Beispiel #1
0
int MPIR_Type_contiguous_x_impl(MPI_Count count,
                              MPI_Datatype oldtype,
			      MPI_Datatype *newtype)
{
    /* to make 'count' fit MPI-3 type processing routines (which take integer
     * counts), we construct a type consisting of N INT_MAX chunks followed by
     * a remainder.  e.g for a count of 4000000000 bytes you would end up with
     * one 2147483647-byte chunk followed immediately by a 1852516353-byte
     * chunk */
    MPI_Datatype chunks, remainder;
    MPI_Aint lb, extent, disps[2];
    int blocklens[2];
    MPI_Datatype types[2];
    int mpi_errno;

    /* truly stupendously large counts will overflow an integer with this math,
     * but that is a problem for a few decades from now.  Sorry, few decades
     * from now! */
    MPIR_Assert(count/INT_MAX == (int)(count/INT_MAX));
    int c = (int)(count/INT_MAX); /* OK to cast until 'count' is 256 bits */
    int r = count%INT_MAX;

    mpi_errno = MPIR_Type_vector_impl(c, INT_MAX, INT_MAX, oldtype, &chunks);
    if (mpi_errno != MPI_SUCCESS) goto fn_fail;
    mpi_errno = MPIR_Type_contiguous_impl(r, oldtype, &remainder);
    if (mpi_errno != MPI_SUCCESS) goto fn_fail;

    MPIR_Type_get_extent_impl(oldtype, &lb, &extent);

    blocklens[0] = 1;      blocklens[1] = 1;
    disps[0]     = 0;      disps[1]     = c*extent*INT_MAX;
    types[0]     = chunks; types[1]     = remainder;

    mpi_errno = MPIR_Type_create_struct_impl(2, blocklens, disps, types, newtype);

    MPIR_Type_free_impl(&chunks);
    MPIR_Type_free_impl(&remainder);

fn_exit:
    return mpi_errno;
fn_fail:
    goto fn_exit;
}
Beispiel #2
0
int MPII_Dataloop_convert_subarray(int ndims,
                                   int *array_of_sizes,
                                   int *array_of_subsizes,
                                   int *array_of_starts,
                                   int order, MPI_Datatype oldtype, MPI_Datatype * newtype)
{
    int mpi_errno = MPI_SUCCESS;
    MPI_Aint extent, disps[3], size;
    int i, blklens[3];
    MPI_Datatype tmp1, tmp2, types[3];

    MPIR_Datatype_get_extent_macro(oldtype, extent);

    if (order == MPI_ORDER_FORTRAN) {
        /* dimension 0 changes fastest */
        if (ndims == 1) {
            mpi_errno = MPIR_Type_contiguous_impl(array_of_subsizes[0], oldtype, &tmp1);
            if (mpi_errno)
                MPIR_ERR_POP(mpi_errno);
        } else {
            mpi_errno = MPIR_Type_vector_impl(array_of_subsizes[1],
                                              array_of_subsizes[0],
                                              array_of_sizes[0], oldtype, &tmp1);
            if (mpi_errno)
                MPIR_ERR_POP(mpi_errno);

            size = (MPI_Aint) (array_of_sizes[0]) * extent;
            for (i = 2; i < ndims; i++) {
                size *= (MPI_Aint) (array_of_sizes[i - 1]);
                mpi_errno = MPIR_Type_hvector_impl(array_of_subsizes[i], 1, size, tmp1, &tmp2);
                if (mpi_errno)
                    MPIR_ERR_POP(mpi_errno);
                MPIR_Type_free_impl(&tmp1);
                tmp1 = tmp2;
            }
        }

        /* add displacement and UB */
        disps[1] = (MPI_Aint) (array_of_starts[0]);
        size = 1;
        for (i = 1; i < ndims; i++) {
            size *= (MPI_Aint) (array_of_sizes[i - 1]);
            disps[1] += size * (MPI_Aint) (array_of_starts[i]);
        }
        /* rest done below for both Fortran and C order */
    }

    else {      /* order == MPI_ORDER_C */

        /* dimension ndims-1 changes fastest */
        if (ndims == 1) {
            mpi_errno = MPIR_Type_contiguous_impl(array_of_subsizes[0], oldtype, &tmp1);
            if (mpi_errno)
                MPIR_ERR_POP(mpi_errno);
        } else {
            mpi_errno = MPIR_Type_vector_impl(array_of_subsizes[ndims - 2],
                                              array_of_subsizes[ndims - 1],
                                              array_of_sizes[ndims - 1], oldtype, &tmp1);
            if (mpi_errno)
                MPIR_ERR_POP(mpi_errno);

            size = (MPI_Aint) (array_of_sizes[ndims - 1]) * extent;
            for (i = ndims - 3; i >= 0; i--) {
                size *= (MPI_Aint) (array_of_sizes[i + 1]);
                mpi_errno = MPIR_Type_hvector_impl(array_of_subsizes[i], 1, size, tmp1, &tmp2);
                if (mpi_errno)
                    MPIR_ERR_POP(mpi_errno);
                MPIR_Type_free_impl(&tmp1);
                tmp1 = tmp2;
            }
        }

        /* add displacement and UB */
        disps[1] = (MPI_Aint) (array_of_starts[ndims - 1]);
        size = 1;
        for (i = ndims - 2; i >= 0; i--) {
            size *= (MPI_Aint) (array_of_sizes[i + 1]);
            disps[1] += size * (MPI_Aint) (array_of_starts[i]);
        }
    }

    disps[1] *= extent;

    disps[2] = extent;
    for (i = 0; i < ndims; i++)
        disps[2] *= (MPI_Aint) (array_of_sizes[i]);

    disps[0] = 0;
    blklens[0] = blklens[1] = blklens[2] = 1;
    types[0] = MPI_LB;
    types[1] = tmp1;
    types[2] = MPI_UB;

    mpi_errno = MPIR_Type_struct_impl(3, blklens, disps, types, newtype);
    if (mpi_errno)
        MPIR_ERR_POP(mpi_errno);

    MPIR_Type_free_impl(&tmp1);

  fn_exit:
    return mpi_errno;
  fn_fail:
    goto fn_exit;
}