ERR_VALUE_MSG);
      ISCRUTE_int(meddatatype);goto ERROR;

    }

 SORTIE:

 *transformation = MED_FALSE;
 /*TODO : 3.0.1 : Tester la présence d'autres datasets
  que les coord/conn/index pour positionner chgt TRUE uniquement
 dans ce cas de figure.*/
 *changement     = MED_TRUE;
 *profilesize    = 0;
 profilename[0]  = '\0';

  _ret = _n;

 ERROR:
  if (_datagroup1>0)     if (_MEDdatagroupFermer(_datagroup1) < 0) {
    MED_ERR_(_ret,MED_ERR_CLOSE,MED_ERR_DATAGROUP,_datagroupname1);
    ISCRUTE_id(_datagroup1);
  }

  if (_meshid>0)            if (_MEDdatagroupFermer(_meshid) < 0) {
    MED_ERR_(_ret,MED_ERR_CLOSE,MED_ERR_DATAGROUP,_meshpath);
    ISCRUTE_id(_meshid);
  }

  *fret = _ret;
  va_end(params);
  return;
}
Beispiel #2
0
int main (int argc, char **argv)


{
  med_err ret = 0;
  med_idt fid;
  char maa[MED_TAILLE_NOM+1];  
  med_int nmaa,i,mdim,npoly,j;
  char desc[MED_TAILLE_DESC+1];  
  med_int taille,nf,np;
  med_int taille2,nf2,np2;
  med_int *conn, *conn2, *indexf, *indexf2, *num, *fam;
  med_int *indexp, *indexp2;
  char *nom;
  char tmp[MED_TAILLE_PNOM+1];
  int ind1, ind2,k,nfaces,nnoeuds,l;
  med_maillage type;

  /* Ouverture du fichier test25.med en lecture seule */
  fid = MEDouvrir("test25.med",MED_LECTURE);
  if (fid < 0) {
    MESSAGE("Erreur a l'ouverture du fichier test25.med");
    return -1;
  }
  printf("Ouverture du fichier test25.med \n");

  /* Lecture du nombre de maillages */
  nmaa = MEDnMaa(fid);
  if (nmaa < 0) {
    MESSAGE("Erreur a lecture du nombre de maillage");
    return -1;
  }
  printf("Nombre de maillages = "IFORMAT"\n",nmaa);

  for (i=0;i<nmaa;i++)
    if (ret == 0) {
      
      /* Lecture des infos sur le maillage */
      if (MEDmaaInfo(fid,i+1,maa,&mdim,&type,desc) < 0) {
	MESSAGE("Erreur a lecture des infos sur le maillage");
	return -1;
      }
      printf("maillage "IFORMAT" de nom [%s] et de dimension : "IFORMAT" \n",i+1,maa,mdim);
      
      /* Combien de mailles polyedres en mode nodal */
      if ((npoly = MEDnEntMaa(fid,maa,MED_CONN,MED_MAILLE,MED_POLYEDRE,MED_NOD)) < 0) {
	MESSAGE("Erreur a lecture du nombre de maille MED_POLYEDRE en mode nodal");
	return -1;
      }
      printf("Nombre de mailles polyedres : "IFORMAT" \n",npoly); 
      
      /* Quelle taille pour le tableau des connectivites et d'indexation 
	 en mode MED_NOD */
      if (MEDpolyedreInfo(fid,maa,MED_NOD,&nf,&taille) < 0) {
	MESSAGE("Erreur a lecture des infos sur les polyedres");
	return -1;
      }
      printf("Taille a allouer pour la connectivite nodale des polyedres : "IFORMAT" \n",taille);
      printf("Taille a allouer pour le tableau d'indexation des faces : "IFORMAT" \n",nf); 
      
      /* Quelle taille pour le tableau des connectivites et d'indexation 
	 en mode MED_DESC */
      if (MEDpolyedreInfo(fid,maa,MED_DESC,&nf2,&taille2) < 0) {
	MESSAGE("Erreur a la lecture des infos sur les polyedres");
	return -1;
      }
      printf("Taille a allouer pour la connectivite descendante des polyedres : "IFORMAT" \n",taille2);
      printf("Taille a allouer pour le tableau d'indexation des types de faces : "IFORMAT" \n",nf2); 
      
