/* virtual */ Element*
HTMLFormControlsCollection::GetFirstNamedElement(const nsAString& aName, bool& aFound)
{
  Nullable<OwningNodeListOrElement> maybeResult;
  NamedGetter(aName, aFound, maybeResult);
  if (!aFound) {
    return nullptr;
  }
  MOZ_ASSERT(!maybeResult.IsNull());
  const OwningNodeListOrElement& result = maybeResult.Value();
  if (result.IsElement()) {
    return result.GetAsElement().get();
  }
  if (result.IsNodeList()) {
    nsINodeList& nodelist = result.GetAsNodeList();
    return nodelist.Item(0)->AsElement();
  }
  MOZ_ASSUME_UNREACHABLE("Should only have Elements and NodeLists here.");
}
Beispiel #2
0
JSObject *
WrapperFactory::WrapForSameCompartmentXray(JSContext *cx, JSObject *obj)
{
    // We should be same-compartment here.
    MOZ_ASSERT(js::IsObjectInContextCompartment(obj, cx));

    // Sort out what kind of Xray we can do. If we can't Xray, bail.
    XrayType type = GetXrayType(obj);
    if (type == NotXray)
        return NULL;

    // Select the appropriate proxy handler.
    Wrapper *wrapper = NULL;
    if (type == XrayForWrappedNative)
        wrapper = &SCPermissiveXrayXPCWN::singleton;
    else if (type == XrayForDOMObject)
        wrapper = &SCPermissiveXrayDOM::singleton;
    else
        MOZ_ASSUME_UNREACHABLE("Bad Xray type");

    // Make the Xray.
    JSObject *parent = JS_GetGlobalForObject(cx, obj);
    return Wrapper::New(cx, obj, NULL, parent, wrapper);
}
Beispiel #3
0
bool
ICBinaryArith_Int32::Compiler::generateStubCode(MacroAssembler &masm)
{
    // Guard that R0 is an integer and R1 is an integer.
    Label failure;
    masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
    masm.branchTestInt32(Assembler::NotEqual, R1, &failure);

    Label revertRegister, maybeNegZero;
    switch(op_) {
      case JSOP_ADD:
        masm.unboxInt32(R0, ExtractTemp0);
        // Just jump to failure on overflow. R0 and R1 are preserved, so we can just jump to
        // the next stub.
        masm.addl(R1.valueReg(), ExtractTemp0);
        masm.j(Assembler::Overflow, &failure);

        // Box the result
        masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
        break;
      case JSOP_SUB:
        masm.unboxInt32(R0, ExtractTemp0);
        masm.subl(R1.valueReg(), ExtractTemp0);
        masm.j(Assembler::Overflow, &failure);
        masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
        break;
      case JSOP_MUL:
        masm.unboxInt32(R0, ExtractTemp0);
        masm.imull(R1.valueReg(), ExtractTemp0);
        masm.j(Assembler::Overflow, &failure);

        masm.branchTest32(Assembler::Zero, ExtractTemp0, ExtractTemp0, &maybeNegZero);

        masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
        break;
      case JSOP_DIV:
      {
        JS_ASSERT(R2.scratchReg() == rax);
        JS_ASSERT(R0.valueReg() != rdx);
        JS_ASSERT(R1.valueReg() != rdx);
        masm.unboxInt32(R0, eax);
        masm.unboxInt32(R1, ExtractTemp0);

        // Prevent division by 0.
        masm.branchTest32(Assembler::Zero, ExtractTemp0, ExtractTemp0, &failure);

        // Prevent negative 0 and -2147483648 / -1.
        masm.branch32(Assembler::Equal, eax, Imm32(INT32_MIN), &failure);

        Label notZero;
        masm.branch32(Assembler::NotEqual, eax, Imm32(0), &notZero);
        masm.branchTest32(Assembler::Signed, ExtractTemp0, ExtractTemp0, &failure);
        masm.bind(&notZero);

        // Sign extend eax into edx to make (edx:eax), since idiv is 64-bit.
        masm.cdq();
        masm.idiv(ExtractTemp0);

