int mosekNNSolverWrapper(const Matrix &Q, const Matrix &Eq, const Matrix &b, const Matrix &InEq, const Matrix &ib, const Matrix &lowerBounds, const Matrix &upperBounds, Matrix &sol, double *objVal, MosekObjectiveType objType) { DBGP("Mosek QP Wrapper started"); MSKrescodee r; MSKtask_t task = NULL; // Get the only instance of the mosek environment. MSKenv_t env = getMosekEnv(); // Create the optimization task. r = MSK_maketask(env, 0, 0, &task); if (r != MSK_RES_OK) { DBGA("Failed to create optimization task"); return -1; } MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr); //--------------------------------------- //start inputing the problem //prespecify number of variables to make inputting faster r = MSK_putmaxnumvar(task, sol.rows()); //number of constraints (both equality and inequality) if (r == MSK_RES_OK) { r = MSK_putmaxnumcon(task, Eq.rows() + InEq.rows()); } //make sure default value is 0 for sparse matrices assert(Q.getDefault() == 0.0); assert(Eq.getDefault() == 0.0); assert(InEq.getDefault() == 0.0); //number of non-zero entries in A if (r == MSK_RES_OK) { r = MSK_putmaxnumanz(task, Eq.numElements() + InEq.numElements()); } if (r != MSK_RES_OK) { DBGA("Failed to input variables"); MSK_deletetask(&task); return -1; } //solver is sensitive to numerical problems. Scale the problem down //we will use this value to scale down the right hand side of equality //and inequality constraints and lower and upper bounds //after solving, we must scale back up the solution and the value of the //objective double scale = b.absMax(); if (scale < 1.0e2) { scale = 1.0; } else { DBGP("Mosek solver: scaling problem down by " << scale); } //--------------------------------------- //insert the actual variables and constraints //append the variables MSK_append(task, MSK_ACC_VAR, sol.rows()); //append the constraints. MSK_append(task, MSK_ACC_CON, Eq.rows() + InEq.rows()); int i, j; double value; if (objType == MOSEK_OBJ_QP) { //quadratic optimization objective //the quadratic term Q.sequentialReset(); while (Q.nextSequentialElement(i, j, value)) { MSK_putqobjij(task, i, j, 2.0 * value); } } else if (objType == MOSEK_OBJ_LP) { //linear objective for (j = 0; j < Q.cols(); j++) { if (fabs(Q.elem(0, j)) > 1.0e-5) { MSK_putcj(task, j, Q.elem(0, j)); } } } else { assert(0); } //variable bounds assert(sol.rows() == lowerBounds.rows()); assert(sol.rows() == upperBounds.rows()); for (i = 0; i < sol.rows(); i++) { if (lowerBounds.elem(i, 0) >= upperBounds.elem(i, 0)) { if (lowerBounds.elem(i, 0) > upperBounds.elem(i, 0)) { assert(0); } if (lowerBounds.elem(i, 0) == -std::numeric_limits<double>::max()) { assert(0); } if (upperBounds.elem(i, 0) == std::numeric_limits<double>::max()) { assert(0); } //fixed variable DBGP(i << ": fixed " << lowerBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_FX, lowerBounds.elem(i, 0) / scale, upperBounds.elem(i, 0) / scale); } else if (lowerBounds.elem(i, 0) != -std::numeric_limits<double>::max()) { //finite lower bound if (upperBounds.elem(i, 0) != std::numeric_limits<double>::max()) { //two finite bounds DBGP(i << ": finite bounds " << lowerBounds.elem(i, 0) / scale << " " << upperBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_RA, lowerBounds.elem(i, 0) / scale, upperBounds.elem(i, 0) / scale); } else { //lower bound DBGP(i << ": lower bound " << lowerBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_LO, lowerBounds.elem(i, 0) / scale, +MSK_INFINITY); } } else { //infinite lower bound if (upperBounds.elem(i, 0) != std::numeric_limits<double>::max()) { //upper bound DBGP(i << ": upper bound " << upperBounds.elem(i, 0) / scale); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_UP, -MSK_INFINITY, upperBounds.elem(i, 0) / scale); } else { //unbounded DBGP(i << ": unbounded"); MSK_putbound(task, MSK_ACC_VAR, i, MSK_BK_FR, -MSK_INFINITY, +MSK_INFINITY); } } } //constraints and constraint bounds //equality constraints Eq.sequentialReset(); while (Eq.nextSequentialElement(i, j, value)) { MSK_putaij(task, i, j, value); } for (i = 0; i < Eq.rows(); i++) { MSK_putbound(task, MSK_ACC_CON, i, MSK_BK_FX, b.elem(i, 0) / scale, b.elem(i, 0) / scale); } //inequality constraints, <= InEq.sequentialReset(); while (InEq.nextSequentialElement(i, j, value)) { int eqi = i + Eq.rows(); MSK_putaij(task, eqi, j, value); } for (i = 0; i < InEq.rows(); i++) { int eqi = i + Eq.rows(); MSK_putbound(task, MSK_ACC_CON, eqi, MSK_BK_UP, -MSK_INFINITY, ib.elem(i, 0) / scale); } //specify objective: minimize MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MINIMIZE); //give it 800 iterations, twice the default. MSK_putintparam(task, MSK_IPAR_INTPNT_MAX_ITERATIONS, 800); //---------------------------------- //solve