      /* Allocation memoire : 
       *  - tableau indexp et indexp2 : npoly + 1
       *  - tableau indexf et indexf2 : nf et nf2
       *  - tableau des connectivites : consize
       *  - tableaux numeros et numeros de familles : npoly
       *  - tableau des noms : MED_TAILLE_PNOM*npoly + 1 
       */
      indexp   = (med_int *) malloc(sizeof(med_int)*(npoly+1));
      indexp2  = (med_int *) malloc(sizeof(med_int)*(npoly+1));
      indexf   = (med_int *) malloc(sizeof(med_int)*nf);
      indexf2  = (med_int *) malloc(sizeof(med_int)*nf2);
      conn     = (med_int *) malloc(sizeof(med_int)*taille);
      conn2    = (med_int *) malloc(sizeof(med_int)*taille2);
      num      = (med_int *) malloc(sizeof(med_int)*npoly);
      fam      = (med_int *) malloc(sizeof(med_int)*npoly);
      nom      = (char *) malloc(sizeof(char)*MED_TAILLE_PNOM*npoly+1);
      
      /* Lecture de la connectivite des mailles polyedres en mode nodal */
      if (MEDpolyedreConnLire(fid,maa,indexp,npoly+1,indexf,nf,conn,MED_NOD) < 0) {
	MESSAGE("Erreur a lecture de la connectivite nodale des polyedres");
	ret = -1;
      }
      printf("Lecture de la connectivite des mailles MED_POLYEDRE en mode nodal \n");
      
      /* Lecture de la connectivite des mailles polyedres en mode descendant */ 
      if (ret == 0) {
	if (MEDpolyedreConnLire(fid,maa,indexp2,npoly+1,indexf2,nf2,conn2,MED_DESC) < 0) {
	  MESSAGE("Erreur a lecture de la connectivite descendante des polyedres");
	  ret = -1;
	}
	printf("Lecture de la connectivite des mailles MED_POLYEDRE en mode descendant \n");
      }
      
      /* Lecture noms */
      if (ret == 0) {
	if (MEDnomLire(fid,maa,nom,npoly,MED_MAILLE,MED_POLYEDRE) < 0) {
	  MESSAGE("Erreur a lecture des noms des polyedres");
	  ret = -1;
	}
	printf("Lecture des noms des mailles MED_POLYEDRE \n");
      }
      
      /* Lecture des numeros */
      if (ret == 0) {
	if (MEDnumLire(fid,maa,num,npoly,MED_MAILLE,MED_POLYEDRE) < 0) {
	  MESSAGE("Erreur a lecture des numeros des polyedres");
	  ret = -1;
	}
	printf("Lecture des numeros des mailles MED_POLYEDRE \n");
      }
      
      /* Lecture des numeros de familles */
      if (ret == 0) {
	if (MEDfamLire(fid,maa,fam,npoly,MED_MAILLE,MED_POLYEDRE) < 0) {
	  MESSAGE("Erreur a lecture des numeros de famille des polyedres");
	  ret = -1;
	}
	printf("Lecture des numeros de familles des mailles MED_POLYEDRE \n");
      }
      
      if (ret == 0) {
	printf("Affichage des resultats \n");
	for (j=0;j<npoly;j++) {
	  printf(">> Maille MED_POLYEDRE "IFORMAT" : \n",j+1);
	  printf("---- Connectivite nodale      ----- : \n"); 
	  nfaces  = *(indexp+j+1) - *(indexp+j);
	  /* ind1 = indice dans "indexf" pour acceder aux numeros des faces */
	  ind1 = *(indexp+j) - 1;
	  for (k=0;k<nfaces;k++) {
	    /* ind2 = indice dans "conn" pour acceder au premier noeud de la face */
	    ind2 = *(indexf+ind1+k) - 1;
	    nnoeuds = *(indexf+ind1+k+1) - *(indexf+ind1+k);
	    printf("   - Face %d : [ ", k+1);
	    for (l=0;l<nnoeuds;l++)
	      printf(" "IFORMAT" ",*(conn+ind2+l));
	    printf(" ] \n"); 
	  }
	  printf("---- Connectivite descendante ----- : \n");
	  nfaces  = *(indexp2+j+1) - *(indexp2+j);
	  /* ind1 = indice dans "conn2" pour acceder aux numeros des faces */
	  ind1 = *(indexp2+j) - 1;
	  for (k=0;k<nfaces;k++) 
	    printf("   - Face %d de numero : "IFORMAT" et de type "IFORMAT" \n", k+1,*(conn2+ind1+k),*(indexf2+ind1+k));
	  strncpy(tmp,nom+j*MED_TAILLE_PNOM,MED_TAILLE_PNOM);
	  tmp[MED_TAILLE_PNOM] = '\0';
	  printf("---- Nom                      ----- : %s \n",tmp);
	  printf("---- Numero                   ----- : "IFORMAT" \n",*(num+j));
	  printf("---- Numero de famille        ----- : "IFORMAT" \n",*(fam+j));
	}
      }
      
