FLOAT M_DECL_FUNC (__fminmag) (FLOAT x, FLOAT y) { FLOAT ax = M_FABS (x); FLOAT ay = M_FABS (y); if (isless (ax, ay)) return x; else if (isgreater (ax, ay)) return y; else if (ax == ay) return x < y ? x : y; else if (issignaling (x) || issignaling (y)) return x + y; else return isnan (y) ? x : y; }
CFLOAT M_DECL_FUNC (__catanh) (CFLOAT x) { CFLOAT res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) { if (icls == FP_INFINITE) { __real__ res = M_COPYSIGN (0, __real__ x); __imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x); } else if (rcls == FP_INFINITE || rcls == FP_ZERO) { __real__ res = M_COPYSIGN (0, __real__ x); if (icls >= FP_ZERO) __imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x); else __imag__ res = M_NAN; } else { __real__ res = M_NAN; __imag__ res = M_NAN; } } else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { res = x; } else { if (M_FABS (__real__ x) >= 16 / M_EPSILON || M_FABS (__imag__ x) >= 16 / M_EPSILON) { __imag__ res = M_COPYSIGN (M_MLIT (M_PI_2), __imag__ x); if (M_FABS (__imag__ x) <= 1) __real__ res = 1 / __real__ x; else if (M_FABS (__real__ x) <= 1) __real__ res = __real__ x / __imag__ x / __imag__ x; else { FLOAT h = M_HYPOT (__real__ x / 2, __imag__ x / 2); __real__ res = __real__ x / h / h / 4; } } else { if (M_FABS (__real__ x) == 1 && M_FABS (__imag__ x) < M_EPSILON * M_EPSILON) __real__ res = (M_COPYSIGN (M_LIT (0.5), __real__ x) * ((FLOAT) M_MLIT (M_LN2) - M_LOG (M_FABS (__imag__ x)))); else { FLOAT i2 = 0; if (M_FABS (__imag__ x) >= M_EPSILON * M_EPSILON) i2 = __imag__ x * __imag__ x; FLOAT num = 1 + __real__ x; num = i2 + num * num; FLOAT den = 1 - __real__ x; den = i2 + den * den; FLOAT f = num / den; if (f < M_LIT (0.5)) __real__ res = M_LIT (0.25) * M_LOG (f); else { num = 4 * __real__ x; __real__ res = M_LIT (0.25) * M_LOG1P (num / den); } } FLOAT absx, absy, den; absx = M_FABS (__real__ x); absy = M_FABS (__imag__ x); if (absx < absy) { FLOAT t = absx; absx = absy; absy = t; } if (absy < M_EPSILON / 2) { den = (1 - absx) * (1 + absx); if (den == 0) den = 0; } else if (absx >= 1) den = (1 - absx) * (1 + absx) - absy * absy; else if (absx >= M_LIT (0.75) || absy >= M_LIT (0.5)) den = -M_SUF (__x2y2m1) (absx, absy); else den = (1 - absx) * (1 + absx) - absy * absy; __imag__ res = M_LIT (0.5) * M_ATAN2 (2 * __imag__ x, den); } math_check_force_underflow_complex (res); } return res; }
CFLOAT M_DECL_FUNC (__csin) (CFLOAT x) { CFLOAT retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = M_FABS (__real__ x); if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); FLOAT sinix, cosix; if (__glibc_likely (__real__ x > M_MIN)) { M_SINCOS (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1; } if (negate) sinix = -sinix; if (M_FABS (__imag__ x) > t) { FLOAT exp_t = M_EXP (t); FLOAT ix = M_FABS (__imag__ x); if (signbit (__imag__ x)) cosix = -cosix; ix -= t; sinix *= exp_t / 2; cosix *= exp_t / 2; if (ix > t) { ix -= t; sinix *= exp_t; cosix *= exp_t; } if (ix > t) { /* Overflow (original imaginary part of x > 3t). */ __real__ retval = M_MAX * sinix; __imag__ retval = M_MAX * cosix; } else { FLOAT exp_val = M_EXP (ix); __real__ retval = exp_val * sinix; __imag__ retval = exp_val * cosix; } } else { __real__ retval = M_COSH (__imag__ x) * sinix; __imag__ retval = M_SINH (__imag__ x) * cosix; } math_check_force_underflow_complex (retval); } else { if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = __real__ x - __real__ x; __imag__ retval = __imag__ x; } else { __real__ retval = M_NAN; __imag__ retval = M_NAN; feraiseexcept (FE_INVALID); } } } else if (icls == FP_INFINITE) { /* Imaginary part is infinite. */ if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = M_COPYSIGN (0, negate ? -1 : 1); __imag__ retval = __imag__ x; } else if (rcls > FP_ZERO) { /* Real part is finite. */ FLOAT sinix, cosix; if (__glibc_likely (__real__ x > M_MIN)) { M_SINCOS (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; cosix = 1; } __real__ retval = M_COPYSIGN (M_HUGE_VAL, sinix); __imag__ retval = M_COPYSIGN (M_HUGE_VAL, cosix); if (negate) __real__ retval = -__real__ retval; if (signbit (__imag__ x)) __imag__ retval = -__imag__ retval; } else { __real__ retval = __real__ x - __real__ x; __imag__ retval = M_HUGE_VAL; } } else { if (rcls == FP_ZERO) __real__ retval = M_COPYSIGN (0, negate ? -1 : 1); else __real__ retval = M_NAN; __imag__ retval = M_NAN; } return retval; }