the thing DBGP("Optimization started"); r = MSK_optimize(task); DBGP("Optimization returns"); //write problem to file /* static int fileNum = 0; if (r != MSK_RES_OK) { char filename[50]; sprintf(filename,"mosek_error_%d_%d.opf",fileNum++, r); MSK_writedata(task, filename); FILE *fp = fopen(filename,"a"); fprintf(fp,"\n\nEquality matrix:\n"); Eq.print(fp); fclose(fp); } */ if (r != MSK_RES_OK) { DBGA("Mosek optimization call failed, error code " << r); MSK_deletetask(&task); return -1; } DBGP("Optimization complete"); //debug code, find out number of iterations used //int iter; //MSK_getintinf(task, MSK_IINF_INTPNT_ITER, &iter); //DBGA("Iterations used: " << iter); //find out what kind of solution we have MSKprostae pst; MSKsolstae sst; MSK_getsolutionstatus(task, MSK_SOL_ITR, &pst, &sst); int result; if (sst == MSK_SOL_STA_OPTIMAL || sst == MSK_SOL_STA_NEAR_OPTIMAL) { //success, we have an optimal problem if (sst == MSK_SOL_STA_OPTIMAL) {DBGP("QP solution is optimal");} else {DBGA("QP solution is *nearly* optimal");} result = 0; } else if (sst == MSK_SOL_STA_PRIM_INFEAS_CER) { //unfeasible problem DBGP("Mosek optimization: primal infeasible"); result = 1; } else if (sst == MSK_SOL_STA_DUAL_INFEAS_CER) { //unfeasible problem DBGA("Mosek optimization: dual infeasible (primal unbounded?)"); result = 1; } else if (sst == MSK_SOL_STA_PRIM_AND_DUAL_FEAS) { //i think this means feasible problem, but unbounded solution //this shouldn't happen as our Q is positive semidefinite DBGA("QP solution is prim and dual feasible, but not optimal"); DBGA("Is Q positive semidefinite?"); result = -1; } else { //unknown return status DBGA("QP fails with solution status " << sst << " and problem status " << pst); result = -1; } //MSK_SOL_STA_DUAL_FEAS; //retrieve the solutions if (!result) { //get the value of the objective function MSKrealt obj, foo; MSK_getsolutioninf(task, MSK_SOL_ITR, &pst, &sst, &obj, &foo, &foo, &foo, &foo, &foo, &foo, &foo, &foo); if (objType == MOSEK_OBJ_QP) { *objVal = obj * scale * scale; } else if (objType == MOSEK_OBJ_LP) { *objVal = obj * scale; } else { assert(0); } double *xx = new double[sol.rows()]; MSK_getsolutionslice(task, MSK_SOL_ITR, MSK_SOL_ITEM_XX, 0, sol.rows(), xx); for (i = 0; i < sol.rows(); i++) { sol.elem(i, 0) = scale * xx[i]; DBGP("x" << i << ": " << xx[i]); } delete [] xx; } MSK_deletetask(&task); return result; }
MSKrescodee put_a(MSKtask_t task, double *aval, MSKidxt *asub, MSKidxt *ptrb, MSKidxt *ptre, int numvar, MSKidxt *basis ) { MSKrescodee r = MSK_RES_OK; int i; MSKstakeye *skx = NULL , *skc = NULL; skx = (MSKstakeye *) calloc(numvar,sizeof(MSKstakeye)); if (skx == NULL && numvar) r = MSK_RES_ERR_SPACE; skc = (MSKstakeye *) calloc(numvar,sizeof(MSKstakeye)); if (skc == NULL && numvar) r = MSK_RES_ERR_SPACE; for (i=0;i<numvar && r == MSK_RES_OK;++i) { skx[i] = MSK_SK_BAS; skc[i] = MSK_SK_FIX; } /* Create a coefficient matrix and right hand side with the data from the linear system */ if (r == MSK_RES_OK) r = MSK_append(task,MSK_ACC_VAR,numvar); if (r == MSK_RES_OK) r = MSK_append(task,MSK_ACC_CON,numvar); for (i=0;i<numvar && r == MSK_RES_OK;++i) r = MSK_putavec(task,MSK_ACC_VAR,i,ptre[i]-ptrb[i],asub+ptrb[i],aval+ptrb[i]); for (i=0;i<numvar && r == MSK_RES_OK;++i) r = MSK_putbound(task,MSK_ACC_CON,i,MSK_BK_FX,0,0); for (i=0;i<numvar && r == MSK_RES_OK;++i) r = MSK_putbound(task,MSK_ACC_VAR,i,MSK_BK_FR,-MSK_INFINITY,MSK_INFINITY); /* Allocate space for the solution and set status to unknown */ if (r == MSK_RES_OK) { r = MSK_makesolutionstatusunknown(task, MSK_SOL_BAS); } /* Define a basic solution by specifying status keys for variables & constraints. */ for (i=0; i<numvar && r==MSK_RES_OK;++i) r = MSK_putsolutioni ( task, MSK_ACC_VAR, i, MSK_SOL_BAS, skx[i], 0.0, 0.0, 0.0, 0.0); for (i=0;i<numvar && r == MSK_RES_OK;++i) r = MSK_putsolutioni ( task, MSK_ACC_CON, i, MSK_SOL_BAS, skc[i], 0.0, 0.0, 0.0, 0.0); if (r == MSK_RES_OK) r = MSK_initbasissolve(task,basis); free (skx); free (skc); return ( r ); }
