Beispiel #1
0
int main(int argc, char *argv[])
{
    int nprocs, i, pmode;
    char *win_buf;

    MTest_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &pmode);
    if (pmode != MPI_THREAD_MULTIPLE) {
	fprintf(stderr, "Thread Multiple not supported by the MPI implementation\n");
        MPI_Abort(MPI_COMM_WORLD, -1);
    }

    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

    if (nprocs < 2) {
        printf("Run this program with 2 or more processes\n");
        MPI_Abort(MPI_COMM_WORLD, 1);
    }

    errs += MPI_Win_allocate(COUNT * sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &win_buf, &win);
    errs += MPI_Win_lock_all(0, win);

    for (i = 0; i < NUM_THREADS; i++)
        errs += MTest_Start_thread(run_test, NULL);
    errs += MTest_Join_threads();

    errs += MPI_Win_unlock_all(win);

    errs += MPI_Win_free(&win);

    MTest_Finalize(errs);
    MPI_Finalize();

    return 0;
}
Beispiel #2
0
dart_ret_t dart_team_destroy(
  dart_team_t teamid)
{
  MPI_Comm comm;
  MPI_Win win;
  uint16_t index;
  dart_unit_t id;

  int result = dart_adapt_teamlist_convert(teamid, &index);
  if (result == -1) {
    return DART_ERR_INVAL;
  }
  comm = dart_teams[index];

  dart_myid (&id);

//  free (dart_unit_mapping[index]);

//  MPI_Win_free (&(sharedmem_win_list[index]));
#if !defined(DART_MPI_DISABLE_SHARED_WINDOWS)
  free(dart_sharedmem_table[index]);
#endif
  win = dart_win_lists[index];
  MPI_Win_unlock_all(win);
  MPI_Win_free(&win);
  dart_adapt_teamlist_recycle(index, result);

  /* -- Release the communicator associated with teamid -- */
  MPI_Comm_free (&comm);

  DART_LOG_DEBUG("%2d: TEAMDESTROY  - destroy team %d", id, teamid);
  return DART_OK;
}
Beispiel #3
0
int main (int argc, char *argv[])
{
        struct pe_vars v;
	long * msg_buffer;
	/*
	 * Initialize
	 */
	init_mpi(&v);
	check_usage(argc, argv, v.npes, v.me);
	print_header(v.me);

	if (v.me == 0) printf("Total processes = %d\n",v.npes);
	/*
	 * Allocate Memory
	 */
	msg_buffer = allocate_memory(v.me, &(v.win) );
	memset(msg_buffer, 0, MAX_MSG_SZ * ITERS_LARGE * sizeof(long));
	/*
	 * Time Put Message Rate
	 */
	benchmark(msg_buffer, v.me, v.pairs, v.nxtpe, v.win);
	/*
	 * Finalize
	 */
	MPI_Win_unlock_all(v.win);
	MPI_Win_free(&v.win); 	
	MPI_Free_mem(msg_buffer);

	MPI_Finalize();

	return EXIT_SUCCESS;
}
Beispiel #4
0
/*Run FOP with Lock_all/unlock_all */
void run_fop_with_lock_all (int rank, WINDOW type)
{
    int i;
    MPI_Aint disp = 0;
    MPI_Win     win;

    allocate_atomic_memory(rank, sbuf_original, rbuf_original,
                tbuf_original, NULL, (char **)&sbuf, (char **)&rbuf,
                (char **)&tbuf, NULL, (char **)&rbuf,  MAX_MSG_SIZE, type, &win);

    if(rank == 0) {
        if (type == WIN_DYNAMIC) {
            disp = disp_remote;
        }

        for (i = 0; i < skip + loop; i++) {
            if (i == skip) {
                t_start = MPI_Wtime ();
            }
            MPI_CHECK(MPI_Win_lock_all(0, win));
            MPI_CHECK(MPI_Fetch_and_op(sbuf, tbuf, MPI_LONG_LONG, 1, disp, MPI_SUM, win));
            MPI_CHECK(MPI_Win_unlock_all(win));
        }
        t_end = MPI_Wtime ();
    }                

    MPI_CHECK(MPI_Barrier(MPI_COMM_WORLD));

    print_latency(rank, 8);

    free_atomic_memory (sbuf, rbuf, tbuf, NULL, win, rank);
}
void _XMP_mpi_coarray_deallocate(_XMP_coarray_t *c, bool is_acc)
{
  if(_XMP_flag_multi_win){
    MPI_Win_unlock_all(c->win);
    _XMP_barrier_EXEC();
    _XMP_mpi_onesided_dealloc_win(&(c->win), (void **)&(c->real_addr), is_acc);
  }
}
Beispiel #6
0
void destroy_safe_array()
{
    int rc;
    MP_BARRIER();
    MPI_Win_unlock_all(win);
    MPI_Win_free(&win);
    MP_BARRIER();
}
Beispiel #7
0
int main(int argc, char **argv)
{
    int rank, size;
    MPI_Win win = MPI_WIN_NULL;
    int *baseptr = NULL;
    int errs = 0, mpi_errno = MPI_SUCCESS;
    int val1 = 0, val2 = 0, flag = 0;
    MPI_Request reqs[2];
    MPI_Status stats[2];

    MTest_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    MPI_Errhandler_set(MPI_COMM_WORLD, MPI_ERRORS_RETURN);

    MPI_Win_allocate(2 * sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &baseptr, &win);

    /* Initialize window buffer */
    MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, win);
    baseptr[0] = 1;
    baseptr[1] = 2;
    MPI_Win_unlock(rank, win);
    MPI_Barrier(MPI_COMM_WORLD);
    /* Issue request-based get with testall. */
    MPI_Win_lock_all(0, win);
    MPI_Rget(&val1, 1, MPI_INT, 0, 0, 1, MPI_INT, win, &reqs[0]);
    MPI_Rget(&val2, 1, MPI_INT, 0, 1, 1, MPI_INT, win, &reqs[1]);

    do {
        mpi_errno = MPI_Testall(2, reqs, &flag, stats);
    } while (flag == 0);

    /* Check get value. */
    if (val1 != 1 || val2 != 2) {
        printf("%d - Got val1 = %d, val2 = %d, expected 1, 2\n", rank, val1, val2);
        fflush(stdout);
        errs++;
    }

    /* Check return error code. */
    if (mpi_errno != MPI_SUCCESS) {
        printf("%d - Got return errno %d, expected MPI_SUCCESS(%d)\n",
               rank, mpi_errno, MPI_SUCCESS);
        fflush(stdout);
        errs++;
    }

    MPI_Win_unlock_all(win);
    MPI_Barrier(MPI_COMM_WORLD);

    MPI_Win_free(&win);

    MTest_Finalize(errs);
    MPI_Finalize();

    return errs != 0;
}
void _XMP_mpi_coarray_deregmem(_XMP_coarray_t *c)
{
  if(! _XMP_flag_multi_win){
    _XMP_fatal("single window mode does not support coarray deregmem");
  }

  MPI_Win_unlock_all(c->win);
  _XMP_barrier_EXEC();
  _XMP_mpi_onesided_destroy_win(&(c->win));
}
Beispiel #9
0
/*  garray_destroy()
 */
void garray_destroy(garray_t *ga)
{
    garray_flush(ga);
    MPI_Win_unlock_all(ga->win);
    MPI_Win_free(&ga->win);
    free(ga->dims);

    LOG_INFO(ga->g->glog, "[%d] garray destroyed %ld-array, element size %ld\n",
             ga->g->nid, ga->ndims, ga->elem_size);

    free(ga);
}
Beispiel #10
0
/** Free an MCS mutex.  Collective on ranks in the communicator used at the
 * time of creation.
 *
 * @param[in] hdl handle to the group that will be freed
 * @return        MPI status
 */
int MCS_Mutex_free(MCS_Mutex * hdl_ptr)
{
	MCS_Mutex hdl = *hdl_ptr;

	MPI_Win_unlock_all(hdl->window);

	MPI_Win_free(&hdl->window);
	MPI_Comm_free(&hdl->comm);

	free(hdl);
	hdl_ptr = NULL;

	return MPI_SUCCESS;
}
Beispiel #11
0
int main(int argc, char **argv){
  int i, me, target;
  unsigned int size;
  double t, t_max;
  MPI_Win win;

  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &me);
  MPI_Win_create(&send_buf, sizeof(char)*MAX_SIZE, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &win);
  
  target = 1 - me;
  MPI_Win_lock_all(0, win);
  
  init_buf(send_buf, me);

  if(me==0) print_items();

  for(size=1;size<MAX_SIZE+1;size*=2){
    MPI_Barrier(MPI_COMM_WORLD);
    for(i=0;i<LOOP+WARMUP;i++){
      if(WARMUP == i)
	t = wtime();

      if(me == 0){
	MPI_Put(send_buf, size, MPI_CHAR, target, 0, size, MPI_CHAR, win);
	MPI_Win_flush_local(target, win);

	while(send_buf[0] == '0' || send_buf[size-1] == '0'){ MPI_Win_flush(me, win); }
	send_buf[0] = '0'; send_buf[size-1] = '0';
      }
      else {
	while(send_buf[0] == '1' || send_buf[size-1] == '1'){ MPI_Win_flush(me, win); }
	send_buf[0] = '1'; send_buf[size-1] = '1';

	MPI_Put(send_buf, size, MPI_CHAR, target, 0, size, MPI_CHAR, win);
	MPI_Win_flush_local(target, win);
      }
    } //end of LOOP

    t = wtime() - t;
    MPI_Reduce(&t, &t_max, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
    if(me == 0)
      print_results(size, t_max);
  }

  MPI_Win_unlock_all(win);
  MPI_Win_free(&win);
  MPI_Finalize();
  return 0;
}
int main(int argc, char * argv[])
{
    MPI_Init(&argc, &argv);

    int wrank, wsize;
    MPI_Comm_rank(MPI_COMM_WORLD, &wrank);
    MPI_Comm_size(MPI_COMM_WORLD, &wsize);

    int nrank, nsize;
    MPI_Comm MPI_COMM_NODE;
    MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0 /* key */, MPI_INFO_NULL, &MPI_COMM_NODE);
    MPI_Comm_rank(MPI_COMM_NODE, &nrank);
    MPI_Comm_size(MPI_COMM_NODE, &nsize);

    int *   shptr = NULL;
    MPI_Win shwin;
    MPI_Info win_info;
    MPI_Info_create(&win_info);
    MPI_Info_set(win_info, "alloc_shared_noncontig", "true");
    MPI_Win_allocate_shared(sizeof(int), sizeof(int), win_info, MPI_COMM_NODE, &shptr, &shwin);
    MPI_Info_free(&win_info);

    MPI_Win_lock_all(0 /* assertion */, shwin);

    MPI_Win_sync(shwin);
    MPI_Barrier(MPI_COMM_NODE);

    MPI_Aint rsize[nsize];
    int rdisp[nsize];
    int * rptr[nsize];
    for (int i=0; i<nsize; i++) {
        MPI_Win_shared_query(shwin, i, &(rsize[i]), &(rdisp[i]), &(rptr[i]));
        printf("rank=%d target=%d rptr=%p rsize=%zu rdisp=%d \n", nrank, i, rptr[i], (size_t)rsize[i], rdisp[i]);
    }

    MPI_Win_unlock_all(shwin);

    MPI_Win_free(&shwin);

    MPI_Comm_free(&MPI_COMM_NODE);
    MPI_Finalize();

    return 0;
}
Beispiel #13
0
int main(int argc, char *argv[])
{
    int errs = 0;
    int rank, nprocs, i, pmode;
    double *win_mem;

    MTest_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &pmode);
    if (pmode != MPI_THREAD_MULTIPLE) {
        fprintf(stderr, "MPI_THREAD_MULTIPLE is not supported\n");
        MPI_Abort(MPI_COMM_WORLD, -1);
    }

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

    if (nprocs < 2) {
        printf("Run this program with 2 or more processes\n");
        MPI_Abort(MPI_COMM_WORLD, 1);
    }

    if (rank == 0) {
        errs += MPI_Win_allocate(COUNT * sizeof(double), sizeof(double),
                MPI_INFO_NULL, MPI_COMM_WORLD, &win_mem, &win);
    } else {
        errs += MPI_Win_allocate(0, sizeof(double), MPI_INFO_NULL,
                MPI_COMM_WORLD, &win_mem, &win);
    }

    errs += MPI_Win_lock_all(0, win);

    for (i = 0; i < NUM_THREADS; i++)
        errs += MTest_Start_thread(run_test, NULL);
    errs += MTest_Join_threads();

    errs += MPI_Win_unlock_all(win);

    errs += MPI_Win_free(&win);

    MTest_Finalize(errs);
    MPI_Finalize();

    return 0;
}
int SMP_Bcast(void* buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)
{
    int nrank = -1;
    MPI_Comm_rank(comm, &nrank);

#ifndef DEBUG
    int nsize = 0;
    MPI_Comm_size(comm, &nsize);
    /* fast path for trivial case */
    if (nsize==1) return MPI_SUCCESS;
#endif

    /* Type_size only works for types without holes. */
    int ts = 0;
    MPI_Type_size(datatype, &ts);

    MPI_Aint winsize = (nrank==0) ? count * ts : 0;
    void * local = NULL;
    MPI_Win wintemp = MPI_WIN_NULL;
    MPI_Win_allocate_shared(winsize, ts, MPI_INFO_NULL, comm, &local, &wintemp);

    void * remote = NULL;
    int disp; /* unused */
    MPI_Win_shared_query(wintemp, 0, &winsize, &disp, &remote);

    MPI_Win_lock_all(0, wintemp);
    if (nrank==0) {
        memcpy(local, buffer, (size_t)count*ts);
    }
    MPI_Win_sync(wintemp);
    if (nrank!=0) {
        memcpy(buffer, remote, (size_t)count*ts);
    }
    MPI_Win_unlock_all(wintemp);

    MPI_Win_free(&wintemp);
    return MPI_SUCCESS;
}
Beispiel #15
0
/*Run Get_accumulate with Lock_all/unlock_all */
void run_get_acc_with_lock_all(int rank, WINDOW type)
{
    int size, i;
    MPI_Aint disp = 0;
    MPI_Win     win;

    for (size = 0; size <= MAX_SIZE; size = (size ? size * 2 : size + 1)) {
        allocate_memory(rank, rbuf, size, type, &win);

        if (type == WIN_DYNAMIC) {
            disp = sdisp_remote;
        }

        if(size > LARGE_MESSAGE_SIZE) {
            loop = LOOP_LARGE;
            skip = SKIP_LARGE;
        }

        if(rank == 0) {
            for (i = 0; i < skip + loop; i++) {
                if (i == skip) {
                    t_start = MPI_Wtime ();
                }
                MPI_CHECK(MPI_Win_lock_all(0, win));
                MPI_CHECK(MPI_Get_accumulate(sbuf, size, MPI_CHAR, cbuf, size, MPI_CHAR, 1, disp, size,
                    MPI_CHAR, MPI_SUM, win));
                MPI_CHECK(MPI_Win_unlock_all(win));
            }
            t_end = MPI_Wtime ();
        }                