        // A remainder implies a double result.
        masm.branchTest32(Assembler::NonZero, edx, edx, &failure);

        masm.boxValue(JSVAL_TYPE_INT32, eax, R0.valueReg());
        break;
      }
      case JSOP_MOD:
      {
        JS_ASSERT(R2.scratchReg() == rax);
        JS_ASSERT(R0.valueReg() != rdx);
        JS_ASSERT(R1.valueReg() != rdx);
        masm.unboxInt32(R0, eax);
        masm.unboxInt32(R1, ExtractTemp0);

        // x % 0 always results in NaN.
        masm.branchTest32(Assembler::Zero, ExtractTemp0, ExtractTemp0, &failure);

        // Prevent negative 0 and -2147483648 % -1.
        masm.branchTest32(Assembler::Zero, eax, Imm32(0x7fffffff), &failure);

        // Sign extend eax into edx to make (edx:eax), since idiv is 64-bit.
        masm.cdq();
        masm.idiv(ExtractTemp0);

        // Fail when we would need a negative remainder.
        Label done;
        masm.branchTest32(Assembler::NonZero, edx, edx, &done);
        masm.orl(ExtractTemp0, eax);
        masm.branchTest32(Assembler::Signed, eax, eax, &failure);

        masm.bind(&done);
        masm.boxValue(JSVAL_TYPE_INT32, edx, R0.valueReg());
        break;
      }
      case JSOP_BITOR:
        // We can overide R0, because the instruction is unfailable.
        // Because the tag bits are the same, we don't need to retag.
        masm.orq(R1.valueReg(), R0.valueReg());
        break;
      case JSOP_BITXOR:
        masm.xorl(R1.valueReg(), R0.valueReg());
        masm.tagValue(JSVAL_TYPE_INT32, R0.valueReg(), R0);
        break;
      case JSOP_BITAND:
        masm.andq(R1.valueReg(), R0.valueReg());
        break;
      case JSOP_LSH:
        masm.unboxInt32(R0, ExtractTemp0);
        masm.unboxInt32(R1, ecx); // Unboxing R1 to ecx, clobbers R0.
        masm.shll_cl(ExtractTemp0);
        masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
        break;
      case JSOP_RSH:
        masm.unboxInt32(R0, ExtractTemp0);
        masm.unboxInt32(R1, ecx);
        masm.sarl_cl(ExtractTemp0);
        masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
        break;
      case JSOP_URSH:
        if (!allowDouble_)
            masm.movq(R0.valueReg(), ScratchReg);

        masm.unboxInt32(R0, ExtractTemp0);
        masm.unboxInt32(R1, ecx); // This clobbers R0

        masm.shrl_cl(ExtractTemp0);
        masm.testl(ExtractTemp0, ExtractTemp0);
        if (allowDouble_) {
            Label toUint;
            masm.j(Assembler::Signed, &toUint);

            // Box and return.
            masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
            EmitReturnFromIC(masm);

            masm.bind(&toUint);
            masm.convertUInt32ToDouble(ExtractTemp0, ScratchFloatReg);
            masm.boxDouble(ScratchFloatReg, R0);
        } else {
            masm.j(Assembler::Signed, &revertRegister);
            masm.boxValue(JSVAL_TYPE_INT32, ExtractTemp0, R0.valueReg());
        }
        break;
      default:
        MOZ_ASSUME_UNREACHABLE("Unhandled op in BinaryArith_Int32");
    }

    // Return from stub.
    EmitReturnFromIC(masm);

    if (op_ == JSOP_MUL) {
        masm.bind(&maybeNegZero);

        // Result is -0 if exactly one of lhs or rhs is negative.
        masm.movl(R0.valueReg(), ScratchReg);
        masm.orl(R1.valueReg(), ScratchReg);
        masm.j(Assembler::Signed, &failure);

        // Result is +0.
        masm.moveValue(Int32Value(0), R0);
        EmitReturnFromIC(masm);
    }

    // Revert the content of R0 in the fallible >>> case.
    if (op_ == JSOP_URSH && !allowDouble_) {
        masm.bind(&revertRegister);
        // Restore tag and payload.
        masm.movq(ScratchReg, R0.valueReg());
        // Fall through to failure.
    }
    // Failure case - jump to next stub
    masm.bind(&failure);
    EmitStubGuardFailure(masm);

    return true;
}
Beispiel #4
0
bool
ICBinaryArith_Int32::Compiler::generateStubCode(MacroAssembler &masm)
{
    // Guard that R0 is an integer and R1 is an integer.
    Label failure;
    masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
    masm.branchTestInt32(Assembler::NotEqual, R1, &failure);