int main(int argc,char *argv[]) { MSKrescodee r; MSKboundkeye bkc[] = { MSK_BK_FX }; double blc[] = { 1.0 }; double buc[] = { 1.0 }; MSKboundkeye bkx[] = {MSK_BK_LO, MSK_BK_LO, MSK_BK_LO, MSK_BK_LO, MSK_BK_FR, MSK_BK_FR}; double blx[] = {0.0, 0.0, 0.0, 0.0, -MSK_INFINITY, -MSK_INFINITY}; double bux[] = {+MSK_INFINITY, +MSK_INFINITY, +MSK_INFINITY, +MSK_INFINITY, +MSK_INFINITY, +MSK_INFINITY}; double c[] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0}; MSKintt aptrb[] = {0, 1, 2, 3, 5, 5}; MSKintt aptre[] = {1, 2, 3, 4, 5, 5}; double aval[] = {1.0, 1.0, 1.0, 1.0}; MSKidxt asub[] = {0, 0, 0, 0}; MSKidxt i,j,csub[3]; double xx[NUMVAR]; MSKenv_t env; MSKtask_t task; /* Create the mosek environment. */ r = MSK_makeenv(&env,NULL,NULL,NULL,NULL); /* Check if return code is ok. */ if ( r==MSK_RES_OK ) { /* Directs the log stream to the 'printstr' function. */ MSK_linkfunctoenvstream(env,MSK_STREAM_LOG,NULL,printstr); } /* Initialize the environment. */ if ( r==MSK_RES_OK ) r = MSK_initenv(env); if ( r==MSK_RES_OK ) { /* Create the optimization task. */ r = MSK_maketask(env,NUMCON,NUMVAR,&task); if ( r==MSK_RES_OK ) { MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr); /* Give MOSEK an estimate of the size of the input data. This is done to increase the speed of inputting data. However, it is optional. */ if (r == MSK_RES_OK) r = MSK_putmaxnumvar(task,NUMVAR); if (r == MSK_RES_OK) r = MSK_putmaxnumcon(task,NUMCON); if (r == MSK_RES_OK) r = MSK_putmaxnumanz(task,NUMANZ); /* Append 'NUMCON' empty constraints. The constraints will initially have no bounds. */ if ( r == MSK_RES_OK ) r = MSK_append(task,MSK_ACC_CON,NUMCON); /* Append 'NUMVAR' variables. The variables will initially be fixed at zero (x=0). */ if ( r == MSK_RES_OK ) r = MSK_append(task,MSK_ACC_VAR,NUMVAR); /* Optionally add a constant term to the objective. */ if ( r ==MSK_RES_OK ) r = MSK_putcfix(task,0.0); for(j=0; j<NUMVAR && r == MSK_RES_OK; ++j) { /* Set the linear term c_j in the objective.*/ if(r == MSK_RES_OK) r = MSK_putcj(task,j,c[j]); /* Set the bounds on variable j. blx[j] <= x_j <= bux[j] */ if(r == MSK_RES_OK) r = MSK_putbound(task, MSK_ACC_VAR, /* Put bounds on variables.*/ j, /* Index of variable.*/ bkx[j], /* Bound key.*/ blx[j], /* Numerical value of lower bound.*/ bux[j]); /* Numerical value of upper bound.*/ /* Input column j of A */ if(r == MSK_RES_OK) r = MSK_putavec(task, MSK_ACC_VAR, /* Input columns of A.*/ j, /* Variable (column) index.*/ aptre[j]-aptrb[j], /* Number of non-zeros in column j.*/ asub+aptrb[j], /* Pointer to row indexes of column j.*/ aval+aptrb[j]); /* Pointer to Values of column j.*/ } /* Set the bounds on constraints. for i=1, ...,NUMCON : blc[i] <= constraint i <= buc[i] */ for(i=0; i<NUMCON && r==MSK_RES_OK; ++i) r = MSK_putbound(task, MSK_ACC_CON, /* Put bounds on constraints.*/ i, /* Index of constraint.*/ bkc[i], /* Bound key.*/ blc[i], /* Numerical value of lower bound.*/ buc[i]); /* Numerical value of upper bound.*/ if ( r==MSK_RES_OK ) { /* Append the first cone. */ csub[0] = 4; csub[1] = 0; csub[2] = 2; r = MSK_appendcone(task, MSK_CT_QUAD, 0.0, /* For future use only, can be set to 0.0 */ 3, csub); } if ( r==MSK_RES_OK ) { /* Append the second cone. */ csub[0] = 5; csub[1] = 1; csub[2] = 3; r = MSK_appendcone(task, MSK_CT_QUAD, 0.0, 3, csub); } if ( r==MSK_RES_OK ) { MSKrescodee trmcode; /* Run optimizer */ r = MSK_optimizetrm(task,&trmcode); /* Print a summary containing information about the solution for debugging purposes*/ MSK_solutionsummary (task,MSK_STREAM_LOG); if ( r==MSK_RES_OK ) { MSKsolstae solsta; MSKidxt j; MSK_getsolutionstatus (task, MSK_SOL_ITR, NULL, &solsta); switch(solsta) { case MSK_SOL_STA_OPTIMAL: case MSK_SOL_STA_NEAR_OPTIMAL: MSK_getsolutionslice(task, MSK_SOL_ITR, /* Request the interior solution. */ MSK_SOL_ITEM_XX,/* Which part of solution. */ 0, /* Index of first variable. */ NUMVAR, /* Index of last variable+1. */ xx); printf("Optimal primal solution\n"); for(j=0; j<NUMVAR; ++j) printf("x[%d]: %e\n",j,xx[j]); break; case MSK_SOL_STA_DUAL_INFEAS_CER: case MSK_SOL_STA_PRIM_INFEAS_CER: case MSK_SOL_STA_NEAR_DUAL_INFEAS_CER: case MSK_SOL_STA_NEAR_PRIM_INFEAS_CER: printf("Primal or dual infeasibility certificate found.\n"); break; case MSK_SOL_STA_UNKNOWN: printf("The status of the solution could not be determined.\n"); break; default: printf("Other solution status."); break; } } else { printf("Error while optimizing.\n"); } } if (r != MSK_RES_OK) { /* In case of an error print error code and description. */ char symname[MSK_MAX_STR_LEN]; char desc[MSK_MAX_STR_LEN]; printf("An error occurred while optimizing.\n"); MSK_getcodedesc (r, symname, desc); printf("Error %s - '%s'\n",symname,desc); } } /* Delete the task and the associated data. */ MSK_deletetask(&task); } /* Delete the environment and the associated data. */ MSK_deleteenv(&env); return ( r ); } /* main */