      /* liberation de la memoire */
      free(indexp);
      free(indexp2);
      free(indexf);
      free(indexf2);
      free(conn);
      free(conn2);
      free(num);
      free(fam);
      free(nom);
    }
  
  /* Fermeture du fichier */
  if (MEDfermer(fid) < 0) {
    MESSAGE("Erreur a fermeture du fichier");
    return -1;
  }
  printf("Fermeture du fichier \n");
  
  return ret; 
}
Beispiel #3
0
int GModel::readMED(const std::string &name)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0) {
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  med_int v[3], vf[3];
  MEDversionDonner(&v[0], &v[1], &v[2]);
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);
  Msg::Info("Reading MED file V%d.%d.%d using MED library V%d.%d.%d",
            vf[0], vf[1], vf[2], v[0], v[1], v[2]);
  if(vf[0] < 2 || (vf[0] == 2 && vf[1] < 2)){
    Msg::Error("Cannot read MED file older than V2.2");
    return 0;
  }

  std::vector<std::string> meshNames;
  for(int i = 0; i < MEDnMaa(fid); i++){
    char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
    med_int spaceDim;
    med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
    med_int meshDim, nStep;
    char dtUnit[MED_SNAME_SIZE + 1];
    char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
    med_sorting_type sortingType;
    med_axis_type axisType;
    if(MEDmeshInfo(fid, i + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                   dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
    if(MEDmaaInfo(fid, i + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
      Msg::Error("Unable to read mesh information");
      return 0;
    }
    meshNames.push_back(meshName);
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  int ret = 1;
  for(unsigned int i = 0; i < meshNames.size(); i++){
    // we use the filename as a kind of "partition" indicator, allowing to
    // complete a model part by part (used e.g. in DDM, since MED does not store
    // a partition index)
    GModel *m = findByName(meshNames[i], name);
    if(!m) m = new GModel(meshNames[i]);
    ret = m->readMED(name, i);
    if(!ret) return 0;
  }
  return ret;
}

int GModel::readMED(const std::string &name, int meshIndex)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  int numMeshes = MEDnMaa(fid);
  if(meshIndex >= numMeshes){
    Msg::Info("Could not find mesh %d in MED file", meshIndex);
    return 0;
  }

  checkPointMaxNumbers();
  GModel::setCurrent(this); // make sure we increment max nums in this model

  // read mesh info
  char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
  med_int spaceDim, nStep = 1;
  med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
  med_int meshDim;
  char dtUnit[MED_SNAME_SIZE + 1];
  char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
  med_sorting_type sortingType;
  med_axis_type axisType;
  if(MEDmeshInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                 dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
  if(MEDmaaInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
    Msg::Error("Unable to read mesh information");
    return 0;
  }

  // FIXME: we should support multi-step MED3 meshes (probably by
  // storing each mesh as a separate model, with a naming convention
  // e.g. meshName_step%d). This way we could also handle multi-mesh
  // time sequences in MED3.
  if(nStep > 1)
    Msg::Warning("Discarding %d last meshes in multi-step MED mesh", nStep - 1);

  setName(meshName);
  setFileName(name);
  if(meshType == MED_NON_STRUCTURE){
    Msg::Info("Reading %d-D unstructured mesh <<%s>>", spaceDim, meshName);
  }
  else{
    Msg::Error("Reading structured MED meshes is not supported");
    return 0;
  }
  med_int vf[3];
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);