CFLOAT M_DECL_FUNC (__csqrt) (CFLOAT x) { CFLOAT res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) { if (icls == FP_INFINITE) { __real__ res = M_HUGE_VAL; __imag__ res = __imag__ x; } else if (rcls == FP_INFINITE) { if (__real__ x < 0) { __real__ res = icls == FP_NAN ? M_NAN : 0; __imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x); } else { __real__ res = __real__ x; __imag__ res = (icls == FP_NAN ? M_NAN : M_COPYSIGN (0, __imag__ x)); } } else { __real__ res = M_NAN; __imag__ res = M_NAN; } } else { if (__glibc_unlikely (icls == FP_ZERO)) { if (__real__ x < 0) { __real__ res = 0; __imag__ res = M_COPYSIGN (M_SQRT (-__real__ x), __imag__ x); } else { __real__ res = M_FABS (M_SQRT (__real__ x)); __imag__ res = M_COPYSIGN (0, __imag__ x); } } else if (__glibc_unlikely (rcls == FP_ZERO)) { FLOAT r; if (M_FABS (__imag__ x) >= 2 * M_MIN) r = M_SQRT (M_LIT (0.5) * M_FABS (__imag__ x)); else r = M_LIT (0.5) * M_SQRT (2 * M_FABS (__imag__ x)); __real__ res = r; __imag__ res = M_COPYSIGN (r, __imag__ x); } else { FLOAT d, r, s; int scale = 0; if (M_FABS (__real__ x) > M_MAX / 4) { scale = 1; __real__ x = M_SCALBN (__real__ x, -2 * scale); __imag__ x = M_SCALBN (__imag__ x, -2 * scale); } else if (M_FABS (__imag__ x) > M_MAX / 4) { scale = 1; if (M_FABS (__real__ x) >= 4 * M_MIN) __real__ x = M_SCALBN (__real__ x, -2 * scale); else __real__ x = 0; __imag__ x = M_SCALBN (__imag__ x, -2 * scale); } else if (M_FABS (__real__ x) < 2 * M_MIN && M_FABS (__imag__ x) < 2 * M_MIN) { scale = -((M_MANT_DIG + 1) / 2); __real__ x = M_SCALBN (__real__ x, -2 * scale); __imag__ x = M_SCALBN (__imag__ x, -2 * scale); } d = M_HYPOT (__real__ x, __imag__ x); /* Use the identity 2 Re res Im res = Im x to avoid cancellation error in d +/- Re x. */ if (__real__ x > 0) { r = M_SQRT (M_LIT (0.5) * (d + __real__ x)); if (scale == 1 && M_FABS (__imag__ x) < 1) { /* Avoid possible intermediate underflow. */ s = __imag__ x / r; r = M_SCALBN (r, scale); scale = 0; } else s = M_LIT (0.5) * (__imag__ x / r); } else { s = M_SQRT (M_LIT (0.5) * (d - __real__ x)); if (scale == 1 && M_FABS (__imag__ x) < 1) { /* Avoid possible intermediate underflow. */ r = M_FABS (__imag__ x / s); s = M_SCALBN (s, scale); scale = 0; } else r = M_FABS (M_LIT (0.5) * (__imag__ x / s)); } if (scale) { r = M_SCALBN (r, scale); s = M_SCALBN (s, scale); } math_check_force_underflow (r); math_check_force_underflow (s); __real__ res = r; __imag__ res = M_COPYSIGN (s, __imag__ x); } } return res; }
CFLOAT M_DECL_FUNC (__cexp) (CFLOAT x) { CFLOAT retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); FLOAT sinix, cosix; if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } if (__real__ x > t) { FLOAT exp_t = M_EXP (t); __real__ x -= t; sinix *= exp_t; cosix *= exp_t; if (__real__ x > t) { __real__ x -= t; sinix *= exp_t; cosix *= exp_t; } } if (__real__ x > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = M_MAX * cosix; __imag__ retval = M_MAX * sinix; } else { FLOAT exp_val = M_EXP (__real__ x); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } math_check_force_underflow_complex (retval); } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = M_NAN; __imag__ retval = M_NAN; feraiseexcept (FE_INVALID); } } else if (__glibc_likely (rcls == FP_INFINITE)) { /* Real part is infinite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { FLOAT sinix, cosix; if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } __real__ retval = M_COPYSIGN (value, cosix); __imag__ retval = M_COPYSIGN (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = M_HUGE_VAL; __imag__ retval = __imag__ x - __imag__ x; } else { __real__ retval = 0; __imag__ retval = M_COPYSIGN (0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN unless the imaginary part is zero. */ __real__ retval = M_NAN; if (icls == FP_ZERO) __imag__ retval = __imag__ x; else { __imag__ retval = M_NAN; if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); } } return retval; }