        MPI_CHECK(MPI_Barrier(MPI_COMM_WORLD));

        print_latency(rank, size);
        
        MPI_Win_free(&win);
    }
}
void _XMP_mpi_coarray_detach(_XMP_coarray_t *coarray_desc, const bool is_acc)
{
  if(_XMP_flag_multi_win){
    MPI_Win win = is_acc? coarray_desc->win_acc : coarray_desc->win;
    MPI_Win_unlock_all(win);
    _XMP_barrier_EXEC();
    _XMP_mpi_onesided_destroy_win(&win);
  }else{
    MPI_Win win = _xmp_mpi_distarray_win;
    void *real_addr = coarray_desc->real_addr;
#ifdef _XMP_XACC
    if(is_acc){
      win = _xmp_mpi_distarray_win_acc;
      real_addr = coarray_desc->real_addr_dev;
    }
#endif

    MPI_Win_detach(win, real_addr);
  }

  if(is_acc){
#ifdef _XMP_XACC
    _XMP_free(coarray_desc->addr_dev); //FIXME may be wrong
    coarray_desc->addr_dev = NULL;
    coarray_desc->real_addr_dev = NULL;
    coarray_desc->win_acc = MPI_WIN_NULL;
    coarray_desc->nodes = NULL;
#endif
  }else{
    _XMP_free(coarray_desc->addr);
    coarray_desc->addr = NULL;
    coarray_desc->real_addr = NULL;
    coarray_desc->win = MPI_WIN_NULL;
    coarray_desc->nodes = NULL;
  }
}
Beispiel #17
0
void oshmpi_deallock(void)
{
  MPI_Win_unlock_all (oshmpi_lock_win);
  MPI_Win_free (&oshmpi_lock_win);
  return;
}
void run_rma_test(int nprocs_per_node)
{
  int myrank, nprocs;
  int mem_rank;
  MPI_Win win;
  int *baseptr;
  MPI_Aint local_size;

  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

  if (nprocs < nprocs_per_node * 2)
  {
    if (!myrank) printf("should start program with at least %d processes\n", nprocs_per_node * 2);
    MPI_Finalize();
    exit(EXIT_FAILURE);
  }


  mem_rank = nprocs_per_node + nprocs_per_node / 2;

  local_size = (myrank == mem_rank) ? COUNT : 0;

  MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

  MPI_Win_lock_all(0, win);



  int type_size;
  MPI_Type_size(MPI_INT, &type_size);

  size_t nbytes = COUNT * type_size;

  assert(MPI_Alloc_mem(nbytes, MPI_INFO_NULL, &baseptr) == MPI_SUCCESS);
  assert(MPI_Win_attach(win, baseptr, nbytes) == MPI_SUCCESS);

  MPI_Aint ldisp;
  MPI_Aint *disps = malloc(nprocs * sizeof(MPI_Aint));

  assert(MPI_Get_address(baseptr, &ldisp) == MPI_SUCCESS);

  assert(MPI_Allgather(&ldisp, 1, MPI_AINT, disps, nprocs, MPI_AINT, MPI_COMM_WORLD) == MPI_SUCCESS);

  if (myrank == 0)
  {
    for (size_t idx = 0; idx < COUNT; ++idx) {
      baseptr[idx] = idx * COUNT + 1;
    }
  }

  MPI_Barrier(MPI_COMM_WORLD);

  if (myrank == mem_rank) {
    assert(MPI_Get(baseptr, 10, MPI_INT, 0, disps[0], 10, MPI_INT, win) == MPI_SUCCESS);
    assert(MPI_Win_flush(0, win) == MPI_SUCCESS);

    for (size_t idx = 0; idx < COUNT; ++idx) {
      assert(baseptr[idx] == idx * 10 + 1);
    }
  }

  MPI_Barrier(MPI_COMM_WORLD);

  MPI_Win_unlock_all(win);

  MPI_Barrier(MPI_COMM_WORLD);

  MPI_Win_free(&win);

  MPI_Free_mem(baseptr);

  printf("Test finished\n");
}
Beispiel #19
0
int main(int argc, char ** argv)
{
  int Block_order;
  size_t Block_size;
  size_t Colblock_size;
  int Tile_order=32;
  int tiling;
  int Num_procs;     /* Number of ranks                                          */
  int order;         /* overall matrix order                                     */
  int send_to, recv_from; /* communicating ranks                                 */
  size_t bytes;      /* total amount of data to be moved                         */
  int my_ID;         /* rank                                                     */
  int root=0;        /* root rank of a communicator                              */
  int iterations;    /* number of times to run the pipeline algorithm            */
  int i, j, it, jt, ID;/* dummies                                                */
  int iter;          /* index of iteration                                       */
  int phase;         /* phase in the staged communication                        */
  size_t colstart;   /* sequence number of first column owned by calling rank    */
  int error=0;       /* error flag                                               */
  double *A_p;       /* original matrix column block                             */
  double *B_p;       /* transposed matrix column block                           */
  double *Work_in_p; /* workspace for the transpose function                     */
  double *Work_out_p;/* workspace for the transpose function                     */
  double abserr, abserr_tot; /* computed error                                   */
  double epsilon = 1.e-8; /* error tolerance                                     */
  double local_trans_time, /* timing parameters                                  */
         trans_time,
         avgtime;
  MPI_Status status; /* completion status of message                             */
  MPI_Win shm_win_A; /* Shared Memory window object                              */
  MPI_Win shm_win_B; /* Shared Memory window object                              */
  MPI_Win shm_win_Work_in; /* Shared Memory window object                        */
  MPI_Win shm_win_Work_out; /* Shared Memory window object                       */
  MPI_Info rma_winfo;/* info for window                                          */
  MPI_Comm shm_comm_prep;/* Shared Memory prep Communicator                      */
  MPI_Comm shm_comm; /* Shared Memory Communicator                               */
  int shm_procs;     /* # of ranks in shared domain                              */
  int shm_ID;        /* MPI rank within coherence domain                         */
  int group_size;    /* number of ranks per shared memory group                  */
  int Num_groups;    /* number of shared memory group                            */
  int group_ID;      /* sequence number of shared memory group                   */
  int size_mul;      /* size multiplier; 0 for non-root ranks in coherence domain*/
  int istart;
  MPI_Request send_req, recv_req;

/*********************************************************************************
** Initialize the MPI environment
**********************************************************************************/
  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &my_ID);
  MPI_Comm_size(MPI_COMM_WORLD, &Num_procs);

  root = 0;

/*********************************************************************
** process, test and broadcast input parameter
*********************************************************************/

  if (my_ID == root){
    if (argc != 4 && argc !=5){
      printf("Usage: %s  <#ranks per coherence domain> <# iterations> <matrix order> [tile size]\n", 
             *argv);
      error = 1;
      goto ENDOFTESTS;
    }

    group_size = atoi(*++argv);
    if (group_size < 1) {
      printf("ERROR: # ranks per coherence domain must be >= 1 : %d \n",group_size);
      error = 1;
      goto ENDOFTESTS;
    } 
    if (Num_procs%group_size) {
      printf("ERROR: toal # %d ranks not divisible by ranks per coherence domain %d\n",
	     Num_procs, group_size);
      error = 1;
      goto ENDOFTESTS;
    } 

    iterations = atoi(*++argv);
    if (iterations < 1){
      printf("ERROR: iterations must be >= 1 : %d \n",iterations);
      error = 1;
      goto ENDOFTESTS;
    } 

    order = atoi(*++argv);
    if (order < Num_procs) {
      printf("ERROR: matrix order %d should at least # procs %d\n", 
             order, Num_procs);
      error = 1; goto ENDOFTESTS;
    }

    if (order%Num_procs) {
      printf("ERROR: matrix order %d should be divisible by # procs %d\n",
             order, Num_procs);
      error = 1; goto ENDOFTESTS;
    }

    if (argc == 5) Tile_order = atoi(*++argv);

    ENDOFTESTS:;
  }
  bail_out(error); 

  /*  Broadcast input data to all ranks */
  MPI_Bcast(&order,      1, MPI_INT, root, MPI_COMM_WORLD);
  MPI_Bcast(&iterations, 1, MPI_INT, root, MPI_COMM_WORLD);
  MPI_Bcast(&Tile_order, 1, MPI_INT, root, MPI_COMM_WORLD);
  MPI_Bcast(&group_size, 1, MPI_INT, root, MPI_COMM_WORLD);

  if (my_ID == root) {
    printf("Parallel Research Kernels version %s\n", PRKVERSION);
    printf("MPI+SHM Matrix transpose: B = A^T\n");
    printf("Number of ranks      = %d\n", Num_procs);
    printf("Rank group size      = %d\n", group_size);
    printf("Matrix order         = %d\n", order);
    printf("Number of iterations = %d\n", iterations);
    if ((Tile_order > 0) && (Tile_order < order))
       printf("Tile size            = %d\n", Tile_order);
    else  printf("Untiled\n");
#ifndef SYNCHRONOUS
    printf("Non-");
#endif
    printf("Blocking messages\n");
  }

  /* Setup for Shared memory regions */

  /* first divide WORLD in groups of size group_size */
  MPI_Comm_split(MPI_COMM_WORLD, my_ID/group_size, my_ID%group_size, &shm_comm_prep);
  /* derive from that a SHM communicator */
  MPI_Comm_split_type(shm_comm_prep, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shm_comm);
  MPI_Comm_rank(shm_comm, &shm_ID);
  MPI_Comm_size(shm_comm, &shm_procs);
  /* do sanity check, making sure groups did not shrink in second comm split */
  if (shm_procs != group_size) MPI_Abort(MPI_COMM_WORLD, 666);

  /* a non-positive tile size means no tiling of the local transpose */
  tiling = (Tile_order > 0) && (Tile_order < order);
  bytes = 2 * sizeof(double) * order * order;

/*********************************************************************
** The matrix is broken up into column blocks that are mapped one to a 
** rank.  Each column block is made up of Num_procs smaller square 
** blocks of order block_order.
*********************************************************************/

  Num_groups     = Num_procs/group_size;
  Block_order    = order/Num_groups;

  group_ID       = my_ID/group_size;
  colstart       = Block_order * group_ID;
  Colblock_size  = order * Block_order;
  Block_size     = Block_order * Block_order;

/*********************************************************************
** Create the column block of the test matrix, the column block of the 
** transposed matrix, and workspace (workspace only if #procs>1)
*********************************************************************/

  /* RMA win info */
  MPI_Info_create(&rma_winfo);
  /* This key indicates that passive target RMA will not be used.
   * It is the one info key that MPICH actually uses for optimization. */
  MPI_Info_set(rma_winfo, "no_locks", "true");

  /* only the root of each SHM domain specifies window of nonzero size */
  size_mul = (shm_ID==0);  
  int offset = 32;
  MPI_Aint size= (Colblock_size+offset)*sizeof(double)*size_mul; int disp_unit;
  MPI_Win_allocate_shared(size, sizeof(double), rma_winfo, shm_comm, 
                          (void *) &A_p, &shm_win_A);
  MPI_Win_lock_all(MPI_MODE_NOCHECK,shm_win_A);
  MPI_Win_shared_query(shm_win_A, MPI_PROC_NULL, &size, &disp_unit, (void *)&A_p);

  if (A_p == NULL){
    printf(" Error allocating space for original matrix on node %d\n",my_ID);
    error = 1;
  }
  bail_out(error);
  A_p += offset;

  /* recompute memory size (overwritten by prior query                 */
  size= (Colblock_size+offset)*sizeof(double)*size_mul; 
  MPI_Win_allocate_shared(size, sizeof(double), rma_winfo, shm_comm, 
                          (void *) &B_p, &shm_win_B);
  MPI_Win_lock_all(MPI_MODE_NOCHECK,shm_win_B);
  MPI_Win_shared_query(shm_win_B, MPI_PROC_NULL, &size, &disp_unit, (void *)&B_p);
  if (B_p == NULL){
    printf(" Error allocating space for transposed matrix by group %d\n",group_ID);
    error = 1;
  }
  bail_out(error);
  B_p += offset;

  if (Num_groups>1) {

    size = Block_size*sizeof(double)*size_mul;
    MPI_Win_allocate_shared(size, sizeof(double),rma_winfo, shm_comm, 
                           (void *) &Work_in_p, &shm_win_Work_in);
    MPI_Win_lock_all(MPI_MODE_NOCHECK,shm_win_Work_in);
    MPI_Win_shared_query(shm_win_Work_in, MPI_PROC_NULL, &size, &disp_unit, 
                         (void *)&Work_in_p);
    if (Work_in_p == NULL){
      printf(" Error allocating space for in block by group %d\n",group_ID);
      error = 1;
    }
    bail_out(error);

    /* recompute memory size (overwritten by prior query                 */
    size = Block_size*sizeof(double)*size_mul;
    MPI_Win_allocate_shared(size, sizeof(double), rma_winfo, 
                            shm_comm, (void *) &Work_out_p, &shm_win_Work_out);
    MPI_Win_lock_all(MPI_MODE_NOCHECK,shm_win_Work_out);
    MPI_Win_shared_query(shm_win_Work_out, MPI_PROC_NULL, &size, &disp_unit, 
                         (void *)&Work_out_p);
    if (Work_out_p == NULL){
      printf(" Error allocating space for out block by group %d\n",group_ID);
      error = 1;
    }
    bail_out(error);
  }

  /* Fill the original column matrix                                             */
  istart = 0;  
  int chunk_size = Block_order/group_size;
  if (tiling) {
      for (j=shm_ID*chunk_size;j<(shm_ID+1)*chunk_size;j+=Tile_order) {
      for (i=0;i<order; i+=Tile_order) 
        for (jt=j; jt<MIN((shm_ID+1)*chunk_size,j+Tile_order); jt++)
          for (it=i; it<MIN(order,i+Tile_order); it++) {
            A(it,jt) = (double) ((double)order*(jt+colstart) + it);
            B(it,jt) = -1.0;
          }
    }
  }
  else {
    for (j=shm_ID*chunk_size;j<(shm_ID+1)*chunk_size;j++) 
      for (i=0;i<order; i++) {
        A(i,j) = (double)((double)order*(j+colstart) + i);
        B(i,j) = -1.0;
      }
  }
  /* NEED A STORE FENCE HERE                                                     */
  MPI_Win_sync(shm_win_A);
  MPI_Win_sync(shm_win_B);
  MPI_Barrier(shm_comm);

  for (iter=0; iter<=iterations; iter++) {

    /* start timer after a warmup iteration */
    if (iter == 1) { 
      MPI_Barrier(MPI_COMM_WORLD);
      local_trans_time = wtime();
    }