  // read nodes
#if (MED_MAJOR_NUM == 3)
  med_bool changeOfCoord, geoTransform;
  med_int numNodes = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                                    MED_NO_GEOTYPE, MED_COORDINATE, MED_NO_CMODE,
                                    &changeOfCoord, &geoTransform);
#else
  med_int numNodes = MEDnEntMaa(fid, meshName, MED_COOR, MED_NOEUD, MED_NONE,
                                MED_NOD);
#endif
  if(numNodes < 0){
    Msg::Error("Could not read number of MED nodes");
    return 0;
  }
  if(numNodes == 0){
    Msg::Error("No nodes in MED mesh");
    return 0;
  }
  std::vector<MVertex*> verts(numNodes);
  std::vector<med_float> coord(spaceDim * numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshNodeCoordinateRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_FULL_INTERLACE,
                             &coord[0]) < 0){
#else
  std::vector<char> coordName(spaceDim * MED_TAILLE_PNOM + 1);
  std::vector<char> coordUnit(spaceDim * MED_TAILLE_PNOM + 1);
  med_repere rep;
  if(MEDcoordLire(fid, meshName, spaceDim, &coord[0], MED_FULL_INTERLACE,
                  MED_ALL, 0, 0, &rep, &coordName[0], &coordUnit[0]) < 0){
#endif
    Msg::Error("Could not read MED node coordinates");
    return 0;
  }

  std::vector<med_int> nodeTags(numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                           MED_NO_GEOTYPE, &nodeTags[0]) < 0)
#else
  if(MEDnumLire(fid, meshName, &nodeTags[0], numNodes, MED_NOEUD, MED_NONE) < 0)
#endif
    nodeTags.clear();

  for(int i = 0; i < numNodes; i++)
    verts[i] = new MVertex(coord[spaceDim * i],
                           (spaceDim > 1) ? coord[spaceDim * i + 1] : 0.,
                           (spaceDim > 2) ? coord[spaceDim * i + 2] : 0.,
                           0, nodeTags.empty() ? 0 : nodeTags[i]);

  // read elements (loop over all possible MSH element types)
  for(int mshType = 0; mshType < MSH_NUM_TYPE; mshType++){
    med_geometrie_element type = msh2medElementType(mshType);
    if(type == MED_NONE) continue;
#if (MED_MAJOR_NUM == 3)
    med_bool changeOfCoord;
    med_bool geoTransform;
    med_int numEle = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_CONNECTIVITY, MED_NODAL, &changeOfCoord,
                                    &geoTransform);
#else
    med_int numEle = MEDnEntMaa(fid, meshName, MED_CONN, MED_MAILLE, type, MED_NOD);
#endif
    if(numEle <= 0) continue;
    int numNodPerEle = type % 100;
    std::vector<med_int> conn(numEle * numNodPerEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshElementConnectivityRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_NODAL, MED_FULL_INTERLACE, &conn[0]) < 0){
#else
    if(MEDconnLire(fid, meshName, spaceDim, &conn[0], MED_FULL_INTERLACE, 0, MED_ALL,
                   MED_MAILLE, type, MED_NOD) < 0){
#endif
      Msg::Error("Could not read MED elements");
      return 0;
    }
    std::vector<med_int> fam(numEle, 0);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityFamilyNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                   type, &fam[0]) < 0){
#else
    if(MEDfamLire(fid, meshName, &fam[0], numEle, MED_MAILLE, type) < 0){
#endif
      Msg::Info("No family number for elements: using 0 as default family number");
    }
    std::vector<med_int> eleTags(numEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                             type, &eleTags[0]) < 0)
#else
    if(MEDnumLire(fid, meshName, &eleTags[0], numEle, MED_MAILLE, type) < 0)
#endif
      eleTags.clear();
    std::map<int, std::vector<MElement*> > elements;
    MElementFactory factory;
    for(int j = 0; j < numEle; j++){
      std::vector<MVertex*> v(numNodPerEle);
      for(int k = 0; k < numNodPerEle; k++)
        v[k] = verts[conn[numNodPerEle * j + med2mshNodeIndex(type, k)] - 1];
      MElement *e = factory.create(mshType, v, eleTags.empty() ? 0 : eleTags[j]);
      if(e) elements[-fam[j]].push_back(e);
    }
    _storeElementsInEntities(elements);
  }
  _associateEntityWithMeshVertices();
  _storeVerticesInEntities(verts);