int main(int argc,char *argv[]) { MSKrescodee r; MSKidxt i,j; double c[] = {3.0, 1.0, 5.0, 1.0}; /* Below is the sparse representation of the A matrix stored by row. */ MSKlidxt aptrb[] = {0, 3, 7}; MSKlidxt aptre[] = {3, 7, 9}; MSKidxt asub[] = { 0,1,2, 0,1,2,3, 1,3}; double aval[] = { 3.0, 1.0, 2.0, 2.0, 1.0, 3.0, 1.0, 2.0, 3.0}; /* Bounds on constraints. */ MSKboundkeye bkc[] = {MSK_BK_FX, MSK_BK_LO, MSK_BK_UP }; double blc[] = {30.0, 15.0, -MSK_INFINITY}; double buc[] = {30.0, +MSK_INFINITY, 25.0 }; /* Bounds on variables. */ MSKboundkeye bkx[] = {MSK_BK_LO, MSK_BK_RA, MSK_BK_LO, MSK_BK_LO }; double blx[] = {0.0, 0.0, 0.0, 0.0 }; double bux[] = {+MSK_INFINITY, 10.0, +MSK_INFINITY, +MSK_INFINITY }; double xx[NUMVAR]; MSKenv_t env = NULL; MSKtask_t task = NULL; /* Create the mosek environment. */ r = MSK_makeenv(&env,NULL,NULL,NULL,NULL); /* Directs the env log stream to the 'printstr' function. */ if ( r==MSK_RES_OK ) MSK_linkfunctoenvstream(env,MSK_STREAM_LOG,NULL,printstr); /* Initialize the environment. */ if ( r==MSK_RES_OK ) r = MSK_initenv(env); if ( r==MSK_RES_OK ) { /* Create the optimization task. */ r = MSK_maketask(env,NUMCON,NUMVAR,&task); /* Directs the log task stream to the 'printstr' function. */ if ( r==MSK_RES_OK ) MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr); /* Give MOSEK an estimate of the size of the input data. This is done to increase the speed of inputting data. However, it is optional. */ if (r == MSK_RES_OK) r = MSK_putmaxnumvar(task,NUMVAR); if (r == MSK_RES_OK) r = MSK_putmaxnumcon(task,NUMCON); if (r == MSK_RES_OK) r = MSK_putmaxnumanz(task,NUMANZ); /* Append 'NUMCON' empty constraints. The constraints will initially have no bounds. */ if ( r == MSK_RES_OK ) r = MSK_append(task,MSK_ACC_CON,NUMCON); /* Append 'NUMVAR' variables. The variables will initially be fixed at zero (x=0). */ if ( r == MSK_RES_OK ) r = MSK_append(task,MSK_ACC_VAR,NUMVAR); /* Optionally add a constant term to the objective. */ if ( r ==MSK_RES_OK ) r = MSK_putcfix(task,0.0); for(j=0; j<NUMVAR && r == MSK_RES_OK; ++j) { /* Set the linear term c_j in the objective.*/ if(r == MSK_RES_OK) r = MSK_putcj(task,j,c[j]); /* Set the bounds on variable j. blx[j] <= x_j <= bux[j] */ if(r == MSK_RES_OK) r = MSK_putbound(task, MSK_ACC_VAR, /* Put bounds on variables.*/ j, /* Index of variable.*/ bkx[j], /* Bound key.*/ blx[j], /* Numerical value of lower bound.*/ bux[j]); /* Numerical value of upper bound.*/ } /* Set the bounds on constraints. for i=1, ...,NUMCON : blc[i] <= constraint i <= buc[i] */ for(i=0; i<NUMCON && r==MSK_RES_OK; ++i) { r = MSK_putbound(task, MSK_ACC_CON, /* Put bounds on constraints.*/ i, /* Index of constraint.*/ bkc[i], /* Bound key.*/ blc[i], /* Numerical value of lower bound.*/ buc[i]); /* Numerical value of upper bound.*/ /* Input column j of A */ if(r == MSK_RES_OK) r = MSK_putavec(task, MSK_ACC_CON, /* Input row of A.*/ i, /* Row index.*/ aptre[i]-aptrb[i], /* Number of non-zeros in row i.*/ asub+aptrb[i], /* Pointer to column indexes of row i.*/ aval+aptrb[i]); /* Pointer to Values of row i.*/ } /* Maximize objective function. */ if (r == MSK_RES_OK) r = MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE); if ( r==MSK_RES_OK ) { MSKrescodee trmcode; /* Run optimizer */ r = MSK_optimizetrm(task,&trmcode); /* Print a summary containing information about the solution for debugging purposes. */ MSK_solutionsummary (task,MSK_STREAM_LOG); if ( r==MSK_RES_OK ) { MSKsolstae solsta; int j; MSK_getsolutionstatus (task, MSK_SOL_BAS, NULL, &solsta); switch(solsta) { case MSK_SOL_STA_OPTIMAL: case MSK_SOL_STA_NEAR_OPTIMAL: MSK_getsolutionslice(task, MSK_SOL_BAS, /* Request the basic solution. */ MSK_SOL_ITEM_XX,/* Which part of solution. */ 0, /* Index of first variable. */ NUMVAR, /* Index of last variable+1. */ xx); printf("Optimal primal solution\n"); for(j=0; j<NUMVAR; ++j) printf("x[%d]: %e\n",j,xx[j]); break; case MSK_SOL_STA_DUAL_INFEAS_CER: case MSK_SOL_STA_PRIM_INFEAS_CER: case MSK_SOL_STA_NEAR_DUAL_INFEAS_CER: case MSK_SOL_STA_NEAR_PRIM_INFEAS_CER: printf("Primal or dual infeasibility certificate found.\n"); break; case MSK_SOL_STA_UNKNOWN: printf("The status of the solution could not be determined.\n"); break; default: printf("Other solution status."); break; } } else { printf("Error while optimizing.\n"); } } if (r != MSK_RES_OK) { /* In case of an error print error code and description. */ char symname[MSK_MAX_STR_LEN]; char desc[MSK_MAX_STR_LEN]; printf("An error occurred while optimizing.\n"); MSK_getcodedesc (r, symname, desc); printf("Error %s - '%s'\n",symname,desc); } MSK_deletetask(&task); MSK_deleteenv(&env); } return r; }