    /* do the local transpose                                                    */
    istart = colstart; 
    if (!tiling) {
      for (i=shm_ID*chunk_size; i<(shm_ID+1)*chunk_size; i++) {
        for (j=0; j<Block_order; j++) 
              B(j,i) = A(i,j);
	}
    }
    else {
      for (i=shm_ID*chunk_size; i<(shm_ID+1)*chunk_size; i+=Tile_order) {
        for (j=0; j<Block_order; j+=Tile_order) 
          for (it=i; it<MIN(Block_order,i+Tile_order); it++)
            for (jt=j; jt<MIN(Block_order,j+Tile_order);jt++) {
              B(jt,it) = A(it,jt); 
	    }
      }
    }

    for (phase=1; phase<Num_groups; phase++){
      recv_from = ((group_ID + phase             )%Num_groups);
      send_to   = ((group_ID - phase + Num_groups)%Num_groups);

      istart = send_to*Block_order; 
      if (!tiling) {
        for (i=shm_ID*chunk_size; i<(shm_ID+1)*chunk_size; i++) 
          for (j=0; j<Block_order; j++){
	    Work_out(j,i) = A(i,j);
	  }
      }
      else {
        for (i=shm_ID*chunk_size; i<(shm_ID+1)*chunk_size; i+=Tile_order)
          for (j=0; j<Block_order; j+=Tile_order) 
            for (it=i; it<MIN(Block_order,i+Tile_order); it++)
              for (jt=j; jt<MIN(Block_order,j+Tile_order);jt++) {
                Work_out(jt,it) = A(it,jt); 
	      }
      }

      /* NEED A LOAD/STORE FENCE HERE                                            */
      MPI_Win_sync(shm_win_Work_in);
      MPI_Win_sync(shm_win_Work_out);
      MPI_Barrier(shm_comm);
      if (shm_ID==0) {
#ifndef SYNCHRONOUS  
        /* if we place the Irecv outside this block, it would not be
           protected by a local barrier, which creates a race                    */
        MPI_Irecv(Work_in_p, Block_size, MPI_DOUBLE, 
                  recv_from*group_size, phase, MPI_COMM_WORLD, &recv_req);  
        MPI_Isend(Work_out_p, Block_size, MPI_DOUBLE, send_to*group_size,
                  phase, MPI_COMM_WORLD, &send_req);
        MPI_Wait(&recv_req, &status);
        MPI_Wait(&send_req, &status);
#else
        MPI_Sendrecv(Work_out_p, Block_size, MPI_DOUBLE, send_to*group_size, 
                     phase, Work_in_p, Block_size, MPI_DOUBLE, 
  	             recv_from*group_size, phase, MPI_COMM_WORLD, &status);
#endif
      }
      /* NEED A LOAD FENCE HERE                                                  */ 
      MPI_Win_sync(shm_win_Work_in);
      MPI_Win_sync(shm_win_Work_out);
      MPI_Barrier(shm_comm);

      istart = recv_from*Block_order; 
      /* scatter received block to transposed matrix; no need to tile */
      for (j=shm_ID*chunk_size; j<(shm_ID+1)*chunk_size; j++)
        for (i=0; i<Block_order; i++) 
          B(i,j) = Work_in(i,j);

    }  /* end of phase loop  */
  } /* end of iterations */

  local_trans_time = wtime() - local_trans_time;
  MPI_Reduce(&local_trans_time, &trans_time, 1, MPI_DOUBLE, MPI_MAX, root,
             MPI_COMM_WORLD);

  abserr = 0.0;
  istart = 0;
  /*  for (j=shm_ID;j<Block_order;j+=group_size) for (i=0;i<order; i++) { */
  for (j=shm_ID*chunk_size; j<(shm_ID+1)*chunk_size; j++)
    for (i=0;i<order; i++) { 
      abserr += ABS(B(i,j) - (double)((double)order*i + j+colstart));
    }

  MPI_Reduce(&abserr, &abserr_tot, 1, MPI_DOUBLE, MPI_SUM, root, MPI_COMM_WORLD);

  if (my_ID == root) {
    if (abserr_tot < epsilon) {
      printf("Solution validates\n");
      avgtime = trans_time/(double)iterations;
      printf("Rate (MB/s): %lf Avg time (s): %lf\n",1.0E-06*bytes/avgtime, avgtime);
#ifdef VERBOSE
      printf("Summed errors: %f \n", abserr_tot);
#endif
    }
    else {
      printf("ERROR: Aggregate squared error %e exceeds threshold %e\n", abserr_tot, epsilon);
      error = 1;
    }
  }

  bail_out(error);

  MPI_Win_unlock_all(shm_win_A);
  MPI_Win_unlock_all(shm_win_B);

  MPI_Win_free(&shm_win_A);
  MPI_Win_free(&shm_win_B);
  if (Num_groups>1) {
      MPI_Win_unlock_all(shm_win_Work_in);
      MPI_Win_unlock_all(shm_win_Work_out);
      MPI_Win_free(&shm_win_Work_in);
      MPI_Win_free(&shm_win_Work_out);
  }

  MPI_Info_free(&rma_winfo);

  MPI_Finalize();
  exit(EXIT_SUCCESS);

}  /* end of main */
int main(int argc, char *argv[]) {
  MPI_Win counter, table;
  char commands[MAX_COMMANDS][MAX_COMMAND_LEN] = {{0}};
  int rank, comm_size, i;

  // setenv ("MPICH_ASYNC_PROGRESS", "1", 0);
  MPI_Init (&argc, &argv);

  MPI_Comm_rank (MPI_COMM_WORLD, &rank);
  MPI_Comm_size (MPI_COMM_WORLD, &comm_size);

  MPI_Win_create (&commands, MAX_COMMANDS * MAX_COMMAND_LEN, MAX_COMMAND_LEN,
                 MPI_INFO_NULL, MPI_COMM_WORLD, &table);

  MPI_Win_fence (0, table);

  // Distribute command lines to tasks, round-robin, start from task 1

  i = 0;
  if (rank == 0) {
    char line[MAX_COMMAND_LEN + 2];
    MPI_Win_lock_all (MPI_MODE_NOCHECK, table);
    while (fgets (line, MAX_COMMAND_LEN + 2, stdin) != NULL) {
      if (i >= MAX_COMMANDS * comm_size) {
        fprintf (stderr, "MAX_COMMANDS * comm_size (%d) exceeded.\n", i);
        MPI_Abort(MPI_COMM_WORLD, 1);
      }
      if (strlen (line) > MAX_COMMAND_LEN) {
        fprintf (stderr, "MAX_COMMAND_LEN exceeded, line %d: %s\n",
                 i, line);
        MPI_Abort(MPI_COMM_WORLD, 1);
      }
      MPI_Aint disp = (i / comm_size);
      int target_rank = (i + 1) % comm_size;
      MPI_Put (line, MAX_COMMAND_LEN, MPI_CHAR, target_rank, disp,
               MAX_COMMAND_LEN, MPI_CHAR, table);
      MPI_Win_flush_local (target_rank, table);
      i++;
    }
    MPI_Win_unlock_all (table);
  }

  MPI_Win_fence (0, table);

  // Initialize next_command counter/pointer to the top of the command
  // line stack.

  int next_command;

  MPI_Win_create (&next_command, sizeof(int), sizeof(int),
                  MPI_INFO_NULL, MPI_COMM_WORLD, &counter);

  for (i = MAX_COMMANDS - 1; i >= 0; i--) {
    if (commands[i][0]) {
      next_command = i;
      break;
    }
  }

  MPI_Barrier (MPI_COMM_WORLD);

  // Execute command lines
  //
  // Process commands from own rank + steal_increment

  const int dec = -1;
  int steal_increment = 0;
  int current_command;
  while (steal_increment < comm_size) {
    int current_rank = (rank + steal_increment) % comm_size;
    MPI_Win_lock (MPI_LOCK_SHARED, current_rank, 0, counter);
    MPI_Fetch_and_op (&dec, &current_command, MPI_INT, current_rank,
                      0, MPI_SUM, counter);
    MPI_Win_unlock (current_rank, counter);
    if (current_command < 0) {
      steal_increment++;
    } else {
      char command[MAX_COMMAND_LEN] = {0};
      MPI_Win_lock (MPI_LOCK_SHARED, current_rank, MPI_MODE_NOCHECK, table);
      MPI_Get (&command, MAX_COMMAND_LEN, MPI_CHAR, current_rank,
               current_command, MAX_COMMAND_LEN, MPI_CHAR, table);
      MPI_Win_unlock (current_rank, table);
      system (command);
    }
  }

  MPI_Win_free (&counter);
  MPI_Win_free (&table);
  MPI_Barrier (MPI_COMM_WORLD);
  MPI_Finalize ();
  exit (0);
}
Beispiel #21
0
int main(int argc, char **argv) {
    int      i, j, rank, nproc;
    int      shm_rank, shm_nproc;
    MPI_Aint size;
    int      errors = 0, all_errors = 0;
    int     *base, *my_base;
    int      disp_unit;
    MPI_Win  shm_win;
    MPI_Comm shm_comm;

    MPI_Init(&argc, &argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nproc);

    MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank, MPI_INFO_NULL, &shm_comm);

    MPI_Comm_rank(shm_comm, &shm_rank);
    MPI_Comm_size(shm_comm, &shm_nproc);

    /* Allocate ELEM_PER_PROC integers for each process */
    MPI_Win_allocate_shared(sizeof(int)*ELEM_PER_PROC, sizeof(int), MPI_INFO_NULL,
                            shm_comm, &my_base, &shm_win);

    /* Locate absolute base */
    MPI_Win_shared_query(shm_win, MPI_PROC_NULL, &size, &disp_unit, &base);

    /* make sure the query returned the right values */
    if (disp_unit != sizeof(int))
        errors++;
    if (size != ELEM_PER_PROC * sizeof(int))
        errors++;
    if ((shm_rank == 0) && (base != my_base))
        errors++;
    if (shm_rank && (base == my_base))
        errors++;

    if (verbose) printf("%d -- size = %d baseptr = %p my_baseptr = %p\n", shm_rank,
                            (int) size, (void*) base, (void*) my_base);

    MPI_Win_lock_all(MPI_MODE_NOCHECK, shm_win);

    /* Write to all my data */
    for (i = 0; i < ELEM_PER_PROC; i++) {
        my_base[i] = i;
    }

    MPI_Win_sync(shm_win);
    MPI_Barrier(shm_comm);
    MPI_Win_sync(shm_win);

    /* Read and verify everyone's data */
    for (i = 0; i < shm_nproc; i++) {
        for (j = 0; j < ELEM_PER_PROC; j++) {
            if ( base[i*ELEM_PER_PROC + j] != j ) {
                errors++;
                printf("%d -- Got %d at rank %d index %d, expected %d\n", shm_rank,
                       base[i*ELEM_PER_PROC + j], i, j, j);
            }
        }
    }

    MPI_Win_unlock_all(shm_win);
    MPI_Win_free(&shm_win);
    MPI_Comm_free(&shm_comm);

    MPI_Reduce(&errors, &all_errors, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

    if (rank == 0 && all_errors == 0)
        printf(" No Errors\n");

    MPI_Finalize();

    return 0;
}
  /*        MAIN    */
  int
  main (int argc, char *argv[])
  {
    /* to be used for hello world exchanges */
    int rank, numtasks, namelen;
    char name[MPI_MAX_PROCESSOR_NAME];

    /* related to MPI-3 shm*/
    MPI_Comm shmcomm; /* shm communicator  */ 
    MPI_Win win;      /* shm window object */ 
    int *mem;         /* shm memory to be allocated on each node */
    int i0, i1; int* i2; /* for reading back from shm */

    /* current rank exchanges hello world info with partners */
    int partners[n_partners];
    int *partners_map;   /* mapping in shm communicator */
    int **partners_ptrs; /* ptrs to shared mem window for each partner*/
    int j, partner, alloc_len;
    int n_node_partners=0, n_inter_partners=0;

     /* non-blocking inter-node */
    MPI_Request *reqs, *rq;
    int rbuf[n_partners]; /* recv buffer */
    int req_num = 2;      /* each inter-node echange needs a pair of MPI_Irecv and MPI_Isend */

    if (getenv("1DRING_VERBOSE")) verbose = 1; /* Switch on/off printfs thru env */

    MPI_Init (&argc, &argv); 
    MPI_Comm_size (MPI_COMM_WORLD, &numtasks);
    MPI_Comm_rank (MPI_COMM_WORLD, &rank);
    MPI_Get_processor_name (name, &namelen);
    /* if (verbose) printf ("Hello world from COMM_WORLD: rank %d of %d is running on %s\n", rank, numtasks, name); */
    

    /* The 1D ring is defined in partners array. It can be easily expanded to the higher order stencils.
       The current rank has 2 neighbours: previous and next, i.e., prev-rank-next */
    partners[0] = rank-1; /* prev */
    partners[1] = rank+1; /* next */
    /* We will use periodic boundary conditions here */
    if (rank == 0)  partners[0] = numtasks - 1;
    if (rank == (numtasks - 1))  partners[1] = 0;

    /* MPI-3 SHM collective creates shm communicator  */
    MPI_Comm_split_type (MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm); 

   /*  mapping: global rank  -> shmcomm rank is in partners_map */
    partners_map = (int*)malloc(n_partners*sizeof(int)); /* allocate partners_map */
    translate_ranks(shmcomm, partners, partners_map);

   /* number of inter and intra node partners */
    get_n_partners (rank, partners, partners_map,  &n_node_partners, &n_inter_partners); 
    if (verbose) print_n_partners (rank, partners, partners_map,  n_node_partners, n_inter_partners); 

    
    alloc_len = 2*sizeof(int) + namelen+1; /* the size of hello world info: 2 int and string; +1 for '\n' */
    if (n_node_partners > 0)
    {
     /* allocate shared memory windows on each node for intra-node partners  */
     MPI_Win_allocate_shared (alloc_len, 1, MPI_INFO_NULL, shmcomm, /* inputs to MPI-3 SHM collective */
                              &mem, &win);  /* outputs: mem - initial address of window; win - window object */

     /* pointers to mem windows */
     partners_ptrs = (int **)malloc(n_partners*sizeof(int*));  
     get_partners_ptrs (win, partners, partners_map,  partners_ptrs );