  // read family info
  med_int numFamilies = MEDnFam(fid, meshName);
  if(numFamilies < 0){
    Msg::Error("Could not read MED families");
    return 0;
  }
  for(int i = 0; i < numFamilies; i++){
#if (MED_MAJOR_NUM == 3)
    med_int numAttrib = (vf[0] == 2) ? MEDnFamily23Attribute(fid, meshName, i + 1) : 0;
    med_int numGroups = MEDnFamilyGroup(fid, meshName, i + 1);
#else
    med_int numAttrib = MEDnAttribut(fid, meshName, i + 1);
    med_int numGroups = MEDnGroupe(fid, meshName, i + 1);
#endif
    if(numAttrib < 0 || numGroups < 0){
      Msg::Error("Could not read MED groups or attributes");
      return 0;
    }
    std::vector<med_int> attribId(numAttrib + 1);
    std::vector<med_int> attribVal(numAttrib + 1);
    std::vector<char> attribDes(MED_TAILLE_DESC * numAttrib + 1);
    std::vector<char> groupNames(MED_TAILLE_LNOM * numGroups + 1);
    char familyName[MED_TAILLE_NOM + 1];
    med_int familyNum;
#if (MED_MAJOR_NUM == 3)
    if(vf[0] == 2){ // MED2 file
      if(MEDfamily23Info(fid, meshName, i + 1, familyName, &attribId[0],
                         &attribVal[0], &attribDes[0], &familyNum,
                         &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED2 family %d", i + 1);
        continue;
      }
    }
    else{
      if(MEDfamilyInfo(fid, meshName, i + 1, familyName, &familyNum,
                       &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED3 family %d", i + 1);
        continue;
      }
    }
#else
    if(MEDfamInfo(fid, meshName, i + 1, familyName, &familyNum, &attribId[0],
                  &attribVal[0], &attribDes[0], &numAttrib, &groupNames[0],
                  &numGroups) < 0){
      Msg::Error("Could not read info for MED family %d", i + 1);
      continue;
    }
#endif
    // family tags are unique (for all dimensions)
    GEntity *ge;
    if((ge = getRegionByTag(-familyNum))){}
    else if((ge = getFaceByTag(-familyNum))){}
    else if((ge = getEdgeByTag(-familyNum))){}
    else ge = getVertexByTag(-familyNum);
    if(ge){
      elementaryNames[std::pair<int, int>(ge->dim(), -familyNum)] = familyName;
      if(numGroups > 0){
        for(int j = 0; j < numGroups; j++){
          char tmp[MED_TAILLE_LNOM + 1];
          strncpy(tmp, &groupNames[j * MED_TAILLE_LNOM], MED_TAILLE_LNOM);
          tmp[MED_TAILLE_LNOM] = '\0';
          // don't use same physical number across dimensions, as e.g. getdp
          // does not support this
          int pnum = setPhysicalName(tmp, ge->dim(), getMaxPhysicalNumber(-1) + 1);
          if(std::find(ge->physicals.begin(), ge->physicals.end(), pnum) ==
             ge->physicals.end())
            ge->physicals.push_back(pnum);
        }
      }
    }
  }

  // check if we need to read some post-processing data later
#if (MED_MAJOR_NUM == 3)
  bool postpro = (MEDnField(fid) > 0) ? true : false;
#else
  bool postpro = (MEDnChamp(fid, 0) > 0) ? true : false;
#endif

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return postpro ? 2 : 1;
}

template<class T>
static void fillElementsMED(med_int family, std::vector<T*> &elements,
                            std::vector<med_int> &conn, std::vector<med_int> &fam,
                            med_geometrie_element &type)
{
  if(elements.empty()) return;
  type = msh2medElementType(elements[0]->getTypeForMSH());
  if(type == MED_NONE){
    Msg::Warning("Unsupported element type in MED format");
    return;
  }
  for(unsigned int i = 0; i < elements.size(); i++){
    elements[i]->setVolumePositive();
    for(int j = 0; j < elements[i]->getNumVertices(); j++)
      conn.push_back(elements[i]->getVertex(med2mshNodeIndex(type, j))->getIndex());
    fam.push_back(family);
  }
}

static void writeElementsMED(med_idt &fid, char *meshName, std::vector<med_int> &conn,
                             std::vector<med_int> &fam, med_geometrie_element type)
{
  if(fam.empty()) return;
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshElementWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_CELL, type,
                      MED_NODAL, MED_FULL_INTERLACE, (med_int)fam.size(),
                      &conn[0], MED_FALSE, 0, MED_FALSE, 0, MED_TRUE, &fam[0]) < 0)
#else
  if(MEDelementsEcr(fid, meshName, (med_int)3, &conn[0], MED_FULL_INTERLACE,
                    0, MED_FAUX, 0, MED_FAUX, &fam[0], (med_int)fam.size(),
                    MED_MAILLE, type, MED_NOD) < 0)
#endif
    Msg::Error("Could not write MED elements");
}

int GModel::writeMED(const std::string &name, bool saveAll, double scalingFactor)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_CREATION);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  // write header
  if(MEDfichDesEcr(fid, (char*)"MED file generated by Gmsh") < 0){
    Msg::Error("Unable to write MED descriptor");
    return 0;
  }

  char *meshName = (char*)getName().c_str();