bool QPSolver::solve(VectorXd& sol) { bool ret = false; #ifdef _WIN32 VectorXd solution; preSolve(); convertMatrixVectorFormat(); MSKenv_t env; MSKtask_t task; MSKrescodee r; r = MSK_makeenv(&env, NULL, NULL, NULL, NULL); if (r == MSK_RES_OK) { r = MSK_linkfunctoenvstream(env, MSK_STREAM_LOG, NULL, printstr); } r = MSK_initenv(env); if (r == MSK_RES_OK) { r = MSK_maketask(env, mNumCon, mNumVar, &task); if (r == MSK_RES_OK) { r = MSK_linkfunctotaskstream(task, MSK_STREAM_LOG, NULL, printstr); } if (r == MSK_RES_OK) r = MSK_putmaxnumvar(task, mNumVar); if (r == MSK_RES_OK) r = MSK_putmaxnumcon(task, mNumCon); /* Append ¡¯NUMCON ¡¯ empty constraints . The constraints will initially have no bounds . */ if (r == MSK_RES_OK) r = MSK_append(task, MSK_ACC_CON, mNumCon); /* Append ¡¯NUMVAR ¡¯ variables . The variables will initially be fixed at zero (x =0). */ if (r == MSK_RES_OK) r = MSK_append(task, MSK_ACC_VAR, mNumVar); /* Optionally add a constant term to the objective . */ if (r == MSK_RES_OK) r = MSK_putcfix(task, mConstant); for (int j = 0; j < mNumVar && r == MSK_RES_OK; ++j) { /* Set the linear term c_j in the objective .*/ if (r == MSK_RES_OK) r = MSK_putcj(task, j, mCU[j]); /* Set the bounds on variable j.*/ if (r == MSK_RES_OK) { if (mbLowerBounded[j] && mbUpperBounded[j]) { if (mlb[j] == mub[j]) r = MSK_putbound(task, MSK_ACC_VAR, j, MSK_BK_FX, mlb[j], mub[j]); else { CHECK(mlb[j] < mub[j]); r = MSK_putbound(task, MSK_ACC_VAR, j, MSK_BK_RA, mlb[j], mub[j]); } } else if (mbLowerBounded[j]) { r = MSK_putbound(task, MSK_ACC_VAR, j , MSK_BK_LO, mlb[j], +MSK_INFINITY); } else if (mbUpperBounded[j]) { r = MSK_putbound(task, MSK_ACC_VAR, j, MSK_BK_UP, -MSK_INFINITY, mub[j]); } else { r = MSK_putbound(task, MSK_ACC_VAR, j, MSK_BK_FR, -MSK_INFINITY, +MSK_INFINITY); } } /* Input column j of A */ if (r == MSK_RES_OK && mNumCon) { int currentColumnIdx = mAColumnStartIdx[j]; int nextColumnIdx = mAColumnStartIdx[j + 1]; r = MSK_putavec(task, MSK_ACC_VAR, j, nextColumnIdx - currentColumnIdx, &(mARowIdx[currentColumnIdx]), &(mAValues[currentColumnIdx])); } } /* Set the bounds on constraints . for i=1, ... , NUMCON : blc [i] <= constraint i <= buc [i] */ for (int i = 0; i < mNumCon && r == MSK_RES_OK; ++i) { if (mbConstraintLowerBounded[i] && mbConstraintUpperBounded[i]) { if (mlbc[i] == mubc[i]) { r = MSK_putbound(task, MSK_ACC_CON, i, MSK_BK_FX, mlbc[i], mubc[i]); } else { r = MSK_putbound(task, MSK_ACC_CON, i, MSK_BK_RA, mlbc[i], mubc[i]); } } else if (mbConstraintLowerBounded[i]) { r = MSK_putbound(task, MSK_ACC_CON, i, MSK_BK_LO, mlbc[i], +MSK_INFINITY); } else if (mbConstraintUpperBounded[i]) { r = MSK_putbound(task, MSK_ACC_CON, i, MSK_BK_UP, -MSK_INFINITY, mubc[i]); } else { LOG(WARNING) << "Every constraint should not be free."; } } if (r == MSK_RES_OK) { /* Input the Q for the objective . */ r = MSK_putqobj(task, mQValues.size(), &(mQSubi[0]), &(mQSubj[0]), &(mQValues[0])); } if (r == MSK_RES_OK) { MSKrescodee trmcode; r = MSK_optimizetrm(task, &trmcode); MSK_solutionsummary(task, MSK_STREAM_LOG); if (r == MSK_RES_OK) { MSKsolstae solsta; MSK_getsolutionstatus(task, MSK_SOL_ITR, NULL, &solsta); double* result = new double[mNumVar]; switch (solsta) { case MSK_SOL_STA_OPTIMAL: case MSK_SOL_STA_NEAR_OPTIMAL: MSK_getsolutionslice(task, MSK_SOL_ITR, MSK_SOL_ITEM_XX, 0, mNumVar, result); LOG(INFO) << "Optimal primal solution"; ret = true; solution = VectorXd::Zero(mNumVar); for (int k = 0; k < mNumVar; ++k) solution[k] = result[k]; break; case MSK_SOL_STA_DUAL_INFEAS_CER: case MSK_SOL_STA_PRIM_INFEAS_CER: case MSK_SOL_STA_NEAR_DUAL_INFEAS_CER: case MSK_SOL_STA_NEAR_PRIM_INFEAS_CER: LOG(WARNING) << "Primal or dual infeasibility certificate found."; break; case MSK_SOL_STA_UNKNOWN: LOG(WARNING) << "The status of the solution could not be determined."; break; default: LOG(WARNING) << "Other solution status."; break; } delete[] result; } } else { LOG(WARNING) << "Error while optimizing."; } if (r != MSK_RES_OK) { char symname[MSK_MAX_STR_LEN]; char desc[MSK_MAX_STR_LEN]; LOG(WARNING) << "An error occurred while optimizing."; MSK_getcodedesc(r, symname, desc); LOG(WARNING) << "Error " << symname << " - " << desc; } } MSK_deletetask(&task); MSK_deleteenv(&env); postSolve(solution, ret, sol); #endif return ret; }
/********************** lap: the upper RHS of the symmetric graph laplacian matrix which will be transformed to the hessian of the non-linear part of the optimisation function n: number of nodes (length of coords array) ordering: array containing sequences of nodes for each level, ie, ordering[levels[i]] is first node of (i+1)th level level_indexes: array of starting node for each level in ordering ie, levels[i] is index to first node of (i+1)th level also, levels[0] is number of nodes in first level and, levels[i]-levels[i-1] is number of nodes in ith level and, n - levels[num_divisions-1] is number of nodes in last level num_divisions: number of divisions between levels, ie number of levels - 1 separation: the minimum separation between nodes on different levels ***********************/ MosekEnv *mosek_init_hier(float *lap, int n, int *ordering, int *level_indexes, int num_divisions, float separation) { int count = 0; int i, j, num_levels = num_divisions + 1; int num_constraints; MosekEnv *mskEnv = GNEW(MosekEnv); DigColaLevel *levels; int nonzero_lapsize = (n * (n - 1)) / 2; /* vars for nodes (except x0) + dummy nodes between levels * x0 is fixed at 0, and therefore is not included in the opt problem * add 2 more vars for top and bottom constraints */ mskEnv->num_variables = n + num_divisions + 1; logfile = fopen("quad_solve_log", "w"); levels = assign_digcola_levels(ordering, n, level_indexes, num_divisions); #ifdef DUMP_CONSTRAINTS print_digcola_levels(logfile, levels, num_levels); #endif /* nonlinear coefficients matrix of objective function */ /* int lapsize=mskEnv->num_variables+(mskEnv->num_variables*(mskEnv->num_variables-1))/2; */ mskEnv->qval = N_GNEW(nonzero_lapsize, double); mskEnv->qsubi = N_GNEW(nonzero_lapsize, int); mskEnv->qsubj = N_GNEW(nonzero_lapsize, int); /* solution vector */ mskEnv->xx = N_GNEW(mskEnv->num_variables, double); /* constraint matrix */ separation /= 2.0; /* separation between each node and it's adjacent constraint */ num_constraints = get_num_digcola_constraints(levels, num_levels) + num_divisions + 1; /* constraints of the form x_i - x_j >= sep so 2 non-zero entries per constraint in LHS matrix * except x_0 (fixed at 0) constraints which have 1 nz val each. */ #ifdef EQUAL_WIDTH_LEVELS num_constraints += num_divisions; #endif /* pointer to beginning of nonzero sequence in a column */ for (i = 0; i < n - 1; i++) { for (j = i; j < n - 1; j++) { mskEnv->qval[count] = -2 * lap[count + n]; assert(mskEnv->qval[count] != 0); mskEnv->qsubi[count] = j; mskEnv->qsubj[count] = i; count++; } } #ifdef DUMP_CONSTRAINTS fprintf(logfile, "Q=["); int lapcntr = n; for (i = 0; i < mskEnv->num_variables; i++) { if (i != 0) fprintf(logfile, ";"); for (j = 0; j < mskEnv->num_variables; j++) { if (j < i || i >= n - 1 || j >= n - 1) { fprintf(logfile, "0 "); } else { fprintf(logfile, "%f ", -2 * lap[lapcntr++]); } } } fprintf(logfile, "]\nQ=Q-diag(diag(Q))+Q'\n"); #endif fprintf(logfile, "\n"); /* Make the mosek environment. */ mskEnv->r = MSK_makeenv(&mskEnv->env, NULL, NULL, NULL, NULL); /* Check whether the return code is ok. */ if (mskEnv->r == MSK_RES_OK) { /* Directs the log stream to the user * specified procedure 'printstr'. */ MSK_linkfunctoenvstream(mskEnv->env, MSK_STREAM_LOG, NULL, printstr); } /* Initialize the environment. */ mskEnv->r = MSK_initenv(mskEnv->env); if (mskEnv->r == MSK_RES_OK) { /* Make the optimization task. */ mskEnv->r = MSK_maketask(mskEnv->env, num_constraints, mskEnv->num_variables, &mskEnv->task); if (mskEnv->r == MSK_RES_OK) { int c_ind = 0; int c_var = n - 1; mskEnv->r = MSK_linkfunctotaskstream(mskEnv->task, MSK_STREAM_LOG, NULL, printstr); /* Resize the task. */ if (mskEnv->r == MSK_RES_OK) mskEnv->r = MSK_resizetask(mskEnv->task, num_constraints, mskEnv->num_variables, 0, /* no cones!! */ /* each constraint applies to 2 vars */ 2 * num_constraints + num_divisions, nonzero_lapsize); /* Append the constraints. */ if (mskEnv->r == MSK_RES_OK) mskEnv->r = MSK_append(mskEnv->task, 1, num_constraints); /* Append the variables. */ if (mskEnv->r == MSK_RES_OK) mskEnv->r = MSK_append(mskEnv->task, 0, mskEnv->num_variables); /* Put variable bounds. */ for (j = 0; j < mskEnv->num_variables && mskEnv->r == MSK_RES_OK; ++j) mskEnv->r = MSK_putbound(mskEnv->task, 0, j, MSK_BK_RA, -MSK_INFINITY, MSK_INFINITY); for (j = 0; j < levels[0].num_nodes && mskEnv->r == MSK_RES_OK; j++) { int node = levels[0].nodes[j] - 1; if (node >= 0) { INIT_sub_val(c_var,node); mskEnv->r = MSK_putavec(mskEnv->task, 1, c_ind, 2, subi, vali); } else { /* constraint for y0 (fixed at 0) */ mskEnv->r = MSK_putaij(mskEnv->task, c_ind, c_var, 1.0); } mskEnv->r = MSK_putbound(mskEnv->task, 1, c_ind, MSK_BK_LO, separation, MSK_INFINITY); c_ind++; } for (i = 0; i < num_divisions && mskEnv->r == MSK_RES_OK; i++) { c_var = n + i; for (j = 0; j < levels[i].num_nodes && mskEnv->r == MSK_RES_OK; j++) { /* create separation constraint a>=b+separation */ int node = levels[i].nodes[j] - 1; if (node >= 0) { /* no constraint for fixed node */ INIT_sub_val(node,c_var); mskEnv->r = MSK_putavec(mskEnv->task, 1, c_ind, 2, subi, vali); } else { /* constraint for y0 (fixed at 0) */ mskEnv->r = MSK_putaij(mskEnv->task, c_ind, c_var, -1.0); } mskEnv->r = MSK_putbound(mskEnv->task, 1, c_ind, MSK_BK_LO, separation, MSK_INFINITY); c_ind++; } for (j = 0; j < levels[i + 1].num_nodes && mskEnv->r == MSK_RES_OK; j++) { int node = levels[i + 1].nodes[j] - 1; if (node >= 0) { INIT_sub_val(c_var,node); mskEnv->r = MSK_putavec(mskEnv->task, 1, c_ind, 2, subi, vali); } else { /* constraint for y0 (fixed at 0) */ mskEnv->r = MSK_putaij(mskEnv->task, c_ind, c_var, 1.0); } mskEnv->r = MSK_putbound(mskEnv->task, 1, c_ind, MSK_BK_LO, separation, MSK_INFINITY); c_ind++; } } c_var = n + i; for (j = 0; j < levels[i].num_nodes && mskEnv->r == MSK_RES_OK; j++) { /* create separation constraint a>=b+separation */ int node = levels[i].nodes[j] - 1; if (node >= 0) { /* no constraint for fixed node */ INIT_sub_val(node,c_var); mskEnv->r = MSK_putavec(mskEnv->task, 1, c_ind, 2, subi, vali); } else { /* constraint for y0 (fixed at 0) */ mskEnv->r = MSK_putaij(mskEnv->task, c_ind, c_var, -1.0); } mskEnv->r = MSK_putbound(mskEnv->task, 1, c_ind, MSK_BK_LO, separation, MSK_INFINITY); c_ind++; } /* create constraints preserving the order of dummy vars */ for (i = 0; i < num_divisions + 1 && mskEnv->r == MSK_RES_OK; i++) { int c_var = n - 1 + i, c_var2 = c_var + 1; INIT_sub_val(c_var,c_var2); mskEnv->r = MSK_putavec(mskEnv->task, 1, c_ind, 2, subi, vali); mskEnv->r = MSK_putbound(mskEnv->task, 1, c_ind, MSK_BK_LO, 0, MSK_INFINITY); c_ind++; } #ifdef EQUAL_WIDTH_LEVELS for (i = 1; i < num_divisions + 1 && mskEnv->r == MSK_RES_OK; i++) { int c_var = n - 1 + i, c_var_lo = c_var - 1, c_var_hi = c_var + 1; INIT_sub_val3(c_var_lo, c_var, c_var_h); mskEnv->r = MSK_putavec(mskEnv->task, 1, c_ind, 3, subi, vali); mskEnv->r = MSK_putbound(mskEnv->task, 1, c_ind, MSK_BK_FX, 0, 0); c_ind++; } #endif assert(c_ind == num_constraints); #ifdef DUMP_CONSTRAINTS fprintf(logfile, "A=["); for (i = 0; i < num_constraints; i++) { if (i != 0) fprintf(logfile, ";"); for (j = 0; j < mskEnv->num_variables; j++) { double aij; MSK_getaij(mskEnv->task, i, j, &aij); fprintf(logfile, "%f ", aij); } } fprintf(logfile, "]\n"); fprintf(logfile, "b=["); for (i = 0; i < num_constraints; i++) { fprintf(logfile, "%f ", separation); } fprintf(logfile, "]\n"); #endif if (mskEnv->r == MSK_RES_OK) { /* * The lower triangular part of the Q * matrix in the objective is specified. */ mskEnv->r = MSK_putqobj(mskEnv->task, nonzero_lapsize, mskEnv->qsubi, mskEnv->qsubj, mskEnv->qval); } } } delete_digcola_levels(levels, num_levels); return mskEnv; }
/********************** lap: the upper RHS of the symmetric graph laplacian matrix which will be transformed to the hessian of the non-linear part of the optimisation function has dimensions num_variables, dummy vars do not have entries in lap cs: array of pointers to separation constraints ***********************/ MosekEnv *mosek_init_sep(float *lap, int num_variables, int num_dummy_vars, Constraint ** cs, int num_constraints) { int i, j; MosekEnv *mskEnv = GNEW(MosekEnv); int count = 0; int nonzero_lapsize = num_variables * (num_variables - 1) / 2; /* fix var 0 */ mskEnv->num_variables = num_variables + num_dummy_vars - 1; fprintf(stderr, "MOSEK!\n"); logfile = fopen("quad_solve_log", "w"); /* nonlinear coefficients matrix of objective function */ mskEnv->qval = N_GNEW(nonzero_lapsize, double); mskEnv->qsubi = N_GNEW(nonzero_lapsize, int); mskEnv->qsubj = N_GNEW(nonzero_lapsize, int); /* solution vector */ mskEnv->xx = N_GNEW(mskEnv->num_variables, double); /* pointer to beginning of nonzero sequence in a column */ for (i = 0; i < num_variables - 1; i++) { for (j = i; j < num_variables - 1; j++) { mskEnv->qval[count] = -2 * lap[count + num_variables]; /* assert(mskEnv->qval[count]!=0); */ mskEnv->qsubi[count] = j; mskEnv->qsubj[count] = i; count++; } } #ifdef DUMP_CONSTRAINTS fprintf(logfile, "Q=["); count = 0; for (i = 0; i < num_variables - 1; i++) { if (i != 0) fprintf(logfile, ";"); for (j = 0; j < num_variables - 1; j++) { if (j < i) { fprintf(logfile, "0 "); } else { fprintf(logfile, "%f ", -2 * lap[num_variables + count++]); } } } fprintf(logfile, "]\nQ=Q-diag(diag(Q))+Q'\n"); #endif /* Make the mosek environment. */ mskEnv->r = MSK_makeenv(&mskEnv->env, NULL, NULL, NULL, NULL); /* Check whether the return code is ok. */ if (mskEnv->r == MSK_RES_OK) { /* Directs the log stream to the user specified procedure 'printstr'. */ MSK_linkfunctoenvstream(mskEnv->env, MSK_STREAM_LOG, NULL, printstr); } /* Initialize the environment. */ mskEnv->r = MSK_initenv(mskEnv->env); if (mskEnv->r == MSK_RES_OK) { /* Make the optimization task. */ mskEnv->r = MSK_maketask(mskEnv->env, num_constraints, mskEnv->num_variables, &mskEnv->task); if (mskEnv->r == MSK_RES_OK) { mskEnv->r = MSK_linkfunctotaskstream(mskEnv->task, MSK_STREAM_LOG, NULL, printstr); /* Resize the task. */ if (mskEnv->r == MSK_RES_OK) mskEnv->r = MSK_resizetask(mskEnv->task, num_constraints, mskEnv->num_variables, 0, /* no cones!! */ /* number of non-zero constraint matrix entries: * each constraint applies to 2 vars */ 2 * num_constraints, nonzero_lapsize); /* Append the constraints. */ if (mskEnv->r == MSK_RES_OK) mskEnv->r = MSK_append(mskEnv->task, 