CFLOAT M_DECL_FUNC (__clog) (CFLOAT x) { CFLOAT result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? (FLOAT) M_MLIT (M_PI) : 0; __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1 / M_FABS (__real__ x); } else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) { /* Neither real nor imaginary part is NaN. */ FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x); int scale = 0; if (absx < absy) { FLOAT t = absx; absx = absy; absy = t; } if (absx > M_MAX / 2) { scale = -1; absx = M_SCALBN (absx, scale); absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0); } else if (absx < M_MIN && absy < M_MIN) { scale = M_MANT_DIG; absx = M_SCALBN (absx, scale); absy = M_SCALBN (absy, scale); } if (absx == 1 && scale == 0) { __real__ result = M_LOG1P (absy * absy) / 2; math_check_force_underflow_nonneg (__real__ result); } else if (absx > 1 && absx < 2 && absy < 1 && scale == 0) { FLOAT d2m1 = (absx - 1) * (absx + 1); if (absy >= M_EPSILON) d2m1 += absy * absy; __real__ result = M_LOG1P (d2m1) / 2; } else if (absx < 1 && absx >= M_LIT (0.5) && absy < M_EPSILON / 2 && scale == 0) { FLOAT d2m1 = (absx - 1) * (absx + 1); __real__ result = M_LOG1P (d2m1) / 2; } else if (absx < 1 && absx >= M_LIT (0.5) && scale == 0 && absx * absx + absy * absy >= M_LIT (0.5)) { FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy); __real__ result = M_LOG1P (d2m1) / 2; } else { FLOAT d = M_HYPOT (absx, absy); __real__ result = M_LOG (d) - scale * (FLOAT) M_MLIT (M_LN2); } __imag__ result = M_ATAN2 (__imag__ x, __real__ x); } else { __imag__ result = M_NAN; if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = M_HUGE_VAL; else __real__ result = M_NAN; } return result; }
CFLOAT M_DECL_FUNC (__ctanh) (CFLOAT x) { CFLOAT res; if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x))) { if (isinf (__real__ x)) { __real__ res = M_COPYSIGN (1, __real__ x); if (isfinite (__imag__ x) && M_FABS (__imag__ x) > 1) { FLOAT sinix, cosix; M_SINCOS (__imag__ x, &sinix, &cosix); __imag__ res = M_COPYSIGN (0, sinix * cosix); } else __imag__ res = M_COPYSIGN (0, __imag__ x); } else if (__imag__ x == 0) { res = x; } else { __real__ res = M_NAN; __imag__ res = M_NAN; if (isinf (__imag__ x)) feraiseexcept (FE_INVALID); } } else { FLOAT sinix, cosix; FLOAT den; const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2) / 2); /* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y)) = (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */ if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } if (M_FABS (__real__ x) > t) { /* Avoid intermediate overflow when the imaginary part of the result may be subnormal. Ignoring negligible terms, the real part is +/- 1, the imaginary part is sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */ FLOAT exp_2t = M_EXP (2 * t); __real__ res = M_COPYSIGN (1, __real__ x); __imag__ res = 4 * sinix * cosix; __real__ x = M_FABS (__real__ x); __real__ x -= t; __imag__ res /= exp_2t; if (__real__ x > t) { /* Underflow (original real part of x has absolute value > 2t). */ __imag__ res /= exp_2t; } else __imag__ res /= M_EXP (2 * __real__ x); } else { FLOAT sinhrx, coshrx; if (M_FABS (__real__ x) > M_MIN) { sinhrx = M_SINH (__real__ x); coshrx = M_COSH (__real__ x); } else { sinhrx = __real__ x; coshrx = 1; } if (M_FABS (sinhrx) > M_FABS (cosix) * M_EPSILON) den = sinhrx * sinhrx + cosix * cosix; else den = cosix * cosix; __real__ res = sinhrx * coshrx / den; __imag__ res = sinix * cosix / den; } math_check_force_underflow_complex (res); } return res; }