  // Gmsh always writes 3D unstructured meshes
#if (MED_MAJOR_NUM == 3)
  char dtUnit[MED_SNAME_SIZE + 1] = "";
  char axisName[3 * MED_SNAME_SIZE + 1] = "";
  char axisUnit[3 * MED_SNAME_SIZE + 1] = "";
  if(MEDmeshCr(fid, meshName, 3, 3, MED_UNSTRUCTURED_MESH, "Mesh created with Gmsh",
               dtUnit, MED_SORT_DTIT, MED_CARTESIAN, axisName, axisUnit) < 0){
#else
  if(MEDmaaCr(fid, meshName, 3, MED_NON_STRUCTURE,
              (char*)"Mesh created with Gmsh") < 0){
#endif
    Msg::Error("Could not create MED mesh");
    return 0;
  }

  // if there are no physicals we save all the elements
  if(noPhysicalGroups()) saveAll = true;

  // index the vertices we save in a continuous sequence (MED
  // connectivity is given in terms of vertex indices)
  indexMeshVertices(saveAll);

  // get a vector containing all the geometrical entities in the
  // model (the ordering of the entities must be the same as the one
  // used during the indexing of the vertices)
  std::vector<GEntity*> entities;
  getEntities(entities);

  std::map<GEntity*, int> families;
  // write the families
  {
    // always create a "0" family, with no groups or attributes
#if (MED_MAJOR_NUM == 3)
    if(MEDfamilyCr(fid, meshName, "F_0", 0, 0, "") < 0)
#else
    if(MEDfamCr(fid, meshName, (char*)"F_0", 0, 0, 0, 0, 0, 0, 0) < 0)
#endif
      Msg::Error("Could not create MED family 0");

    // create one family per elementary entity, with one group per
    // physical entity and no attributes
    for(unsigned int i = 0; i < entities.size(); i++){
      if(saveAll || entities[i]->physicals.size()){
        int num = - ((int)families.size() + 1);
        families[entities[i]] = num;
        std::ostringstream fs;
        fs << entities[i]->dim() << "D_" << entities[i]->tag();
        std::string familyName = "F_" + fs.str();
        std::string groupName;
        for(unsigned j = 0; j < entities[i]->physicals.size(); j++){
          std::string tmp = getPhysicalName
            (entities[i]->dim(), entities[i]->physicals[j]);
          if(tmp.empty()){ // create unique name
            std::ostringstream gs;
            gs << entities[i]->dim() << "D_" << entities[i]->physicals[j];
            groupName += "G_" + gs.str();
          }
          else
            groupName += tmp;
          groupName.resize((j + 1) * MED_TAILLE_LNOM, ' ');
        }
#if (MED_MAJOR_NUM == 3)
        if(MEDfamilyCr(fid, meshName, familyName.c_str(),
                       (med_int)num, (med_int)entities[i]->physicals.size(),
                       groupName.c_str()) < 0)
#else
        if(MEDfamCr(fid, meshName, (char*)familyName.c_str(),
                    (med_int)num, 0, 0, 0, 0, (char*)groupName.c_str(),
                    (med_int)entities[i]->physicals.size()) < 0)
#endif
          Msg::Error("Could not create MED family %d", num);
      }
    }
  }

  // write the nodes
  {
    std::vector<med_float> coord;
    std::vector<med_int> fam;
    for(unsigned int i = 0; i < entities.size(); i++){
      for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
        MVertex *v = entities[i]->mesh_vertices[j];
        if(v->getIndex() >= 0){
          coord.push_back(v->x() * scalingFactor);
          coord.push_back(v->y() * scalingFactor);
          coord.push_back(v->z() * scalingFactor);
          fam.push_back(0); // we never create node families
        }
      }
    }
    if(fam.empty()){
      Msg::Error("No nodes to write in MED mesh");
      return 0;
    }
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshNodeWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_FULL_INTERLACE,
                     (med_int)fam.size(), &coord[0], MED_FALSE, "", MED_FALSE, 0,
                     MED_TRUE, &fam[0]) < 0)
#else
    char coordName[3 * MED_TAILLE_PNOM + 1] =
      "x               y               z               ";
    char coordUnit[3 * MED_TAILLE_PNOM + 1] =
      "unknown         unknown         unknown         ";
    if(MEDnoeudsEcr(fid, meshName, (med_int)3, &coord[0], MED_FULL_INTERLACE,
                    MED_CART, coordName, coordUnit, 0, MED_FAUX, 0, MED_FAUX,
                    &fam[0], (med_int)fam.size()) < 0)
#endif
      Msg::Error("Could not write nodes");
  }