    }
    else
    {
       mem = (int *)malloc(alloc_len); 
    }    

    /* allocate MPI Request resources for inter-node comm. */
    if(n_inter_partners > 0)
    {
        reqs = (MPI_Request*)malloc(req_num*n_inter_partners*sizeof(MPI_Request));
        rq = reqs;
    }

    /* start halo exchange */

    if (n_node_partners > 0)
    {    
        /* Entering MPI-3 RMA access epoch required for MPI-3 shm */
        MPI_Win_lock_all (MPI_MODE_NOCHECK, win); 
        /*  alternatively, MPI_Win_lock_all, MPI_Win_sync and MPI_Barrier can be replaced with
        2 MPI_Win_fence calls surrounding update of shared memory.  */
        /* MPI_Win_fence(0, win); */ /* -- alternative */
    }    

    /* update MPI-3 shared memory (or local memory in case of lack of node partners) 
     * by writing hello_world info into mem */
    mem[0] = rank; 
    mem[1] = numtasks;
    memcpy(mem+2, name, namelen);

    if (n_node_partners > 0)
    {    
        /* MPI_Win_fence (0, win); */ /* -- alternative end */

        MPI_Win_sync (win);     /* memory fence to sync node exchanges */ 
        MPI_Barrier (shmcomm);  /* time barrier to make sure all ranks have updated their info */
    }


    for (j=0; j<n_partners; j++) 
    {
        if(partners_map[j] != MPI_UNDEFINED) /* partner j is on the same node  */ 
        {
            i0 = partners_ptrs[j][0]; /* load from MPI-3/SHM ops! */
            i1 = partners_ptrs[j][1];
            i2 = partners_ptrs[j]+2; 
            if(verbose) printf ("load MPI/SHM values from neighbour => rank %d, numtasks %d on %s\n", i0, i1, i2);
        }
        else /* inter-node non-blocking MPI-1 */
        {
            MPI_Irecv (&rbuf[j], 1, MPI_INT, partners[j], 1 , MPI_COMM_WORLD, rq++);
            MPI_Isend (&rank, 1, MPI_INT, partners[j], 1 , MPI_COMM_WORLD, rq++);
        }
    } 

   /* sync inter-node exchanges and print out receive buffer rbuf*/
   if(n_inter_partners > 0)
   {
       MPI_Waitall (req_num*n_inter_partners, reqs, MPI_STATUS_IGNORE); 
       if(verbose){
           for (j =0; j< n_partners;j++)
               if (partners_map[j] == MPI_UNDEFINED) printf("Recieved from my inter-node partner %d\n", rbuf[j]);
       }
   }    
   
   if (n_node_partners > 0)
   {    
       MPI_Win_unlock_all (win);  /* close RMA epoch */
       /* free resources */
       MPI_Win_free (&win);
       free (partners_ptrs); 
   } 
   
   if (n_inter_partners) free (reqs);
   
   free (partners_map);  
   
   MPI_Finalize ();

   return (0);
 }
Beispiel #23
0
int main(int argc, char ** argv) {

  int    Num_procs;       /* number of ranks                                     */
  int    Num_procsx,
         Num_procsy;      /* number of ranks in each coord direction             */
  int    Num_groupsx,
         Num_groupsy;     /* number of blocks in each coord direction            */
  int    my_group;        /* sequence number of shared memory block              */
  int    my_group_IDx,
         my_group_IDy;    /* coordinates of block within block grid              */
  int    group_size;      /* number of ranks in shared memory group              */
  int    group_sizex,
         group_sizey;     /* number of ranks in block in each coord direction    */
  int    my_ID;           /* MPI rank                                            */
  int    my_global_IDx,
         my_global_IDy;   /* coordinates of rank in overall rank grid            */
  int    my_local_IDx,
         my_local_IDy;    /* coordinates of rank within shared memory block      */
  int    right_nbr;       /* global rank of right neighboring tile               */
  int    left_nbr;        /* global rank of left neighboring tile                */
  int    top_nbr;         /* global rank of top neighboring tile                 */
  int    bottom_nbr;      /* global rank of bottom neighboring tile              */
  int    local_nbr[4];    /* list of synchronizing local neighbors               */
  int    num_local_nbrs;  /* number of synchronizing local neighbors             */
  int    dummy;
  DTYPE *top_buf_out;     /* communication buffer                                */
  DTYPE *top_buf_in;      /*       "         "                                   */
  DTYPE *bottom_buf_out;  /*       "         "                                   */
  DTYPE *bottom_buf_in;   /*       "         "                                   */
  DTYPE *right_buf_out;   /*       "         "                                   */
  DTYPE *right_buf_in;    /*       "         "                                   */
  DTYPE *left_buf_out;    /*       "         "                                   */
  DTYPE *left_buf_in;     /*       "         "                                   */
  int    root = 0;
  long   n, width, height;/* linear global and block grid dimension              */
  int    width_rank,
         height_rank;     /* linear local dimension                              */
  int    iter, leftover;  /* dummies                   */
  int    istart_rank,
         iend_rank;       /* bounds of grid tile assigned to calling rank        */
  int    jstart_rank,
         jend_rank;       /* bounds of grid tile assigned to calling rank        */
  int    istart, iend;    /* bounds of grid block containing tile                */
  int    jstart, jend;    /* bounds of grid block containing tile                */
  DTYPE  norm,            /* L1 norm of solution                                 */
         local_norm,      /* contribution of calling rank to L1 norm             */
         reference_norm;  /* value to be matched by computed norm                */
  DTYPE  f_active_points; /* interior of grid with respect to stencil            */
  DTYPE  flops;           /* floating point ops per iteration                    */
  int    iterations;      /* number of times to run the algorithm                */
  double local_stencil_time,/* timing parameters                                 */
         stencil_time,
         avgtime;
  int    stencil_size;    /* number of points in stencil                         */
  DTYPE  * RESTRICT in;   /* input grid values                                   */
  DTYPE  * RESTRICT out;  /* output grid values                                  */
  long   total_length_in; /* total required length to store input array          */
  long   total_length_out;/* total required length to store output array         */
  int    error=0;         /* error flag                                          */
  DTYPE  weight[2*RADIUS+1][2*RADIUS+1]; /* weights of points in the stencil     */
  MPI_Request request[8]; /* requests for sends & receives in 4 coord directions */
  MPI_Win shm_win_in;     /* shared memory window object for IN array            */
  MPI_Win shm_win_out;    /* shared memory window object for OUT array           */
  MPI_Comm shm_comm_prep; /* preparatory shared memory communicator              */
  MPI_Comm shm_comm;      /* Shared Memory Communicator                          */
  int shm_procs;          /* # of rankes in shared domain                        */
  int shm_ID;             /* MPI rank in shared memory domain                    */
  MPI_Aint size_in;       /* size of the IN array in shared memory window        */
  MPI_Aint size_out;      /* size of the OUT array in shared memory window       */
  int size_mul;           /* one for shm_comm root, zero for the other ranks     */
  int disp_unit;          /* ignored                                             */

  /*******************************************************************************
  ** Initialize the MPI environment
  ********************************************************************************/
  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &my_ID);
  MPI_Comm_size(MPI_COMM_WORLD, &Num_procs);

  /*******************************************************************************
  ** process, test, and broadcast input parameters
  ********************************************************************************/

  if (my_ID == root) {
    printf("Parallel Research Kernels version %s\n", PRKVERSION);
    printf("MPI+SHM stencil execution on 2D grid\n");

#if !STAR
      printf("ERROR: Compact stencil not supported\n");
      error = 1;
      goto ENDOFTESTS;
#endif

    if (argc != 4){
      printf("Usage: %s  <#ranks per coherence domain><# iterations> <array dimension> \n",
             *argv);
      error = 1;
      goto ENDOFTESTS;
    }

    group_size = atoi(*++argv);
    if (group_size < 1) {
      printf("ERROR: # ranks per coherence domain must be >= 1 : %d \n",group_size);
      error = 1;
      goto ENDOFTESTS;
    }
    if (Num_procs%group_size) {
      printf("ERROR: total # %d ranks not divisible by ranks per coherence domain %d\n",
	     Num_procs, group_size);
      error = 1;
      goto ENDOFTESTS;
    }

    iterations  = atoi(*++argv);
    if (iterations < 0){
      printf("ERROR: iterations must be >= 0 : %d \n",iterations);
      error = 1;
      goto ENDOFTESTS;
    }

    n  = atol(*++argv);
    long nsquare = n * n;
    if (nsquare < Num_procs){
      printf("ERROR: grid size must be at least # ranks: %ld\n", nsquare);
      error = 1;
      goto ENDOFTESTS;
    }

    if (RADIUS < 0) {
      printf("ERROR: Stencil radius %d should be non-negative\n", RADIUS);
      error = 1;
      goto ENDOFTESTS;
    }

    if (2*RADIUS +1 > n) {
      printf("ERROR: Stencil radius %d exceeds grid size %ld\n", RADIUS, n);
      error = 1;
      goto ENDOFTESTS;
    }

    ENDOFTESTS:;
  }
  bail_out(error);

  MPI_Bcast(&n,          1, MPI_LONG, root, MPI_COMM_WORLD);
  MPI_Bcast(&iterations, 1, MPI_INT, root, MPI_COMM_WORLD);
  MPI_Bcast(&group_size, 1, MPI_INT, root, MPI_COMM_WORLD);

  /* determine best way to create a 2D grid of ranks (closest to square, for
     best surface/volume ratio); we do this brute force for now. The
     decomposition needs to be such that shared memory groups can evenly
     tessellate the rank grid
  */
  for (Num_procsx=(int) (sqrt(Num_procs+1)); Num_procsx>0; Num_procsx--) {
    if (!(Num_procs%Num_procsx)) {
      Num_procsy = Num_procs/Num_procsx;
      for (group_sizex=(int)(sqrt(group_size+1)); group_sizex>0; group_sizex--) {
        if (!(group_size%group_sizex) && !(Num_procsx%group_sizex)) {
          group_sizey=group_size/group_sizex;
          break;
        }
      }
      if (!(Num_procsy%group_sizey)) break;
    }
  }


  if (my_ID == root) {
    printf("Number of ranks                 = %d\n", Num_procs);
    printf("Grid size                       = %ld\n", n);
    printf("Radius of stencil               = %d\n", RADIUS);
    printf("Tiles in x/y-direction          = %d/%d\n", Num_procsx, Num_procsy);
    printf("Tiles per shared memory domain  = %d\n", group_size);
    printf("Tiles in x/y-direction in group = %d/%d\n", group_sizex,  group_sizey);
    printf("Type of stencil                 = star\n");
#if LOCAL_BARRIER_SYNCH
    printf("Local synchronization           = barrier\n");
#else
    printf("Local synchronization           = point to point\n");
#endif
#if DOUBLE
    printf("Data type                       = double precision\n");
#else
    printf("Data type                       = single precision\n");
#endif
#if LOOPGEN
    printf("Script used to expand stencil loop body\n");
#else
    printf("Compact representation of stencil loop body\n");
#endif
    printf("Number of iterations            = %d\n", iterations);
  }

  /* Setup for Shared memory regions */

  /* first divide WORLD in groups of size group_size */
  MPI_Comm_split(MPI_COMM_WORLD, my_ID/group_size, my_ID%group_size, &shm_comm_prep);
  /* derive from that an SHM communicator */
  MPI_Comm_split_type(shm_comm_prep, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shm_comm);
  MPI_Comm_rank(shm_comm, &shm_ID);
  MPI_Comm_size(shm_comm, &shm_procs);
  /* do sanity check, making sure groups did not shrink in second comm split */
  if (shm_procs != group_size) MPI_Abort(MPI_COMM_WORLD, 666);

  Num_groupsx = Num_procsx/group_sizex;
  Num_groupsy = Num_procsy/group_sizey;

  my_group = my_ID/group_size;
  my_group_IDx = my_group%Num_groupsx;
  my_group_IDy = my_group/Num_groupsx;
  my_local_IDx = my_ID%group_sizex;
  my_local_IDy = (my_ID%group_size)/group_sizex;
  my_global_IDx = my_group_IDx*group_sizex+my_local_IDx;
  my_global_IDy = my_group_IDy*group_sizey+my_local_IDy;

  /* set all neighboring ranks to -1 (no communication with those ranks) */
  left_nbr = right_nbr = top_nbr = bottom_nbr = -1;
  /* keep track of local neighbors for local synchronization             */
  num_local_nbrs = 0;

  if (my_local_IDx == group_sizex-1 && my_group_IDx != (Num_groupsx-1)) {
    right_nbr = (my_group+1)*group_size+shm_ID-group_sizex+1;
  }
  if (my_local_IDx != group_sizex-1) {
    local_nbr[num_local_nbrs++] = shm_ID + 1;
  }

  if (my_local_IDx == 0 && my_group_IDx != 0) {
    left_nbr = (my_group-1)*group_size+shm_ID+group_sizex-1;
  }
  if (my_local_IDx != 0) {
    local_nbr[num_local_nbrs++] = shm_ID - 1;
  }

  if (my_local_IDy == group_sizey-1 && my_group_IDy != (Num_groupsy-1)) {
    top_nbr = (my_group+Num_groupsx)*group_size + my_local_IDx;
  }
  if (my_local_IDy != group_sizey-1) {
    local_nbr[num_local_nbrs++] = shm_ID + group_sizex;
  }

  if (my_local_IDy == 0 && my_group_IDy != 0) {
    bottom_nbr = (my_group-Num_groupsx)*group_size + group_sizex*(group_sizey-1)+my_local_IDx;
  }
  if (my_local_IDy != 0) {
    local_nbr[num_local_nbrs++] = shm_ID - group_sizex;
  }

  /* compute amount of space required for input and solution arrays for the block,
     and also compute index sets                                                  */

  width = n/Num_groupsx;
  leftover = n%Num_groupsx;
  if (my_group_IDx<leftover) {
    istart = (width+1) * my_group_IDx;
    iend = istart + width;
  }
  else {
    istart = (width+1) * leftover + width * (my_group_IDx-leftover);
    iend = istart + width - 1;
  }

  width = iend - istart + 1;
  if (width == 0) {
    printf("ERROR: rank %d has no work to do\n", my_ID);
    error = 1;
  }
  bail_out(error);

  height = n/Num_groupsy;
  leftover = n%Num_groupsy;
  if (my_group_IDy<leftover) {
    jstart = (height+1) * my_group_IDy;
    jend = jstart + height;
  }
  else {
    jstart = (height+1) * leftover + height * (my_group_IDy-leftover);
    jend = jstart + height - 1;
  }

  height = jend - jstart + 1;
  if (height == 0) {
    printf("ERROR: rank %d has no work to do\n", my_ID);
    error = 1;
  }
  bail_out(error);

  if (width < RADIUS || height < RADIUS) {
    printf("ERROR: rank %d has work tile smaller then stencil radius; w=%ld,h=%ld\n",
           my_ID, width, height);
    error = 1;
  }
  bail_out(error);

  total_length_in = (width+2*RADIUS)*(height+2*RADIUS)*sizeof(DTYPE);
  total_length_out = width*height*sizeof(DTYPE);