    // Add R0 and R1. Don't need to explicitly unbox, just use R2's payloadReg.
    Register scratchReg = R2.payloadReg();

    // DIV and MOD need an extra non-volatile ValueOperand to hold R0.
    GeneralRegisterSet savedRegs = availableGeneralRegs(2);
    savedRegs = GeneralRegisterSet::Intersect(GeneralRegisterSet::NonVolatile(), savedRegs);
    ValueOperand savedValue = savedRegs.takeAnyValue();

    Label goodMul, divTest1, divTest2;
    switch(op_) {
      case JSOP_ADD:
        // We know R0.typeReg() already contains the integer tag. No boxing
        // required.
        masm.ma_addTestOverflow(R0.payloadReg(), R0.payloadReg(), R1.payloadReg(), &failure);
        break;
      case JSOP_SUB:
        masm.ma_subTestOverflow(R0.payloadReg(), R0.payloadReg(), R1.payloadReg(), &failure);
        break;
      case JSOP_MUL: {
        masm.ma_mul_branch_overflow(scratchReg, R0.payloadReg(), R1.payloadReg(), &failure);

        masm.ma_b(scratchReg, Imm32(0), &goodMul, Assembler::NotEqual, ShortJump);

        // Result is -0 if operands have different signs.
        masm.as_xor(t8, R0.payloadReg(), R1.payloadReg());
        masm.ma_b(t8, Imm32(0), &failure, Assembler::LessThan, ShortJump);

        masm.bind(&goodMul);
        masm.move32(scratchReg, R0.payloadReg());
        break;
      }
      case JSOP_DIV:
      case JSOP_MOD: {
        // Check for INT_MIN / -1, it results in a double.
        masm.ma_b(R0.payloadReg(), Imm32(INT_MIN), &divTest1, Assembler::NotEqual, ShortJump);
        masm.ma_b(R1.payloadReg(), Imm32(-1), &failure, Assembler::Equal, ShortJump);
        masm.bind(&divTest1);

        // Check for division by zero
        masm.ma_b(R1.payloadReg(), Imm32(0), &failure, Assembler::Equal, ShortJump);

        // Check for 0 / X with X < 0 (results in -0).
        masm.ma_b(R0.payloadReg(), Imm32(0), &divTest2, Assembler::NotEqual, ShortJump);
        masm.ma_b(R1.payloadReg(), Imm32(0), &failure, Assembler::LessThan, ShortJump);
        masm.bind(&divTest2);

        masm.as_div(R0.payloadReg(), R1.payloadReg());

        if (op_ == JSOP_DIV) {
            // Result is a double if the remainder != 0.
            masm.as_mfhi(scratchReg);
            masm.ma_b(scratchReg, Imm32(0), &failure, Assembler::NotEqual, ShortJump);
            masm.as_mflo(scratchReg);
            masm.tagValue(JSVAL_TYPE_INT32, scratchReg, R0);
        } else {
            Label done;
            // If X % Y == 0 and X < 0, the result is -0.
            masm.as_mfhi(scratchReg);
            masm.ma_b(scratchReg, Imm32(0), &done, Assembler::NotEqual, ShortJump);
            masm.ma_b(R0.payloadReg(), Imm32(0), &failure, Assembler::LessThan, ShortJump);
            masm.bind(&done);
            masm.tagValue(JSVAL_TYPE_INT32, scratchReg, R0);
        }
        break;
      }
      case JSOP_BITOR:
        masm.ma_or(R0.payloadReg() , R0.payloadReg(), R1.payloadReg());
        break;
      case JSOP_BITXOR:
        masm.ma_xor(R0.payloadReg() , R0.payloadReg(), R1.payloadReg());
        break;
      case JSOP_BITAND:
        masm.ma_and(R0.payloadReg() , R0.payloadReg(), R1.payloadReg());
        break;
      case JSOP_LSH:
        // MIPS will only use 5 lowest bits in R1 as shift offset.
        masm.ma_sll(R0.payloadReg(), R0.payloadReg(), R1.payloadReg());
        break;
      case JSOP_RSH:
        masm.ma_sra(R0.payloadReg(), R0.payloadReg(), R1.payloadReg());
        break;
      case JSOP_URSH:
        masm.ma_srl(scratchReg, R0.payloadReg(), R1.payloadReg());
        if (allowDouble_) {
            Label toUint;
            masm.ma_b(scratchReg, Imm32(0), &toUint, Assembler::LessThan, ShortJump);