1, num_constraints); /* Append the variables. */ if (mskEnv->r == MSK_RES_OK) mskEnv->r = MSK_append(mskEnv->task, 0, mskEnv->num_variables); /* Put variable bounds. */ for (j = 0; j < mskEnv->num_variables && mskEnv->r == MSK_RES_OK; j++) mskEnv->r = MSK_putbound(mskEnv->task, 0, j, MSK_BK_RA, -MSK_INFINITY, MSK_INFINITY); for (i = 0; i < num_constraints; i++) { int u = getLeftVarID(cs[i]) - 1; int v = getRightVarID(cs[i]) - 1; double separation = getSeparation(cs[i]); if (u < 0) { mskEnv->r = MSK_putbound(mskEnv->task, 0, v, MSK_BK_RA, -MSK_INFINITY, -separation); assert(mskEnv->r == MSK_RES_OK); } else if (v < 0) { mskEnv->r = MSK_putbound(mskEnv->task, 0, u, MSK_BK_RA, separation, MSK_INFINITY); assert(mskEnv->r == MSK_RES_OK); } else { /* fprintf(stderr,"u=%d,v=%d,sep=%f\n",u,v,separation); */ INIT_sub_val(u,v); mskEnv->r = MSK_putavec(mskEnv->task, 1, i, 2, subi, vali); assert(mskEnv->r == MSK_RES_OK); mskEnv->r = MSK_putbound(mskEnv->task, 1, i, MSK_BK_LO, separation, MSK_INFINITY); assert(mskEnv->r == MSK_RES_OK); } } if (mskEnv->r == MSK_RES_OK) { /* * The lower triangular part of the Q * matrix in the objective is specified. */ mskEnv->r = MSK_putqobj(mskEnv->task, nonzero_lapsize, mskEnv->qsubi, mskEnv->qsubj, mskEnv->qval); assert(mskEnv->r == MSK_RES_OK); } } } return mskEnv; }
int main(int argc,char *argv[]) { MSKrescodee r; MSKboundkeye bkc[NUMCON],bkx[NUMVAR]; int j,i, ptrb[NUMVAR],ptre[NUMVAR],sub[NUMANZ]; double blc[NUMCON],buc[NUMCON], c[NUMVAR],blx[NUMVAR],bux[NUMVAR],val[NUMANZ], xx[NUMVAR]; MSKenv_t env; MSKtask_t task; /* Make mosek environment. */ r = MSK_makeenv(&env,NULL,NULL,NULL,NULL); /* Check is return code is ok. */ if ( r==MSK_RES_OK ) { /* Directs the env log stream to the user specified procedure 'printstr'. */ MSK_linkfunctoenvstream(env,MSK_STREAM_LOG,NULL,printstr); } /* Initialize the environment. */ r = MSK_initenv(env); if ( r==MSK_RES_OK ) { /* Send a message to the MOSEK Message stream. */ MSK_echoenv(env, MSK_STREAM_MSG, "\nMaking the MOSEK optimization task\n"); /* Make the optimization task. */ r = MSK_maketask(env,NUMCON,NUMVAR,&task); if ( r==MSK_RES_OK ) { /* Directs the log task stream to the user specified procedure 'printstr'. */ MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr); MSK_echotask(task, MSK_STREAM_MSG, "\nDefining the problem data.\n"); /* Define bounds for the constraints. */ /* Constraint: 0 */ bkc[0] = MSK_BK_FX; /* Type of bound. */ blc[0] = 30.0; /* Lower bound on the constraint. */ buc[0] = 30.0; /* Upper bound on the constraint. */ /* Constraint: 1 */ bkc[1] = MSK_BK_LO; blc[1] = 15.0; buc[1] = MSK_INFINITY; /* Constraint: 2 */ bkc[2] = MSK_BK_UP; blc[2] = -MSK_INFINITY; buc[2] = 25.0; /* Define information for the variables. */ /* Variable: x0 */ c[0] = 3.0; /* The objective function. */ ptrb[0] = 0; ptre[0] = 2; /* First column in the constraint matrix. */ sub[0] = 0; val[0] = 3.0; sub[1] = 1; val[1] = 2.0; bkx[0] = MSK_BK_LO; /* Type of bound. */ blx[0] = 0.0; /* Lower bound on the variables. */ bux[0] = MSK_INFINITY; /* Upper bound on the variables. */ /* Variable: x1 */ c[1] = 1.0; ptrb[1] = 2; ptre[1] = 5; sub[2] = 0; val[2] = 1.0; sub[3] = 1; val[3] = 1.0; sub[4] = 2; val[4] = 2.0; bkx[1] = MSK_BK_RA; blx[1] = 0.0; bux[1] = 10; /* Variable: x2 */ c[2] = 5.0; ptrb[2] = 5; ptre[2] = 7; sub[5] = 0; val[5] = 2.0; sub[6] = 1; val[6] = 3.0; bkx[2] = MSK_BK_LO; blx[2] = 0.0; bux[2] = MSK_INFINITY; /* Variable: x3 */ c[3] = 1.0; ptrb[3] = 7; ptre[3] = 9; sub[7] = 1; val[7] = 1.0; sub[8] = 2; val[8] = 3.0; bkx[3] = MSK_BK_LO; blx[3] = 0.0; bux[3] = MSK_INFINITY; MSK_putobjsense(task, MSK_OBJECTIVE_SENSE_MAXIMIZE); /* Use the primal simplex optimizer. */ MSK_putintparam(task, MSK_IPAR_OPTIMIZER, MSK_OPTIMIZER_PRIMAL_SIMPLEX); MSK_echotask(task, MSK_STREAM_MSG, "\nAdding constraints\n"); r = MSK_append(task, MSK_ACC_CON, NUMCON); /* Adding bounds on empty constraints */ for(i=0; r==MSK_RES_OK && i<NUMCON; ++i) { r = MSK_putbound(task, MSK_ACC_CON, i, bkc[i], blc[i], buc[i]); } /* Dynamically adding columns */ for(j= 0; r==MSK_RES_OK && j<NUMVAR; ++j) { MSK_echotask(task, MSK_STREAM_MSG, "\nAdding a new variable.\n"); r = MSK_append(task,MSK_ACC_VAR,1); if ( r==MSK_RES_OK ) r = MSK_putcj(task,j,c[j]); if ( r==MSK_RES_OK ) r = MSK_putavec(task, MSK_ACC_VAR, j, ptre[j]-ptrb[j], sub+ptrb[j], val+ptrb[j]); if ( r==MSK_RES_OK ) r = MSK_putbound(task, MSK_ACC_VAR, j, bkx[j], blx[j], bux[j]); if( r == MSK_RES_OK ) { MSK_echotask(task, MSK_STREAM_MSG, "\nOptimizing\n"); r = MSK_optimize(task); MSK_solutionsummary(task,MSK_STREAM_MSG); } } MSK_deletetask(&task); } } MSK_deleteenv(&env); printf("Return code: %d (0 means no error occured.)\n",r); return ( r ); } /* main */