  // write the elements
  {
    { // points
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(viter it = firstVertex(); it != lastVertex(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->points, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // lines
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(eiter it = firstEdge(); it != lastEdge(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->lines, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // triangles
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->triangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // quads
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->quadrangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // tets
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->tetrahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // hexas
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->hexahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // prisms
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->prisms, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // pyramids
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->pyramids, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return 1;
}

#else

int GModel::readMED(const std::string &name)
{
  Msg::Error("Gmsh must be compiled with MED support to read '%s'",
             name.c_str());
  return 0;
}
Beispiel #4
0
int main (int argc, char **argv)


{
  med_err ret = 0;
  med_idt fid;
  med_int nse2;
  med_int *se2_1;
  med_int *se2_2;
  char *nomse2;
  med_int *numse2;
  med_int *nufase2; 
  med_int ntr3;
  med_int *tr3;
  char *nomtr3;
  med_int *numtr3;
  med_int *nufatr3;
  char maa[MED_TAILLE_NOM+1] ="maa1";
  med_int mdim = 2;
  med_booleen inoele,inuele;
  med_int tse2,ttr3;
  med_int i;
  char str[MED_TAILLE_PNOM+1];
  med_int profil[2] = { 2, 3 };
  char desc[MED_TAILLE_DESC+1];
  med_maillage type;
  
  /* Ouverture du fichier en mode lecture seule */
  if ((fid = MEDouvrir("test6.med",MED_LECTURE)) < 0) {
    MESSAGE("Erreur a l'ouverture du fichier test6.med");
    return -1;
  }

  /* Lecture des informations sur le premier maillage */
  if (MEDmaaInfo(fid,1,maa,&mdim,&type,desc) < 0)  {
    MESSAGE("Erreur a la lecture des information sur le 1er maillage");
    return -1;
  } else
    printf("Maillage de nom : %s et de dimension %d \n",maa,mdim);

  /* Combien de triangles et de segments */
  if ((nse2 = MEDnEntMaa(fid,maa,MED_CONN,MED_ARETE,MED_SEG2,MED_DESC)) < 0)  {
    MESSAGE("Erreur a la lecture du nombre de faces MED_SEG2");
    return -1;
  }
  if ((ntr3 = MEDnEntMaa(fid,maa,MED_CONN,MED_MAILLE,MED_TRIA3,MED_DESC))<0) {
    MESSAGE("Erreur a la lecture du nombre de mailles MED_TRIA3");
    return -1;
  }
  printf("Nombre de MED_SEG2 : "IFORMAT" - nombre de MED_TRIA3 : "IFORMAT"\n",nse2,ntr3);

  /* Allocations memoire */ 
  tse2 = 2;
  se2_1  = (med_int*) calloc(tse2*nse2,sizeof(med_int));
  se2_2  = (med_int*) malloc(sizeof(med_int)*tse2*nse2);
  nomse2 = (char*) malloc(MED_TAILLE_PNOM*nse2+1);
  numse2 = (med_int*) malloc(sizeof(med_int)*nse2);
  nufase2 = (med_int*) malloc(sizeof(med_int)*nse2);

  ttr3 = 3;
  tr3 = (med_int*) malloc(sizeof(med_int)*ntr3*ttr3);
  nomtr3 = (char*) malloc(MED_TAILLE_PNOM*ntr3+1);
  numtr3 = (med_int*) malloc(sizeof(med_int)*ntr3);
  nufatr3 = (med_int*) malloc(sizeof(med_int)*ntr3);

  /* Lecture des connectivites des segments avec profil */
  if (MEDconnLire(fid,maa,mdim,se2_1,MED_FULL_INTERLACE,profil,2,
		  MED_ARETE,MED_SEG2,MED_DESC) < 0) {
    MESSAGE("Erreur a la lecture de la connectivite des segments");
    return -1;
  }