  /* only the root of each SHM domain specifies window of nonzero size */
  size_mul = (shm_ID==0);
  size_in= total_length_in*size_mul;
  MPI_Win_allocate_shared(size_in, sizeof(double), MPI_INFO_NULL, shm_comm,
                          (void *) &in, &shm_win_in);
  MPI_Win_lock_all(MPI_MODE_NOCHECK, shm_win_in);
  MPI_Win_shared_query(shm_win_in, MPI_PROC_NULL, &size_in, &disp_unit, (void *)&in);
  if (in == NULL){
    printf("Error allocating space for input array by group %d\n",my_group);
    error = 1;
  }
  bail_out(error);

  size_out= total_length_out*size_mul;
  MPI_Win_allocate_shared(size_out, sizeof(double), MPI_INFO_NULL, shm_comm,
                          (void *) &out, &shm_win_out);
  MPI_Win_lock_all(MPI_MODE_NOCHECK, shm_win_out);
  MPI_Win_shared_query(shm_win_out, MPI_PROC_NULL, &size_out, &disp_unit, (void *)&out);
  if (out == NULL){
    printf("Error allocating space for output array by group %d\n", my_group);
    error = 1;
  }
  bail_out(error);

  /* determine index set assigned to each rank                         */

  width_rank = width/group_sizex;
  leftover = width%group_sizex;
  if (my_local_IDx<leftover) {
    istart_rank = (width_rank+1) * my_local_IDx;
    iend_rank = istart_rank + width_rank;
  }
  else {
    istart_rank = (width_rank+1) * leftover + width_rank * (my_local_IDx-leftover);
    iend_rank = istart_rank + width_rank - 1;
  }
  istart_rank += istart;
  iend_rank += istart;
  width_rank = iend_rank - istart_rank + 1;

  height_rank = height/group_sizey;
  leftover = height%group_sizey;
  if (my_local_IDy<leftover) {
    jstart_rank = (height_rank+1) * my_local_IDy;
    jend_rank = jstart_rank + height_rank;
  }
  else {
    jstart_rank = (height_rank+1) * leftover + height_rank * (my_local_IDy-leftover);
    jend_rank = jstart_rank + height_rank - 1;
  }
  jstart_rank+=jstart;
  jend_rank+=jstart;
  height_rank = jend_rank - jstart_rank + 1;

  if (height_rank*width_rank==0) {
    error = 1;
    printf("Rank %d has no work to do\n", my_ID);
  }
  bail_out(error);

  /* allocate communication buffers for halo values                            */
  top_buf_out = (DTYPE *) prk_malloc(4*sizeof(DTYPE)*RADIUS*width_rank);
  if (!top_buf_out) {
    printf("ERROR: Rank %d could not allocated comm buffers for y-direction\n", my_ID);
    error = 1;
  }
  bail_out(error);
  top_buf_in     = top_buf_out +   RADIUS*width_rank;
  bottom_buf_out = top_buf_out + 2*RADIUS*width_rank;
  bottom_buf_in  = top_buf_out + 3*RADIUS*width_rank;

  right_buf_out = (DTYPE *) prk_malloc(4*sizeof(DTYPE)*RADIUS*height_rank);
  if (!right_buf_out) {
    printf("ERROR: Rank %d could not allocated comm buffers for x-direction\n", my_ID);
    error = 1;
  }
  bail_out(error);
  right_buf_in   = right_buf_out +   RADIUS*height_rank;
  left_buf_out   = right_buf_out + 2*RADIUS*height_rank;
  left_buf_in    = right_buf_out + 3*RADIUS*height_rank;

    /* fill the stencil weights to reflect a discrete divergence operator         */
  for (int jj=-RADIUS; jj<=RADIUS; jj++) for (int ii=-RADIUS; ii<=RADIUS; ii++)
    WEIGHT(ii,jj) = (DTYPE) 0.0;
  stencil_size = 4*RADIUS+1;
  for (int ii=1; ii<=RADIUS; ii++) {
    WEIGHT(0, ii) = WEIGHT( ii,0) =  (DTYPE) (1.0/(2.0*ii*RADIUS));
    WEIGHT(0,-ii) = WEIGHT(-ii,0) = -(DTYPE) (1.0/(2.0*ii*RADIUS));
  }

  norm = (DTYPE) 0.0;
  f_active_points = (DTYPE) (n-2*RADIUS)*(DTYPE) (n-2*RADIUS);
  /* intialize the input and output arrays                                     */
  for (int j=jstart_rank; j<=jend_rank; j++) for (int i=istart_rank; i<=iend_rank; i++) {
    IN(i,j)  = COEFX*i+COEFY*j;
    OUT(i,j) = (DTYPE)0.0;
  }

  /* LOAD/STORE FENCE */
  MPI_Win_sync(shm_win_in);
  MPI_Win_sync(shm_win_out);
  MPI_Barrier(shm_comm);

  for (iter = 0; iter<=iterations; iter++){

    /* start timer after a warmup iteration */
    if (iter == 1) {
      MPI_Barrier(MPI_COMM_WORLD);
      local_stencil_time = wtime();
    }

    /* need to fetch ghost point data from neighbors in y-direction                 */
    if (top_nbr != -1) {
      MPI_Irecv(top_buf_in, RADIUS*width_rank, MPI_DTYPE, top_nbr, 101,
                MPI_COMM_WORLD, &(request[1]));
      for (int kk=0,j=jend_rank-RADIUS+1; j<=jend_rank; j++)
      for (int i=istart_rank; i<=iend_rank; i++) {
        top_buf_out[kk++]= IN(i,j);
      }
      MPI_Isend(top_buf_out, RADIUS*width_rank,MPI_DTYPE, top_nbr, 99,
                MPI_COMM_WORLD, &(request[0]));
    }

    if (bottom_nbr != -1) {
      MPI_Irecv(bottom_buf_in,RADIUS*width_rank, MPI_DTYPE, bottom_nbr, 99,
                MPI_COMM_WORLD, &(request[3]));
      for (int kk=0,j=jstart_rank; j<=jstart_rank+RADIUS-1; j++)
      for (int i=istart_rank; i<=iend_rank; i++) {
        bottom_buf_out[kk++]= IN(i,j);
      }
      MPI_Isend(bottom_buf_out, RADIUS*width_rank,MPI_DTYPE, bottom_nbr, 101,
 	  MPI_COMM_WORLD, &(request[2]));
      }

    if (top_nbr != -1) {
      MPI_Wait(&(request[0]), MPI_STATUS_IGNORE);
      MPI_Wait(&(request[1]), MPI_STATUS_IGNORE);
      for (int kk=0,j=jend_rank+1; j<=jend_rank+RADIUS; j++)
      for (int i=istart_rank; i<=iend_rank; i++) {
        IN(i,j) = top_buf_in[kk++];
      }
    }

    if (bottom_nbr != -1) {
      MPI_Wait(&(request[2]), MPI_STATUS_IGNORE);
      MPI_Wait(&(request[3]), MPI_STATUS_IGNORE);
      for (int kk=0,j=jstart_rank-RADIUS; j<=jstart_rank-1; j++)
      for (int i=istart_rank; i<=iend_rank; i++) {
        IN(i,j) = bottom_buf_in[kk++];
      }
    }

    /* LOAD/STORE FENCE */
    MPI_Win_sync(shm_win_in);

    /* need to fetch ghost point data from neighbors in x-direction                 */
    if (right_nbr != -1) {
      MPI_Irecv(right_buf_in, RADIUS*height_rank, MPI_DTYPE, right_nbr, 1010,
                MPI_COMM_WORLD, &(request[1+4]));
      for (int kk=0,j=jstart_rank; j<=jend_rank; j++)
      for (int i=iend_rank-RADIUS+1; i<=iend_rank; i++) {
        right_buf_out[kk++]= IN(i,j);
      }
      MPI_Isend(right_buf_out, RADIUS*height_rank, MPI_DTYPE, right_nbr, 990,
                MPI_COMM_WORLD, &(request[0+4]));
    }

    if (left_nbr != -1) {
      MPI_Irecv(left_buf_in, RADIUS*height_rank, MPI_DTYPE, left_nbr, 990,
                MPI_COMM_WORLD, &(request[3+4]));
      for (int kk=0,j=jstart_rank; j<=jend_rank; j++)
      for (int i=istart_rank; i<=istart_rank+RADIUS-1; i++) {
        left_buf_out[kk++]= IN(i,j);
      }
      MPI_Isend(left_buf_out, RADIUS*height_rank, MPI_DTYPE, left_nbr, 1010,
                MPI_COMM_WORLD, &(request[2+4]));
    }

    if (right_nbr != -1) {
      MPI_Wait(&(request[0+4]), MPI_STATUS_IGNORE);
      MPI_Wait(&(request[1+4]), MPI_STATUS_IGNORE);
      for (int kk=0,j=jstart_rank; j<=jend_rank; j++)
      for (int i=iend_rank+1; i<=iend_rank+RADIUS; i++) {
        IN(i,j) = right_buf_in[kk++];
      }
    }

    if (left_nbr != -1) {
      MPI_Wait(&(request[2+4]), MPI_STATUS_IGNORE);
      MPI_Wait(&(request[3+4]), MPI_STATUS_IGNORE);
      for (int kk=0,j=jstart_rank; j<=jend_rank; j++)
      for (int i=istart_rank-RADIUS; i<=istart_rank-1; i++) {
        IN(i,j) = left_buf_in[kk++];
      }
    }

    /* LOAD/STORE FENCE */
    MPI_Win_sync(shm_win_in);

    /* Apply the stencil operator */
    for (int j=MAX(jstart_rank,RADIUS); j<=MIN(n-RADIUS-1,jend_rank); j++) {
      for (int i=MAX(istart_rank,RADIUS); i<=MIN(n-RADIUS-1,iend_rank); i++) {
        #if LOOPGEN
          #include "loop_body_star.incl"
        #else
          for (int jj=-RADIUS; jj<=RADIUS; jj++) OUT(i,j) += WEIGHT(0,jj)*IN(i,j+jj);
          for (int ii=-RADIUS; ii<0; ii++)       OUT(i,j) += WEIGHT(ii,0)*IN(i+ii,j);
          for (int ii=1; ii<=RADIUS; ii++)       OUT(i,j) += WEIGHT(ii,0)*IN(i+ii,j);
        #endif
      }
    }

    /* LOAD/STORE FENCE */
    MPI_Win_sync(shm_win_out);

#if LOCAL_BARRIER_SYNCH
    MPI_Barrier(shm_comm); // needed to avoid writing IN while other ranks are reading it
#else
    for (int i=0; i<num_local_nbrs; i++) {
      MPI_Irecv(&dummy, 0, MPI_INT, local_nbr[i], 666, shm_comm, &(request[i]));
      MPI_Send(&dummy, 0, MPI_INT, local_nbr[i], 666, shm_comm);
    }
    MPI_Waitall(num_local_nbrs, request, MPI_STATUSES_IGNORE);
#endif

    /* add constant to solution to force refresh of neighbor data, if any */
    for (int j=jstart_rank; j<=jend_rank; j++)
    for (int i=istart_rank; i<=iend_rank; i++) IN(i,j)+= 1.0;

    /* LOAD/STORE FENCE */
    MPI_Win_sync(shm_win_in);

#if LOCAL_BARRIER_SYNCH
    MPI_Barrier(shm_comm); // needed to avoid reading IN while other ranks are writing it
#else
    for (int i=0; i<num_local_nbrs; i++) {
      MPI_Irecv(&dummy, 0, MPI_INT, local_nbr[i], 666, shm_comm, &(request[i]));
      MPI_Send(&dummy, 0, MPI_INT, local_nbr[i], 666, shm_comm);
    }
    MPI_Waitall(num_local_nbrs, request, MPI_STATUSES_IGNORE);
#endif

  } /* end of iterations                                                   */

  local_stencil_time = wtime() - local_stencil_time;
  MPI_Reduce(&local_stencil_time, &stencil_time, 1, MPI_DOUBLE, MPI_MAX, root,
             MPI_COMM_WORLD);

  /* compute L1 norm in parallel                                                */
  local_norm = (DTYPE) 0.0;
  for (int j=MAX(jstart_rank,RADIUS); j<=MIN(n-RADIUS-1,jend_rank); j++) {
    for (int i=MAX(istart_rank,RADIUS); i<=MIN(n-RADIUS-1,iend_rank); i++) {
      local_norm += (DTYPE)ABS(OUT(i,j));
    }
  }

  MPI_Reduce(&local_norm, &norm, 1, MPI_DTYPE, MPI_SUM, root, MPI_COMM_WORLD);

  /*******************************************************************************
  ** Analyze and output results.
  ********************************************************************************/

/* verify correctness                                                            */
  if (my_ID == root) {
    norm /= f_active_points;
    if (RADIUS > 0) {
      reference_norm = (DTYPE) (iterations+1) * (COEFX + COEFY);
    }
    else {
      reference_norm = (DTYPE) 0.0;
    }
    if (ABS(norm-reference_norm) > EPSILON) {
      printf("ERROR: L1 norm = "FSTR", Reference L1 norm = "FSTR"\n",
             norm, reference_norm);
      error = 1;
    }
    else {
      printf("Solution validates\n");
#if VERBOSE
      printf("Reference L1 norm = "FSTR", L1 norm = "FSTR"\n",
             reference_norm, norm);
#endif
    }
  }
  bail_out(error);

  MPI_Win_unlock_all(shm_win_in);
  MPI_Win_unlock_all(shm_win_out);
  MPI_Win_free(&shm_win_in);
  MPI_Win_free(&shm_win_out);

  if (my_ID == root) {
    /* flops/stencil: 2 flops (fma) for each point in the stencil,
       plus one flop for the update of the input of the array        */
    flops = (DTYPE) (2*stencil_size+1) * f_active_points;
    avgtime = stencil_time/iterations;
    printf("Rate (MFlops/s): "FSTR"  Avg time (s): %lf\n",
           1.0E-06 * flops/avgtime, avgtime);
  }

  MPI_Finalize();
  exit(EXIT_SUCCESS);
}
Beispiel #24
0
int main(int argc, char *argv[])
{
    int rank, nproc, i;
    int errors = 0, all_errors = 0;
    int *buf = NULL, *winbuf = NULL;
    MPI_Win window;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nproc);

    if (nproc < 2) {
        if (rank == 0)
            printf("Error: must be run with two or more processes\n");
        MPI_Abort(MPI_COMM_WORLD, 1);
    }

