/* * Macro definition */ const prog_macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) { keyevent_t event = record->event; tap_t tap = record->tap; switch (id) { case LSHIFT_PAREN: if (tap.count > 0 && !tap.interrupted) { return (event.pressed ? MACRO( MD(LSHIFT), D(9), U(9), MU(LSHIFT), END ) : MACRO_NONE); } else { return (event.pressed ? MACRO( MD(LSHIFT), END ) : MACRO( MU(LSHIFT), END ) ); } case RSHIFT_PAREN: if (tap.count > 0 && !tap.interrupted) { return (event.pressed ? MACRO( MD(RSHIFT), D(0), U(0), MU(RSHIFT), END ) : MACRO_NONE); } else { return (event.pressed ? MACRO( MD(RSHIFT), END ) : MACRO( MU(RSHIFT), END ) ); } case HELLO: return (event.pressed ? MACRO( I(0), T(H), T(E), T(L), T(L), W(255), T(O), END ) : MACRO_NONE ); } return MACRO_NONE; }
void splineM(int N,VEC &X,VEC &Y,VEC &M){ M[0]=0; M[N]=0; VEC h(N); h[0] = 0; for(int i=1;i<N;i++){ // h is the length of the subinterval h[i] = X[i] - X[i-1]; } VEC MU(N+1); VEC LAMBDA(N); VEC d(N+1); MAT W(N+1); MAT L(N+1); LAMBDA[0] = 0; d[0] = 0; MU[N] = 0; d[N] = 0; for(int i=1;i<N;i++){ //prepare the variable for the tridiagonal matrix MU[i] = h[i]/(h[i]+h[i+1]); LAMBDA[i] = h[i+1]/(h[i]+h[i+1]); d[i] = (6/(h[i]+h[i+1]))*(((Y[i+1]-Y[i])/h[i+1])-((Y[i]-Y[i-1])/h[i])); } for(int i=0;i<N+1;i++){ //initialization for(int j=0;j<N+1;j++){ W[i][j] = 0; } } for(int i=0;i<N+1;i++){ W[i][i] = 2; //diagonal } for(int i=0;i<N;i++){ W[i][i+1] = LAMBDA[i]; //above diagonal } for(int i=1;i<N+1;i++){ W[i][i-1] = MU[i]; //below diagonal } L = cholesky(W); //in-place Cholesky Decomposition M = choSolve(L,d); //solve the linear system by forward and backward substitution }
void gmm_fisher_save_soft_assgn(int n, const float *v, const gmm_t * g, int flags, float *dp_dlambda, float *word_total_soft_assignment) { long d=g->d, k=g->k; float *p = fvec_new(n * k); long i,j,l; long ii=0; float * vp = NULL; /* v*p */ float * sum_pj = NULL; /* sum of p's for a given j */ gmm_compute_p(n,v,g,p,flags | GMM_FLAGS_W); #define P(j,i) p[(i)*k+(j)] #define V(l,i) v[(i)*d+(l)] #define MU(l,j) g->mu[(j)*d+(l)] #define SIGMA(l,j) g->sigma[(j)*d+(l)] #define VP(l,j) vp[(j)*d+(l)] // Save total soft assignment per centroid if (word_total_soft_assignment != NULL) { for (j=0; j<k; j++) { double sum=0; for (i=0; i<n; i++) { sum += P(j,i); } if (n != 0) { word_total_soft_assignment[j] = (float)(sum/n); } else { word_total_soft_assignment[j] = 0.0; } } } if(flags & GMM_FLAGS_W) { for(j=1; j<k; j++) { double accu=0; for(i=0; i<n; i++) accu+= P(j,i)/g->w[j] - P(0,i)/g->w[0]; /* normalization */ double f=n*(1/g->w[j]+1/g->w[0]); dp_dlambda[ii++]=accu/sqrt(f); } } if(flags & GMM_FLAGS_MU) { float *dp_dmu=dp_dlambda+ii; #define DP_DMU(l,j) dp_dmu[(j)*d+(l)] if(0) { /* simple and slow */ for(j=0; j<k; j++) { for(l=0; l<d; l++) { double accu=0; for(i=0; i<n; i++) accu += P(j,i) * (V(l,i)-MU(l,j)) / SIGMA(l,j); DP_DMU(l,j)=accu; } } } else { /* complicated and fast */ /* precompute tables that may be useful for sigma too */ vp = fvec_new(k * d); fmat_mul_tr(v,p,d,k,n,vp); sum_pj = fvec_new(k); for(j=0; j<k; j++) { double sum=0; for(i=0; i<n; i++) sum += P(j,i); sum_pj[j] = sum; } for(j=0; j<k; j++) { for(l=0; l<d; l++) DP_DMU(l,j) = (VP(l,j) - MU(l,j) * sum_pj[j]) / SIGMA(l,j); } } /* normalization */ if(!(flags & GMM_FLAGS_NO_NORM)) { for(j=0; j<k; j++) for(l=0; l<d; l++) { float nf = sqrt(n*g->w[j]/SIGMA(l,j)); if(nf > 0) DP_DMU(l,j) /= nf; } } #undef DP_DMU ii+=d*k; } if(flags & (GMM_FLAGS_SIGMA | GMM_FLAGS_1SIGMA)) { if(flags & GMM_FLAGS_1SIGMA) { /* fast not implemented for 1 sigma */ for(j=0; j<k; j++) { double accu2=0; for(l=0; l<d; l++) { double accu=0; for(i=0; i<n; i++) accu += P(j,i) * (sqr(V(l,i)-MU(l,j)) / SIGMA(l,j) - 1) / sqrt(SIGMA(l,j)); if(flags & GMM_FLAGS_SIGMA) { double f=flags & GMM_FLAGS_NO_NORM ? 1.0 : 2*n*g->w[j]/SIGMA(l,j); dp_dlambda[ii++]=accu/sqrt(f); } accu2+=accu; } if(flags & GMM_FLAGS_1SIGMA) { double f=flags & GMM_FLAGS_NO_NORM ? 1.0 : 2*d*n*g->w[j]/SIGMA(0,j); dp_dlambda[ii++]=accu2/sqrt(f); } } } else { /* fast and complicated */ assert(flags & GMM_FLAGS_SIGMA); float *dp_dsigma = dp_dlambda + ii; if(!vp) { vp = fvec_new(k * d); fmat_mul_tr(v,p,d,k,n,vp); } if(!sum_pj) { sum_pj = fvec_new(k); for(j=0; j<k; j++) { double sum=0; for(i=0; i<n; i++) sum += P(j,i); sum_pj[j] = sum; } } float *v2 = fvec_new(n * d); for(i = n*d-1 ; i >= 0; i--) v2[i] = v[i] * v[i]; float *v2p = fvec_new(k * d); fmat_mul_tr(v2,p,d,k,n,v2p); free(v2); #define V2P(l,j) v2p[(j)*d+(l)] #define DP_DSIGMA(i,j) dp_dsigma[(i)+(j)*d] for(j=0; j<k; j++) { for(l=0; l<d; l++) { double accu; accu = V2P(l, j); accu += VP(l, j) * (- 2 * MU(l,j)); accu += sum_pj[j] * (sqr(MU(l,j)) - SIGMA(l,j)); /* normalization */ double f; if(flags & GMM_FLAGS_NO_NORM) { f = pow(SIGMA(l,j), -1.5); } else { f = 1 / (SIGMA(l,j) * sqrt(2*n*g->w[j])); } DP_DSIGMA(l,j) = accu * f; } } free(v2p); #undef DP_DSIGMA #undef V2P ii += d * k; } } assert(ii==gmm_fisher_sizeof(g,flags)); #undef P #undef V #undef MU #undef SIGMA free(p); free(sum_pj); free(vp); }