  /* Lecture de la connectivite des segments */
  if (MEDconnLire(fid,maa,mdim,se2_2,MED_FULL_INTERLACE,NULL,0,
		  MED_ARETE  ,MED_SEG2,MED_DESC) < 0) {
    MESSAGE("Erreur a la lecture de la connectivite des segments");
    return -1;
  }

  /* Lecture (optionnelle) des noms des segments */
  if (MEDnomLire(fid,maa,nomse2,nse2,MED_ARETE,MED_SEG2) < 0)
    inoele = MED_FAUX;
  else
    inoele = MED_VRAI;

  /* Lecture (optionnelle) des numeros des segments */
  if (MEDnumLire(fid,maa,numse2,nse2,MED_ARETE,MED_SEG2) < 0)
    inuele = MED_FAUX;
  else
    inuele = MED_VRAI;

  /* Lecture des numeros des familles des segments */
  if (MEDfamLire(fid,maa,nufase2,nse2,MED_ARETE,MED_SEG2) < 0) {
    MESSAGE("Erreur a la lecture des numéros de famille des segments");
    return -1;
  }

  /* Lecture de la connectivite des triangles */
  if (MEDconnLire(fid,maa,mdim,tr3,MED_NO_INTERLACE,NULL,0,MED_MAILLE,MED_TRIA3,
		     MED_DESC) < 0) {
    MESSAGE("Erreur a la lecture de la connectivite des triangles");
    return -1;
  }

  /* Lecture (optionnelle) des noms des triangles */
  if (MEDnomLire(fid,maa,nomtr3,ntr3,MED_MAILLE,MED_TRIA3) < 0)
    inoele = MED_FAUX;
  else
    inoele = MED_VRAI;

  /* Lecture (optionnelle) des numeros des triangles */
  if (MEDnumLire(fid,maa,numtr3,ntr3,MED_MAILLE,MED_TRIA3) < 0)
    inuele = MED_FAUX;
  else
    inuele = MED_VRAI;

  /* Lecture des numeros des familles des triangles */
  if (ret = MEDfamLire(fid,maa,nufatr3,ntr3,MED_MAILLE,MED_TRIA3) < 0) {
    MESSAGE("Erreur a la lecture des numeros de famille des segments");
    return -1;
  }

  /* Fermeture du fichier */
  if (MEDfermer(fid) < 0) {
    MESSAGE("Erreur a la fermeture du fichier");
    return -1;
  }

  /* Affichage */
  if (ret == 0) {
    printf("Connectivite des segments (1): \n");
    for (i=0;i<nse2*tse2;i++)
      printf(IFORMAT" ",*(se2_1+i));
    printf("\n");
    printf("Connectivite des segments (2): \n");
    for (i=0;i<nse2*tse2;i++)
      printf(IFORMAT" ",*(se2_2+i));
    if (inoele) {
      printf("\nNoms des segments :\n");
      for (i=0;i<nse2;i++) {
	strncpy(str,nomse2+i*MED_TAILLE_PNOM,MED_TAILLE_PNOM);
	str[MED_TAILLE_PNOM] = '\0';
	printf("%s ",str);
      }
    }
    if (inuele) {
      printf("\nNumeros des segments :\n");
      for (i=0;i<nse2;i++)
	printf(IFORMAT" ",*(numse2+i));
    }      
    printf("\nNumeros des familles des segments :\n");
    for (i=0;i<nse2;i++)
      printf(IFORMAT" ",*(nufase2+i));

    printf("\nConnectivite des triangles : \n");
    for (i=0;i<ntr3*ttr3;i++)
      printf(IFORMAT" ",*(tr3+i));
    if (inoele) {
      printf("\nNoms des triangles :\n");
      for (i=0;i<ntr3;i++) {
	strncpy(str,nomtr3+i*MED_TAILLE_PNOM,MED_TAILLE_PNOM);
	str[MED_TAILLE_PNOM] = '\0';
	printf("%s ",str);
      }
    }
    if (inuele) {
      printf("\nNumeros des triangles :\n");
      for (i=0;i<ntr3;i++)
	printf(IFORMAT" ",*(numtr3+i));
    }      
    printf("\nNumeros des familles des triangles :\n");
    for (i=0;i<ntr3;i++)
      printf(IFORMAT" ",*(nufatr3+i));
    
    printf("\n");
  }

  /* Nettoyage memoire */
  free(se2_1);
  free(se2_2);
  free(nomse2);
  free(numse2);
  free(nufase2);

  free(tr3);
  free(nomtr3);
  free(numtr3);
  free(nufatr3);

  return ret;
}