    MPI_Alloc_mem(MAX_SIZE * sizeof(int), MPI_INFO_NULL, &buf);
    MPI_Alloc_mem(MAX_SIZE * sizeof(int), MPI_INFO_NULL, &winbuf);
    MPI_Win_create(winbuf, MAX_SIZE * sizeof(int), sizeof(int), MPI_INFO_NULL,
                   MPI_COMM_WORLD, &window);

    MPI_Win_lock_all(0, window);

    /* Test Raccumulate local completion with small data.
     * Small data is always copied to header packet as immediate data. */
    if (rank == 1) {
        for (i = 0; i < ITER; i++) {
            MPI_Request acc_req;
            int val = -1;

            buf[0] = rank * i;
            MPI_Raccumulate(&buf[0], 1, MPI_INT, 0, 0, 1, MPI_INT, MPI_MAX, window, &acc_req);
            MPI_Wait(&acc_req, MPI_STATUS_IGNORE);

            /* reset local buffer to check local completion */
            buf[0] = 0;
            MPI_Win_flush(0, window);

            MPI_Get(&val, 1, MPI_INT, 0, 0, 1, MPI_INT, window);
            MPI_Win_flush(0, window);

            if (val != rank * i) {
                printf("%d - Got %d in small Raccumulate test, expected %d (%d * %d)\n", rank, val,
                       rank * i, rank, i);
                errors++;
            }
        }
    }

    MPI_Barrier(MPI_COMM_WORLD);

    /* Test Raccumulate local completion with large data .
     * Large data is not suitable for 1-copy optimization, and always sent out
     * from user buffer. */
    if (rank == 1) {
        for (i = 0; i < ITER; i++) {
            MPI_Request acc_req;
            int val0 = -1, val1 = -1, val2 = -1;
            int j;

            /* initialize data */
            for (j = 0; j < MAX_SIZE; j++) {
                buf[j] = rank + j + i;
            }

            MPI_Raccumulate(buf, MAX_SIZE, MPI_INT, 0, 0, MAX_SIZE, MPI_INT, MPI_REPLACE, window,
                            &acc_req);
            MPI_Wait(&acc_req, MPI_STATUS_IGNORE);

            /* reset local buffer to check local completion */
            buf[0] = 0;
            buf[MAX_SIZE - 1] = 0;
            buf[MAX_SIZE / 2] = 0;
            MPI_Win_flush(0, window);

            /* get remote values which are modified in local buffer after wait */
            MPI_Get(&val0, 1, MPI_INT, 0, 0, 1, MPI_INT, window);
            MPI_Get(&val1, 1, MPI_INT, 0, MAX_SIZE - 1, 1, MPI_INT, window);
            MPI_Get(&val2, 1, MPI_INT, 0, MAX_SIZE / 2, 1, MPI_INT, window);
            MPI_Win_flush(0, window);

            if (val0 != rank + i) {
                printf("%d - Got %d in large Raccumulate test, expected %d\n", rank,
                       val0, rank + i);
                errors++;
            }
            if (val1 != rank + MAX_SIZE - 1 + i) {
                printf("%d - Got %d in large Raccumulate test, expected %d\n", rank,
                       val1, rank + MAX_SIZE - 1 + i);
                errors++;
            }
            if (val2 != rank + MAX_SIZE / 2 + i) {
                printf("%d - Got %d in large Raccumulate test, expected %d\n", rank,
                       val2, rank + MAX_SIZE / 2 + i);
                errors++;
            }
        }
    }

    MPI_Win_unlock_all(window);
    MPI_Barrier(MPI_COMM_WORLD);

    MPI_Win_free(&window);
    if (buf)
        MPI_Free_mem(buf);
    if (winbuf)
        MPI_Free_mem(winbuf);

    MPI_Reduce(&errors, &all_errors, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

    if (rank == 0 && all_errors == 0)
        printf(" No Errors\n");

    MPI_Finalize();

    return 0;
}
static int run_test(int nop)
{
    int i, x, errs = 0, errs_total = 0;
    MPI_Status stat;
    int dst;
    int winbuf_offset = 0;
    double t0, avg_total_time = 0.0, t_total = 0.0;
    double sum = 0.0;

    if (nprocs <= NPROCS_M) {
        ITER = ITER_S;
    }
    else {
        ITER = ITER_L;
    }

    target_computation_init();
    MPI_Win_lock_all(0, win);

    t0 = MPI_Wtime();
    for (x = 0; x < ITER; x++) {

        // send to all the left processes in a ring style
        for (dst = (rank + 1) % nprocs; dst != rank; dst = (dst + 1) % nprocs) {
            MPI_Accumulate(&locbuf[0], 1, MPI_DOUBLE, dst, rank, 1, MPI_DOUBLE, MPI_SUM, win);
        }
        MPI_Win_flush_all(win);

        target_computation();

        for (dst = (rank + 1) % nprocs; dst != rank; dst = (dst + 1) % nprocs) {
            for (i = 1; i < nop; i++) {
                MPI_Accumulate(&locbuf[i], 1, MPI_DOUBLE, dst, rank, 1, MPI_DOUBLE, MPI_SUM, win);
            }
        }
        MPI_Win_flush_all(win);

        debug_printf("[%d]MPI_Win_flush all done\n", x);
    }
    t_total += MPI_Wtime() - t0;
    t_total /= ITER;

    MPI_Win_unlock_all(win);
    MPI_Barrier(MPI_COMM_WORLD);

    target_computation_exit();

#ifdef CHECK
    MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, win);
    sum = 0.0;
    for (i = 0; i < nop; i++) {
        sum += locbuf[i];
    }
    sum *= ITER;
    for (i = 0; i < nprocs; i++) {
        if (i == rank)
            continue;
        if (winbuf[i] != sum) {
            fprintf(stderr,
                    "[%d]computation error : winbuf[%d] %.2lf != %.2lf, nop %d\n",
                    rank, i, winbuf[i], sum, nop);
            errs += 1;
        }
    }
    MPI_Win_unlock(rank, win);
#endif

    MPI_Reduce(&t_total, &avg_total_time, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
    MPI_Allreduce(&errs, &errs_total, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

    if (rank == 0) {
        avg_total_time /= nprocs;
#ifdef MTCORE
        fprintf(stdout,
                "mtcore: comp_size %d num_op %d nprocs %d total_time %lf\n",
                DGEMM_SIZE, nop, nprocs, avg_total_time);
#else
        fprintf(stdout,
                "orig: comp_size %d num_op %d nprocs %d total_time %lf\n",
                DGEMM_SIZE, nop, nprocs, avg_total_time);
#endif
    }

    return errs_total;
}
Beispiel #26
0
int main( int argc, char *argv[] )
{
    int rank, nproc, i;
    int errors = 0, all_errors = 0;
    int *buf;
    MPI_Win window;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nproc);

    if (nproc < 2) {
        if (rank == 0) printf("Error: must be run with two or more processes\n");
        MPI_Abort(MPI_COMM_WORLD, 1);
    }

    /** Create using MPI_Win_create() **/

    if (rank == 0) {
      MPI_Alloc_mem(4*sizeof(int), MPI_INFO_NULL, &buf);
      *buf = nproc-1;
    } else
      buf = NULL;

    MPI_Win_create(buf, 4*sizeof(int)*(rank == 0), 1, MPI_INFO_NULL, MPI_COMM_WORLD, &window);

    /* PROC_NULL Communication */
    {
        MPI_Request pn_req[4];
        int val[4], res;

        MPI_Win_lock_all(0, window);

        MPI_Rget_accumulate(&val[0], 1, MPI_INT, &res, 1, MPI_INT, MPI_PROC_NULL, 0, 1, MPI_INT, MPI_REPLACE, window, &pn_req[0]);
        MPI_Rget(&val[1], 1, MPI_INT, MPI_PROC_NULL, 1, 1, MPI_INT, window, &pn_req[1]);
        MPI_Rput(&val[2], 1, MPI_INT, MPI_PROC_NULL, 2, 1, MPI_INT, window, &pn_req[2]);
        MPI_Raccumulate(&val[3], 1, MPI_INT, MPI_PROC_NULL, 3, 1, MPI_INT, MPI_REPLACE, window, &pn_req[3]);

        assert(pn_req[0] != MPI_REQUEST_NULL);
        assert(pn_req[1] != MPI_REQUEST_NULL);
        assert(pn_req[2] != MPI_REQUEST_NULL);
        assert(pn_req[3] != MPI_REQUEST_NULL);

        MPI_Win_unlock_all(window);

        MPI_Waitall(4, pn_req, MPI_STATUSES_IGNORE);
    }

    MPI_Barrier(MPI_COMM_WORLD);

    MPI_Win_lock(MPI_LOCK_SHARED, 0, 0, window);

    /* GET-ACC: Test third-party communication, through rank 0. */
    for (i = 0; i < ITER; i++) {
        MPI_Request gacc_req;
        int val = -1, exp = -1;

        /* Processes form a ring.  Process 0 starts first, then passes a token
         * to the right.  Each process, in turn, performs third-party
         * communication via process 0's window. */
        if (rank > 0) {
            MPI_Recv(NULL, 0, MPI_BYTE, rank-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
        }

        MPI_Rget_accumulate(&rank, 1, MPI_INT, &val, 1, MPI_INT, 0, 0, 1, MPI_INT, MPI_REPLACE, window, &gacc_req);
        assert(gacc_req != MPI_REQUEST_NULL);
        MPI_Wait(&gacc_req, MPI_STATUS_IGNORE);

        MPI_Win_flush(0, window);

        exp = (rank + nproc-1) % nproc;

        if (val != exp) {
            printf("%d - Got %d, expected %d\n", rank, val, exp);
            errors++;
        }

        if (rank < nproc-1) {
            MPI_Send(NULL, 0, MPI_BYTE, rank+1, 0, MPI_COMM_WORLD);
        }

        MPI_Barrier(MPI_COMM_WORLD);
    }

    MPI_Barrier(MPI_COMM_WORLD);

    if (rank == 0) *buf = nproc-1;
    MPI_Win_sync(window);

    /* GET+PUT: Test third-party communication, through rank 0. */
    for (i = 0; i < ITER; i++) {
        MPI_Request req;
        int val = -1, exp = -1;

        /* Processes form a ring.  Process 0 starts first, then passes a token
         * to the right.  Each process, in turn, performs third-party
         * communication via process 0's window. */
        if (rank > 0) {
            MPI_Recv(NULL, 0, MPI_BYTE, rank-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
        }

        MPI_Rget(&val, 1, MPI_INT, 0, 0, 1, MPI_INT, window, &req);
        assert(req != MPI_REQUEST_NULL);
        MPI_Wait(&req, MPI_STATUS_IGNORE);

        MPI_Rput(&rank, 1, MPI_INT, 0, 0, 1, MPI_INT, window, &req);
        assert(req != MPI_REQUEST_NULL);
        MPI_Wait(&req, MPI_STATUS_IGNORE);

        MPI_Win_flush(0, window);

        exp = (rank + nproc-1) % nproc;

        if (val != exp) {
            printf("%d - Got %d, expected %d\n", rank, val, exp);
            errors++;
        }

        if (rank < nproc-1) {
            MPI_Send(NULL, 0, MPI_BYTE, rank+1, 0, MPI_COMM_WORLD);
        }

        MPI_Barrier(MPI_COMM_WORLD);
    }

    MPI_Barrier(MPI_COMM_WORLD);

    if (rank == 0) *buf = nproc-1;
    MPI_Win_sync(window);

    /* GET+ACC: Test third-party communication, through rank 0. */
    for (i = 0; i < ITER; i++) {
        MPI_Request req;
        int val = -1, exp = -1;

        /* Processes form a ring.  Process 0 starts first, then passes a token
         * to the right.  Each process, in turn, performs third-party
         * communication via process 0's window. */
        if (rank > 0) {
            MPI_Recv(NULL, 0, MPI_BYTE, rank-1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
        }

        MPI_Rget(&val, 1, MPI_INT, 0, 0, 1, MPI_INT, window, &req);
        assert(req != MPI_REQUEST_NULL);
        MPI_Wait(&req, MPI_STATUS_IGNORE);

        MPI_Raccumulate(&rank, 1, MPI_INT, 0, 0, 1, MPI_INT, MPI_REPLACE, window, &req);
        assert(req != MPI_REQUEST_NULL);
        MPI_Wait(&req, MPI_STATUS_IGNORE);

        MPI_Win_flush(0, window);

        exp = (rank + nproc-1) % nproc;

        if (val != exp) {
            printf("%d - Got %d, expected %d\n", rank, val, exp);
            errors++;
        }

        if (rank < nproc-1) {
            MPI_Send(NULL, 0, MPI_BYTE, rank+1, 0, MPI_COMM_WORLD);
        }

        MPI_Barrier(MPI_COMM_WORLD);
    }
    MPI_Win_unlock(0, window);

    MPI_Barrier(MPI_COMM_WORLD);

    /* Wait inside of an epoch */
    {
        MPI_Request pn_req[4];
        int val[4], res;
        const int target = 0;

        MPI_Win_lock_all(0, window);

        MPI_Rget_accumulate(&val[0], 1, MPI_INT, &res, 1, MPI_INT, target, 0, 1, MPI_INT, MPI_REPLACE, window, &pn_req[0]);
        MPI_Rget(&val[1], 1, MPI_INT, target, 1, 1, MPI_INT, window, &pn_req[1]);
        MPI_Rput(&val[2], 1, MPI_INT, target, 2, 1, MPI_INT, window, &pn_req[2]);
        MPI_Raccumulate(&val[3], 1, MPI_INT, target, 3, 1, MPI_INT, MPI_REPLACE, window, &pn_req[3]);

        assert(pn_req[0] != MPI_REQUEST_NULL);
        assert(pn_req[1] != MPI_REQUEST_NULL);
        assert(pn_req[2] != MPI_REQUEST_NULL);
        assert(pn_req[3] != MPI_REQUEST_NULL);

        MPI_Waitall(4, pn_req, MPI_STATUSES_IGNORE);

        MPI_Win_unlock_all(window);
    }

    MPI_Barrier(MPI_COMM_WORLD);

    /* Wait outside of an epoch */
    {
        MPI_Request pn_req[4];
        int val[4], res;
        const int target = 0;

        MPI_Win_lock_all(0, window);