            // Move result and box for return.
            masm.move32(scratchReg, R0.payloadReg());
            EmitReturnFromIC(masm);

            masm.bind(&toUint);
            masm.convertUInt32ToDouble(scratchReg, FloatReg1);
            masm.boxDouble(FloatReg1, R0);
        } else {
            masm.ma_b(scratchReg, Imm32(0), &failure, Assembler::LessThan, ShortJump);
            // Move result for return.
            masm.move32(scratchReg, R0.payloadReg());
        }
        break;
      default:
        MOZ_ASSUME_UNREACHABLE("Unhandled op for BinaryArith_Int32.");
    }

    EmitReturnFromIC(masm);

    // Failure case - jump to next stub
    masm.bind(&failure);
    EmitStubGuardFailure(masm);

    return true;
}
Beispiel #5
0
bool
ICBinaryArith_Int32::Compiler::generateStubCode(MacroAssembler &masm)
{
    // Guard that R0 is an integer and R1 is an integer.
    Label failure;
    masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
    masm.branchTestInt32(Assembler::NotEqual, R1, &failure);

    // Add R0 and R1.  Don't need to explicitly unbox, just use the TailCallReg which
    // should be available.
    Register scratchReg = BaselineTailCallReg;

    Label revertRegister, maybeNegZero;
    switch(op_) {
      case JSOP_ADD:
        // Add R0 and R1.  Don't need to explicitly unbox.
        masm.movl(R0.payloadReg(), scratchReg);
        masm.addl(R1.payloadReg(), scratchReg);

        // Just jump to failure on overflow.  R0 and R1 are preserved, so we can just jump to
        // the next stub.
        masm.j(Assembler::Overflow, &failure);

        // Just overwrite the payload, the tag is still fine.
        masm.movl(scratchReg, R0.payloadReg());
        break;
      case JSOP_SUB:
        masm.movl(R0.payloadReg(), scratchReg);
        masm.subl(R1.payloadReg(), scratchReg);
        masm.j(Assembler::Overflow, &failure);
        masm.movl(scratchReg, R0.payloadReg());
        break;
      case JSOP_MUL:
        masm.movl(R0.payloadReg(), scratchReg);
        masm.imull(R1.payloadReg(), scratchReg);
        masm.j(Assembler::Overflow, &failure);

        masm.testl(scratchReg, scratchReg);
        masm.j(Assembler::Zero, &maybeNegZero);

        masm.movl(scratchReg, R0.payloadReg());
        break;
      case JSOP_DIV:
        // Prevent division by 0.
        masm.branchTest32(Assembler::Zero, R1.payloadReg(), R1.payloadReg(), &failure);

        // Prevent negative 0 and -2147483648 / -1.
        masm.branchTest32(Assembler::Zero, R0.payloadReg(), Imm32(0x7fffffff), &failure);

        // For idiv we need eax.
        JS_ASSERT(R1.typeReg() == eax);
        masm.movl(R0.payloadReg(), eax);
        // Preserve R0.payloadReg()/edx, eax is JSVAL_TYPE_INT32.
        masm.movl(R0.payloadReg(), scratchReg);
        // Sign extend eax into edx to make (edx:eax), since idiv is 64-bit.
        masm.cdq();
        masm.idiv(R1.payloadReg());

        // A remainder implies a double result.
        masm.branchTest32(Assembler::NonZero, edx, edx, &revertRegister);

        masm.movl(eax, R0.payloadReg());
        break;
      case JSOP_MOD:
      {
        // x % 0 always results in NaN.
        masm.branchTest32(Assembler::Zero, R1.payloadReg(), R1.payloadReg(), &failure);

        // Prevent negative 0 and -2147483648 % -1.
        masm.branchTest32(Assembler::Zero, R0.payloadReg(), Imm32(0x7fffffff), &failure);

        // For idiv we need eax.
        JS_ASSERT(R1.typeReg() == eax);
        masm.movl(R0.payloadReg(), eax);
        // Preserve R0.payloadReg()/edx, eax is JSVAL_TYPE_INT32.
        masm.movl(R0.payloadReg(), scratchReg);
        // Sign extend eax into edx to make (edx:eax), since idiv is 64-bit.
        masm.cdq();
        masm.idiv(R1.payloadReg());