        MPI_Rget_accumulate(&val[0], 1, MPI_INT, &res, 1, MPI_INT, target, 0, 1, MPI_INT, MPI_REPLACE, window, &pn_req[0]);
        MPI_Rget(&val[1], 1, MPI_INT, target, 1, 1, MPI_INT, window, &pn_req[1]);
        MPI_Rput(&val[2], 1, MPI_INT, target, 2, 1, MPI_INT, window, &pn_req[2]);
        MPI_Raccumulate(&val[3], 1, MPI_INT, target, 3, 1, MPI_INT, MPI_REPLACE, window, &pn_req[3]);

        assert(pn_req[0] != MPI_REQUEST_NULL);
        assert(pn_req[1] != MPI_REQUEST_NULL);
        assert(pn_req[2] != MPI_REQUEST_NULL);
        assert(pn_req[3] != MPI_REQUEST_NULL);

        MPI_Win_unlock_all(window);

        MPI_Waitall(4, pn_req, MPI_STATUSES_IGNORE);
    }

    /* Wait in a different epoch */
    {
        MPI_Request pn_req[4];
        int val[4], res;
        const int target = 0;

        MPI_Win_lock_all(0, window);

        MPI_Rget_accumulate(&val[0], 1, MPI_INT, &res, 1, MPI_INT, target, 0, 1, MPI_INT, MPI_REPLACE, window, &pn_req[0]);
        MPI_Rget(&val[1], 1, MPI_INT, target, 1, 1, MPI_INT, window, &pn_req[1]);
        MPI_Rput(&val[2], 1, MPI_INT, target, 2, 1, MPI_INT, window, &pn_req[2]);
        MPI_Raccumulate(&val[3], 1, MPI_INT, target, 3, 1, MPI_INT, MPI_REPLACE, window, &pn_req[3]);

        assert(pn_req[0] != MPI_REQUEST_NULL);
        assert(pn_req[1] != MPI_REQUEST_NULL);
        assert(pn_req[2] != MPI_REQUEST_NULL);
        assert(pn_req[3] != MPI_REQUEST_NULL);

        MPI_Win_unlock_all(window);

        MPI_Win_lock_all(0, window);
        MPI_Waitall(4, pn_req, MPI_STATUSES_IGNORE);
        MPI_Win_unlock_all(window);
    }

    /* Wait in a fence epoch */
    {
        MPI_Request pn_req[4];
        int val[4], res;
        const int target = 0;

        MPI_Win_lock_all(0, window);

        MPI_Rget_accumulate(&val[0], 1, MPI_INT, &res, 1, MPI_INT, target, 0, 1, MPI_INT, MPI_REPLACE, window, &pn_req[0]);
        MPI_Rget(&val[1], 1, MPI_INT, target, 1, 1, MPI_INT, window, &pn_req[1]);
        MPI_Rput(&val[2], 1, MPI_INT, target, 2, 1, MPI_INT, window, &pn_req[2]);
        MPI_Raccumulate(&val[3], 1, MPI_INT, target, 3, 1, MPI_INT, MPI_REPLACE, window, &pn_req[3]);

        assert(pn_req[0] != MPI_REQUEST_NULL);
        assert(pn_req[1] != MPI_REQUEST_NULL);
        assert(pn_req[2] != MPI_REQUEST_NULL);
        assert(pn_req[3] != MPI_REQUEST_NULL);

        MPI_Win_unlock_all(window);

        MPI_Win_fence(0, window);
        MPI_Waitall(4, pn_req, MPI_STATUSES_IGNORE);
        MPI_Win_fence(0, window);
    }

    MPI_Win_free(&window);
    if (buf) MPI_Free_mem(buf);

    MPI_Reduce(&errors, &all_errors, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

    if (rank == 0 && all_errors == 0)
        printf(" No Errors\n");

    MPI_Finalize();

    return 0;
}
int main(int argc, char *argv[])
{
    int rank, size, i, j, k;
    int errors = 0;
    int origin_shm, origin_am, dest;
    int *orig_buf = NULL, *result_buf = NULL, *compare_buf = NULL,
        *target_buf = NULL, *check_buf = NULL;
    MPI_Win win;
    MPI_Status status;

    MPI_Init(&argc, &argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);
    if (size != 3) {
        /* run this test with three processes */
        goto exit_test;
    }

    /* this works when MPIR_PARAM_CH3_ODD_EVEN_CLIQUES is set */
    dest = 2;
    origin_shm = 0;
    origin_am = 1;

    if (rank != dest) {
        MPI_Alloc_mem(sizeof(int), MPI_INFO_NULL, &orig_buf);
        MPI_Alloc_mem(sizeof(int), MPI_INFO_NULL, &result_buf);
        MPI_Alloc_mem(sizeof(int), MPI_INFO_NULL, &compare_buf);
    }

    MPI_Win_allocate(sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &target_buf, &win);

    for (k = 0; k < LOOP_SIZE; k++) {

        /* init buffers */
        if (rank == origin_shm) {
            orig_buf[0] = 1;
            compare_buf[0] = 0;
            result_buf[0] = 0;
        }
        else if (rank == origin_am) {
            orig_buf[0] = 0;
            compare_buf[0] = 1;
            result_buf[0] = 0;
        }
        else {
            MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
            target_buf[0] = 0;
            MPI_Win_unlock(rank, win);
        }

        MPI_Barrier(MPI_COMM_WORLD);

        /* perform FOP */
        MPI_Win_lock_all(0, win);
        if (rank != dest) {
            MPI_Compare_and_swap(orig_buf, compare_buf, result_buf, MPI_INT, dest, 0, win);
            MPI_Win_flush(dest, win);
        }
        MPI_Win_unlock_all(win);

        MPI_Barrier(MPI_COMM_WORLD);

        /* check results */
        if (rank != dest) {
            MPI_Gather(result_buf, 1, MPI_INT, check_buf, 1, MPI_INT, dest, MPI_COMM_WORLD);
        }
        else {
            MPI_Alloc_mem(sizeof(int) * 3, MPI_INFO_NULL, &check_buf);
            MPI_Gather(target_buf, 1, MPI_INT, check_buf, 1, MPI_INT, dest, MPI_COMM_WORLD);

            if (!(check_buf[dest] == 0 && check_buf[origin_shm] == 0 && check_buf[origin_am] == 1)
                && !(check_buf[dest] == 1 && check_buf[origin_shm] == 0 &&
                     check_buf[origin_am] == 0)) {

                printf
                    ("Wrong results: target result = %d, origin_shm result = %d, origin_am result = %d\n",
                     check_buf[dest], check_buf[origin_shm], check_buf[origin_am]);

                printf
                    ("Expected results (1): target result = 1, origin_shm result = 0, origin_am result = 0\n");
                printf
                    ("Expected results (2): target result = 0, origin_shm result = 0, origin_am result = 1\n");

                errors++;
            }

            MPI_Free_mem(check_buf);
        }
    }

    MPI_Win_free(&win);

    if (rank == origin_am || rank == origin_shm) {
        MPI_Free_mem(orig_buf);
        MPI_Free_mem(result_buf);
        MPI_Free_mem(compare_buf);
    }

  exit_test:
    if (rank == dest && errors == 0)
        printf(" No Errors\n");

    MPI_Finalize();
    return 0;
}
Beispiel #28
0
int main(int argc, char ** argv)
{
  long Block_order;        /* number of columns owned by rank       */
  long Block_size;         /* size of a single block                */
  long Colblock_size;      /* size of column block                  */
  int Tile_order=32;       /* default Tile order                    */
  int tiling;              /* boolean: true if tiling is used       */
  int Num_procs;           /* number of ranks                       */
  long order;              /* order of overall matrix               */
  int send_to, recv_from;  /* ranks with which to communicate       */
  long bytes;              /* combined size of matrices             */
  int my_ID;               /* rank                                  */
  int root=0;              /* rank of root                          */
  int iterations;          /* number of times to do the transpose   */
  int i, j, it, jt, istart;/* dummies                               */
  int iter;                /* index of iteration                    */
  int phase;               /* phase inside staged communication     */
  int colstart;            /* starting column for owning rank       */
  int error;               /* error flag                            */
  double RESTRICT *A_p;    /* original matrix column block          */
  double RESTRICT *B_p;    /* transposed matrix column block        */
  double RESTRICT *Work_in_p;/* workspace for transpose function    */
  double RESTRICT *Work_out_p;/* workspace for transpose function   */
  double abserr,           /* absolute error                        */
         abserr_tot;       /* aggregate absolute error              */
  double epsilon = 1.e-8;  /* error tolerance                       */
  double local_trans_time, /* timing parameters                     */
         trans_time,
         avgtime;
  MPI_Win  rma_win = MPI_WIN_NULL;
  MPI_Info rma_winfo = MPI_INFO_NULL;
  int passive_target = 0;  /* use passive target RMA sync           */
#if MPI_VERSION >= 3
  int  flush_local  = 1;   /* flush local (or remote) after put     */
  int  flush_bundle = 1;   /* flush every <bundle> put calls        */
#endif

/*********************************************************************
** Initialize the MPI environment
*********************************************************************/
  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &my_ID);
  MPI_Comm_size(MPI_COMM_WORLD, &Num_procs);

/*********************************************************************
** process, test and broadcast input parameters
*********************************************************************/
  error = 0;
  if (my_ID == root) {
    printf("Parallel Research Kernels version %s\n", PRKVERSION);
    printf("MPIRMA matrix transpose: B = A^T\n");

    if (argc <= 3){
      printf("Usage: %s <# iterations> <matrix order> [Tile size]"
             "[sync (0=fence, 1=flush)] [flush local?] [flush bundle]\n",
             *argv);
      error = 1; goto ENDOFTESTS;
    }

    iterations  = atoi(*++argv);
    if(iterations < 1){
      printf("ERROR: iterations must be >= 1 : %d \n",iterations);
      error = 1; goto ENDOFTESTS;
    }

    order = atol(*++argv);
    if (order < Num_procs) {
      printf("ERROR: matrix order %ld should at least # procs %d\n",
             order, Num_procs);
      error = 1; goto ENDOFTESTS;
    }
    if (order%Num_procs) {
      printf("ERROR: matrix order %ld should be divisible by # procs %d\n",
             order, Num_procs);
      error = 1; goto ENDOFTESTS;
    }

    if (argc >= 4) Tile_order     = atoi(*++argv);
    if (argc >= 5) passive_target = atoi(*++argv);
#if MPI_VERSION >= 3
    if (argc >= 6) flush_local    = atoi(*++argv);
    if (argc >= 7) flush_bundle   = atoi(*++argv);
#endif

    ENDOFTESTS:;
  }
  bail_out(error);

  if (my_ID == root) {
    printf("Number of ranks      = %d\n", Num_procs);
    printf("Matrix order         = %ld\n", order);
    printf("Number of iterations = %d\n", iterations);
    if ((Tile_order > 0) && (Tile_order < order))
          printf("Tile size            = %d\n", Tile_order);
    else  printf("Untiled\n");
    if (passive_target) {
#if MPI_VERSION < 3
        printf("Synchronization      = MPI_Win_(un)lock\n");
#else
        printf("Synchronization      = MPI_Win_flush%s (bundle=%d)\n", flush_local ? "_local" : "", flush_bundle);
#endif
    } else {
        printf("Synchronization      = MPI_Win_fence\n");
    }
  }

  /*  Broadcast input data to all ranks */
  MPI_Bcast (&order,          1, MPI_LONG, root, MPI_COMM_WORLD);
  MPI_Bcast (&iterations,     1, MPI_INT,  root, MPI_COMM_WORLD);
  MPI_Bcast (&Tile_order,     1, MPI_INT,  root, MPI_COMM_WORLD);
  MPI_Bcast (&passive_target, 1, MPI_INT,  root, MPI_COMM_WORLD);
#if MPI_VERSION >= 3
  MPI_Bcast (&flush_local,    1, MPI_INT,  root, MPI_COMM_WORLD);
  MPI_Bcast (&flush_bundle,   1, MPI_INT,  root, MPI_COMM_WORLD);
#endif

  /* a non-positive tile size means no tiling of the local transpose */
  tiling = (Tile_order > 0) && (Tile_order < order);
  bytes = 2 * sizeof(double) * order * order;

/*********************************************************************
** The matrix is broken up into column blocks that are mapped one to a
** rank.  Each column block is made up of Num_procs smaller square
** blocks of order block_order.
*********************************************************************/

  Block_order    = order/Num_procs;
  colstart       = Block_order * my_ID;
  Colblock_size  = order * Block_order;
  Block_size     = Block_order * Block_order;

  /* debug message size effects */
  if (my_ID == root) {
    printf("Block_size           = %ld\n", Block_size);
  }

/*********************************************************************
** Create the column block of the test matrix, the row block of the
** transposed matrix, and workspace (workspace only if #procs>1)
*********************************************************************/
  A_p = (double *)prk_malloc(Colblock_size*sizeof(double));
  if (A_p == NULL){
    printf(" Error allocating space for original matrix on node %d\n",my_ID);
    error = 1;
  }
  bail_out(error);

  MPI_Info_create (&rma_winfo);
  MPI_Info_set (rma_winfo, "no locks", "true");
  B_p = (double *)prk_malloc(Colblock_size*sizeof(double));
  if (B_p == NULL){
    printf(" Error allocating space for transpose matrix on node %d\n",my_ID);
    error = 1;
  }
  bail_out(error);

  if (Num_procs>1) {
    Work_out_p = (double *) prk_malloc(Block_size*(Num_procs-1)*sizeof(double));
    if (Work_out_p == NULL){
      printf(" Error allocating space for work_out on node %d\n",my_ID);
      error = 1;
    }
    bail_out(error);

    PRK_Win_allocate(Block_size*(Num_procs-1)*sizeof(double), sizeof(double),
                     rma_winfo, MPI_COMM_WORLD, &Work_in_p, &rma_win);
    if (Work_in_p == NULL){
      printf(" Error allocating space for work on node %d\n",my_ID);
      error = 1;
    }
    bail_out(error);
  }

#if MPI_VERSION >= 3
  if (passive_target && Num_procs>1) {
    MPI_Win_lock_all(MPI_MODE_NOCHECK,rma_win);
  }
#endif

  /* Fill the original column matrix                                                */
  istart = 0;
  for (j=0;j<Block_order;j++) {
    for (i=0;i<order; i++) {
      A(i,j) = (double) (order*(j+colstart) + i);
      B(i,j) = 0.0;
    }
  }

  MPI_Barrier(MPI_COMM_WORLD);

  for (iter = 0; iter<=iterations; iter++) {

    /* start timer after a warmup iteration                                        */
    if (iter == 1) {
      MPI_Barrier(MPI_COMM_WORLD);
      local_trans_time = wtime();
    }