        // Fail when we would need a negative remainder.
        Label done;
        masm.branchTest32(Assembler::NonZero, edx, edx, &done);
        masm.branchTest32(Assembler::Signed, scratchReg, scratchReg, &revertRegister);
        masm.branchTest32(Assembler::Signed, R1.payloadReg(), R1.payloadReg(), &revertRegister);

        masm.bind(&done);
        // Result is in edx, tag in ecx remains untouched.
        JS_ASSERT(R0.payloadReg() == edx);
        JS_ASSERT(R0.typeReg() == ecx);
        break;
      }
      case JSOP_BITOR:
        // We can overide R0, because the instruction is unfailable.
        // The R0.typeReg() is also still intact.
        masm.orl(R1.payloadReg(), R0.payloadReg());
        break;
      case JSOP_BITXOR:
        masm.xorl(R1.payloadReg(), R0.payloadReg());
        break;
      case JSOP_BITAND:
        masm.andl(R1.payloadReg(), R0.payloadReg());
        break;
      case JSOP_LSH:
        // RHS needs to be in ecx for shift operations.
        JS_ASSERT(R0.typeReg() == ecx);
        masm.movl(R1.payloadReg(), ecx);
        masm.shll_cl(R0.payloadReg());
        // We need to tag again, because we overwrote it.
        masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
        break;
      case JSOP_RSH:
        masm.movl(R1.payloadReg(), ecx);
        masm.sarl_cl(R0.payloadReg());
        masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
        break;
      case JSOP_URSH:
        if (!allowDouble_)
            masm.movl(R0.payloadReg(), scratchReg);

        masm.movl(R1.payloadReg(), ecx);
        masm.shrl_cl(R0.payloadReg());
        masm.testl(R0.payloadReg(), R0.payloadReg());
        if (allowDouble_) {
            Label toUint;
            masm.j(Assembler::Signed, &toUint);

            // Box and return.
            masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
            EmitReturnFromIC(masm);

            masm.bind(&toUint);
            masm.convertUInt32ToDouble(R0.payloadReg(), ScratchFloatReg);
            masm.boxDouble(ScratchFloatReg, R0);
        } else {
            masm.j(Assembler::Signed, &revertRegister);
            masm.tagValue(JSVAL_TYPE_INT32, R0.payloadReg(), R0);
        }
        break;
      default:
       MOZ_ASSUME_UNREACHABLE("Unhandled op for BinaryArith_Int32.  ");
    }

    // Return.
    EmitReturnFromIC(masm);

    switch(op_) {
      case JSOP_MUL:
        masm.bind(&maybeNegZero);

        // Result is -0 if exactly one of lhs or rhs is negative.
        masm.movl(R0.payloadReg(), scratchReg);
        masm.orl(R1.payloadReg(), scratchReg);
        masm.j(Assembler::Signed, &failure);

        // Result is +0.
        masm.xorl(R0.payloadReg(), R0.payloadReg());
        EmitReturnFromIC(masm);
        break;
      case JSOP_DIV:
      case JSOP_MOD:
        masm.bind(&revertRegister);
        masm.movl(scratchReg, R0.payloadReg());
        masm.movl(ImmType(JSVAL_TYPE_INT32), R1.typeReg());
        break;
      case JSOP_URSH:
        // Revert the content of R0 in the fallible >>> case.
        if (!allowDouble_) {
            masm.bind(&revertRegister);
            masm.tagValue(JSVAL_TYPE_INT32, scratchReg, R0);
        }
        break;
      default:
        // No special failure handling required.
        // Fall through to failure.
        break;
    }

    // Failure case - jump to next stub
    masm.bind(&failure);
    EmitStubGuardFailure(masm);

    return true;
}
Beispiel #6
0
PRStatus
PR_CallOnceWithArg(PRCallOnceType *once, PRCallOnceWithArgFN func, void *arg)
{
    MOZ_ASSUME_UNREACHABLE("PR_CallOnceWithArg unimplemented");
}
Beispiel #7
0
PRStatus
PR_CallOnce(PRCallOnceType *once, PRCallOnceFN func)
{
    MOZ_ASSUME_UNREACHABLE("PR_CallOnce unimplemented");
}