    /* do the local transpose                                                     */
    istart = colstart;
    if (!tiling) {
      for (i=0; i<Block_order; i++) {
        for (j=0; j<Block_order; j++) {
          B(j,i) += A(i,j);
          A(i,j) += 1.0;
        }
      }
    } else {
      for (i=0; i<Block_order; i+=Tile_order) {
        for (j=0; j<Block_order; j+=Tile_order) {
          for (it=i; it<MIN(Block_order,i+Tile_order); it++) {
            for (jt=j; jt<MIN(Block_order,j+Tile_order);jt++) {
              B(jt,it) += A(it,jt);
              A(it,jt) += 1.0;
            }
          }
        }
      }
    }

    if (!passive_target && Num_procs>1) {
      MPI_Win_fence(MPI_MODE_NOSTORE | MPI_MODE_NOPRECEDE, rma_win);
    }

    for (phase=1; phase<Num_procs; phase++){
      send_to = (my_ID - phase + Num_procs)%Num_procs;

      istart = send_to*Block_order;
      if (!tiling) {
        for (i=0; i<Block_order; i++) {
          for (j=0; j<Block_order; j++) {
            Work_out(phase-1,j,i) = A(i,j);
            A(i,j) += 1.0;
          }
        }
      } else {
        for (i=0; i<Block_order; i+=Tile_order) {
          for (j=0; j<Block_order; j+=Tile_order) {
            for (it=i; it<MIN(Block_order,i+Tile_order); it++) {
              for (jt=j; jt<MIN(Block_order,j+Tile_order);jt++) {
                Work_out(phase-1,jt,it) = A(it,jt);
                A(it,jt) += 1.0;
              }
            }
          }
        }
      }

#if MPI_VERSION < 3
      if (passive_target) {
          MPI_Win_lock(MPI_LOCK_SHARED, send_to, MPI_MODE_NOCHECK, rma_win);
      }
#endif
      MPI_Put(Work_out_p+Block_size*(phase-1), Block_size, MPI_DOUBLE, send_to,
              Block_size*(phase-1), Block_size, MPI_DOUBLE, rma_win);

      if (passive_target) {
#if MPI_VERSION < 3
        MPI_Win_unlock(send_to, rma_win);
#else
        if (flush_bundle==1) {
          if (flush_local==1) {
              MPI_Win_flush_local(send_to, rma_win);
          } else {
              MPI_Win_flush(send_to, rma_win);
          }
        } else if ( (phase%flush_bundle) == 0) {
          /* Too lazy to record all targets, so let MPI do it internally (hopefully) */
          if (flush_local==1) {
              MPI_Win_flush_local_all(rma_win);
          } else {
              MPI_Win_flush_all(rma_win);
          }
        }
#endif
      }
    }  /* end of phase loop for puts  */
    if (Num_procs>1) {
      if (passive_target) {
#if MPI_VERSION >= 3
          MPI_Win_flush_all(rma_win);
#endif
          MPI_Barrier(MPI_COMM_WORLD);
      } else {
          MPI_Win_fence(MPI_MODE_NOSTORE, rma_win);
      }
    }

    for (phase=1; phase<Num_procs; phase++) {
      recv_from = (my_ID + phase)%Num_procs;
      istart = recv_from*Block_order;
      /* scatter received block to transposed matrix; no need to tile */
      for (j=0; j<Block_order; j++) {
        for (i=0; i<Block_order; i++) {
          B(i,j) += Work_in(phase-1,i,j);
        }
      }
    } /* end of phase loop for scatters */

    /* for the flush case we need to make sure we have consumed Work_in
       before overwriting it in the next iteration                    */
    if (Num_procs>1 && passive_target) {
      MPI_Barrier(MPI_COMM_WORLD);
    }

  } /* end of iterations */

  local_trans_time = wtime() - local_trans_time;
  MPI_Reduce(&local_trans_time, &trans_time, 1, MPI_DOUBLE, MPI_MAX, root,
             MPI_COMM_WORLD);

  abserr = 0.0;
  istart = 0;
  double addit = ((double)(iterations+1) * (double) (iterations))/2.0;
  for (j=0;j<Block_order;j++) {
    for (i=0;i<order; i++) {
      abserr += ABS(B(i,j) - ((double)(order*i + j+colstart)*(iterations+1)+addit));
    }
  }

  MPI_Reduce(&abserr, &abserr_tot, 1, MPI_DOUBLE, MPI_SUM, root, MPI_COMM_WORLD);

  if (my_ID == root) {
    if (abserr_tot < epsilon) {
      printf("Solution validates\n");
      avgtime = trans_time/(double)iterations;
      printf("Rate (MB/s): %lf Avg time (s): %lf\n",1.0E-06*bytes/avgtime, avgtime);
    }
    else {
      printf("ERROR: Aggregate absolute error %lf exceeds threshold %e\n", abserr_tot, epsilon);
      error = 1;
    }
  }

  bail_out(error);

  if (rma_win!=MPI_WIN_NULL) {
#if MPI_VERSION >=3
    if (passive_target) {
      MPI_Win_unlock_all(rma_win);
    }
#endif
    PRK_Win_free(&rma_win);
  }

  MPI_Finalize();
  exit(EXIT_SUCCESS);

}  /* end of main */
int main(int argc, char **argv)
{
    int i, rank, nproc;
    int shm_rank, shm_nproc;
    MPI_Aint size;
    int errors = 0, all_errors = 0;
    int **bases = NULL, *my_base = NULL;
    int disp_unit;
    MPI_Win shm_win = MPI_WIN_NULL, win = MPI_WIN_NULL;
    MPI_Comm shm_comm = MPI_COMM_NULL;
    MPI_Group shm_group = MPI_GROUP_NULL, world_group = MPI_GROUP_NULL;
    int dst_shm_rank, dst_world_rank;
    MPI_Info create_info = MPI_INFO_NULL;

    MPI_Init(&argc, &argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nproc);

    MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank, MPI_INFO_NULL, &shm_comm);

    MPI_Comm_rank(shm_comm, &shm_rank);
    MPI_Comm_size(shm_comm, &shm_nproc);

    /* Platform does not support shared memory, just return. */
    if (shm_nproc < 2) {
        goto exit;
    }

    /* Specify the last process in the node as the target process */
    dst_shm_rank = shm_nproc - 1;
    MPI_Comm_group(shm_comm, &shm_group);
    MPI_Comm_group(MPI_COMM_WORLD, &world_group);
    MPI_Group_translate_ranks(shm_group, 1, &dst_shm_rank, world_group, &dst_world_rank);

    bases = calloc(shm_nproc, sizeof(int *));

    /* Allocate shm window among local processes, then create a global window with
     * those shm window buffers */
    MPI_Win_allocate_shared(sizeof(int) * ELEM_PER_PROC, sizeof(int), MPI_INFO_NULL,
                            shm_comm, &my_base, &shm_win);
    if (verbose)
        printf("%d -- allocate shared: my_base = %p, absolute base\n", shm_rank, my_base);

    for (i = 0; i < shm_nproc; i++) {
        MPI_Win_shared_query(shm_win, i, &size, &disp_unit, &bases[i]);
        if (verbose)
            printf("%d --    shared query: base[%d]=%p, size %ld, unit %d\n",
                   shm_rank, i, bases[i], size, disp_unit);
    }

#ifdef USE_INFO_ALLOC_SHM
    MPI_Info_create(&create_info);
    MPI_Info_set(create_info, "alloc_shm", "true");
#else
    create_info = MPI_INFO_NULL;
#endif

    MPI_Win_create(my_base, sizeof(int) * ELEM_PER_PROC, sizeof(int), create_info, MPI_COMM_WORLD,
                   &win);

    /* Reset data */
    for (i = 0; i < ELEM_PER_PROC; i++) {
        my_base[i] = 0;
        local_buf[i] = i + 1;
    }

    /* Do RMA through global window, then check value through shared window */
    MPI_Win_lock_all(0, win);
    MPI_Win_lock_all(0, shm_win);

    if (shm_rank == 0) {
        MPI_Put(&local_buf[0], 1, MPI_INT, dst_world_rank, 0, 1, MPI_INT, win);
        MPI_Put(&local_buf[ELEM_PER_PROC - 1], 1, MPI_INT, dst_world_rank, ELEM_PER_PROC - 1, 1,
                MPI_INT, win);
        MPI_Win_flush(dst_world_rank, win);
    }

    MPI_Win_sync(shm_win);
    MPI_Barrier(shm_comm);
    MPI_Win_sync(shm_win);

    if (bases[dst_shm_rank][0] != local_buf[0]) {
        errors++;
        printf("%d -- Got %d at rank %d index %d, expected %d\n", rank,
               bases[dst_shm_rank][0], dst_shm_rank, 0, local_buf[0]);
    }
    if (bases[dst_shm_rank][ELEM_PER_PROC - 1] != local_buf[ELEM_PER_PROC - 1]) {
        errors++;
        printf("%d -- Got %d at rank %d index %d, expected %d\n", rank,
               bases[dst_shm_rank][ELEM_PER_PROC - 1], dst_shm_rank,
               ELEM_PER_PROC - 1, local_buf[ELEM_PER_PROC - 1]);
    }

    MPI_Win_unlock_all(shm_win);
    MPI_Win_unlock_all(win);

    MPI_Reduce(&errors, &all_errors, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

    MPI_Win_free(&win);
    MPI_Win_free(&shm_win);

  exit:
    if (rank == 0 && all_errors == 0)
        printf(" No Errors\n");

    if (create_info != MPI_INFO_NULL)
        MPI_Info_free(&create_info);
    if (shm_comm != MPI_COMM_NULL)
        MPI_Comm_free(&shm_comm);
    if (shm_group != MPI_GROUP_NULL)
        MPI_Group_free(&shm_group);
    if (world_group != MPI_GROUP_NULL)
        MPI_Group_free(&world_group);

    MPI_Finalize();

    if (bases)
        free(bases);

    return 0;
}
Beispiel #30
0
int main(int argc, char **argv)
{
    int r,p;
    int n, energy, niters, px, py;

    int rx, ry;
    int north, south, west, east;
    int bx, by, offx, offy;

    /* three heat sources */
    const int nsources = 3;
    int sources[nsources][2];
    int locnsources;             /* number of sources in my area */
    int locsources[nsources][2]; /* sources local to my rank */

    double t1, t2;

    int iter, i, j;

    double heat, rheat;

    int final_flag;

    /* initialize MPI envrionment */
    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &r);
    MPI_Comm_size(MPI_COMM_WORLD, &p);

    /* create shared memory communicator */
    MPI_Comm shmcomm;
    MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm);

    int sr, sp; // rank and size in shmem comm
    MPI_Comm_size(shmcomm, &sp);
    MPI_Comm_rank(shmcomm, &sr);

    // this code works only on comm world!
    if(sp != p) MPI_Abort(MPI_COMM_WORLD, 1);

    /* argument checking and setting */
    setup(r, p, argc, argv,
          &n, &energy, &niters, &px, &py, &final_flag);

    if (final_flag == 1) {
        MPI_Finalize();
        exit(0);
    }

    /* determine my coordinates (x,y) -- r=x*a+y in the 2d processor array */
    rx = r % px;
    ry = r / px;

    /* determine my four neighbors */
    north = (ry - 1) * px + rx; if (ry-1 < 0)   north = MPI_PROC_NULL;
    south = (ry + 1) * px + rx; if (ry+1 >= py) south = MPI_PROC_NULL;
    west = ry * px + rx - 1;    if (rx-1 < 0)   west = MPI_PROC_NULL;
    east = ry * px + rx + 1;    if (rx+1 >= px) east = MPI_PROC_NULL;

    /* decompose the domain */
    bx = n / px;    /* block size in x */
    by = n / py;    /* block size in y */
    offx = rx * bx; /* offset in x */
    offy = ry * by; /* offset in y */

    /* printf("%i (%i,%i) - w: %i, e: %i, n: %i, s: %i\n", r, ry,rx,west,east,north,south); */

    int size = (bx+2)*(by+2); /* process-local grid (including halos (thus +2)) */
    double *mem;
    MPI_Win win;
    MPI_Win_allocate_shared(2*size*sizeof(double), 1, MPI_INFO_NULL, shmcomm, &mem, &win);

    double *tmp;
    double *anew=mem; /* each rank's offset */
    double *aold=mem+size; /* second half is aold! */

    double *northptr, *southptr, *eastptr, *westptr;
    double *northptr2, *southptr2, *eastptr2, *westptr2;
    MPI_Aint sz;
    int dsp_unit;
    /* locate the shared memory region for each neighbor */
    MPI_Win_shared_query(win, north, &sz, &dsp_unit, &northptr);
    MPI_Win_shared_query(win, south, &sz, &dsp_unit, &southptr);
    MPI_Win_shared_query(win, east, &sz, &dsp_unit, &eastptr);
    MPI_Win_shared_query(win, west, &sz, &dsp_unit, &westptr);
    northptr2 = northptr+size;
    southptr2 = southptr+size;
    eastptr2 = eastptr+size;
    westptr2 = westptr+size;

    /* initialize three heat sources */
    init_sources(bx, by, offx, offy, n,
                 nsources, sources, &locnsources, locsources);

    t1 = MPI_Wtime(); /* take time */

    MPI_Win_lock_all(0, win);    
    for (iter = 0; iter < niters; ++iter) {
        /* refresh heat sources */
        for (i = 0; i < locnsources; ++i) {
            aold[ind(locsources[i][0],locsources[i][1])] += energy; /* heat source */
        }

	MPI_Win_sync(win);
	MPI_Barrier(shmcomm);

	/* exchange data with neighbors */
	if(north != MPI_PROC_NULL) {
	  for(i=0; i<bx; ++i) aold[ind(i+1,0)] = northptr2[ind(i+1,by)]; /* pack loop - last valid region */
	}
	if(south != MPI_PROC_NULL) {
	  for(i=0; i<bx; ++i) aold[ind(i+1,by+1)] = southptr2[ind(i+1,1)]; /* pack loop */
	}
	if(east != MPI_PROC_NULL) {
	  for(i=0; i<by; ++i) aold[ind(bx+1,i+1)] = eastptr2[ind(1,i+1)]; /* pack loop */
	}
	if(west != MPI_PROC_NULL) {
	  for(i=0; i<by; ++i) aold[ind(0,i+1)] = westptr2[ind(bx,i+1)]; /* pack loop */
	}

        /* update grid points */
        update_grid(bx, by, aold, anew, &heat);

        /* swap working arrays */
        tmp = anew; anew = aold; aold = tmp;

        /* optional - print image */
        if (iter == niters-1) printarr_par(iter, anew, n, px, py, rx, ry, bx, by, offx, offy, shmcomm);
    }

    MPI_Win_unlock_all(win);
    t2 = MPI_Wtime();

    /* get final heat in the system */
    MPI_Allreduce(&heat, &rheat, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
    if (!r) printf("[%i] last heat: %f time: %f\n", r, rheat, t2-t1);

    /* free working arrays and communication buffers */
    MPI_Win_free(&win);
    MPI_Comm_free(&shmcomm);

    MPI_Finalize();
}