Beispiel #1
0
/*
        Calls the LOG function. The formula used is :

        log10(x)  =  A * log(x) where A = log  (e)  [0.43429448190325...]
                                             10
*/
void	m_apm_log10(M_APM rr, int places, M_APM aa)
{
int     dplaces;
M_APM   tmp8, tmp9;

tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();

dplaces = places + 4;
M_check_log_places(dplaces + 45);

m_apm_log(tmp9, dplaces, aa);
m_apm_multiply(tmp8, tmp9, MM_lc_log10R);
m_apm_round(rr, places, tmp8);
M_restore_stack(2);                    /* restore the 2 locals we used here */
}
Beispiel #2
0
void	m_apm_exp(M_APM r, int places, M_APM x)
{
M_APM   tmp7, tmp8, tmp9;
int	dplaces, nn, ii;

if (MM_firsttime1)
  {
   MM_firsttime1 = FALSE;

   MM_exp_log2R = m_apm_init();
   MM_exp_512R  = m_apm_init();

   m_apm_set_string(MM_exp_log2R, "1.44269504089");   /* ~ 1 / log(2) */
   m_apm_set_string(MM_exp_512R,  "1.953125E-3");     /*   1 / 512    */
  }

tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();

if (x->m_apm_sign == 0)		/* if input == 0, return '1' */
  {
   m_apm_copy(r, MM_One);
   M_restore_stack(3);
   return;
  }

if (x->m_apm_exponent <= -3)  /* already small enough so call _raw directly */
  {
   M_raw_exp(tmp9, (places + 6), x);
   m_apm_round(r, places, tmp9);
   M_restore_stack(3);
   return;
  }

/*
    From David H. Bailey's MPFUN Fortran package :

    exp (t) =  (1 + r + r^2 / 2! + r^3 / 3! + r^4 / 4! ...) ^ q * 2 ^ n

    where q = 256, r = t' / q, t' = t - n Log(2) and where n is chosen so
    that -0.5 Log(2) < t' <= 0.5 Log(2).  Reducing t mod Log(2) and
    dividing by 256 insures that -0.001 < r <= 0.001, which accelerates
    convergence in the above series.

    I use q = 512 and also limit how small 'r' can become. The 'r' used
    here is limited in magnitude from 1.95E-4 < |r| < 1.35E-3. Forcing
    'r' into a narrow range keeps the algorithm 'well behaved'.

    ( the range is [0.1 / 512] to [log(2) / 512] )
*/

if (M_exp_compute_nn(&nn, tmp7, x) != 0)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
      "\'m_apm_exp\', Input too large, Overflow");

   M_set_to_zero(r);
   M_restore_stack(3);
   return;
  }

dplaces = places + 8;

/* check to make sure our log(2) is accurate enough */

M_check_log_places(dplaces);

m_apm_multiply(tmp8, tmp7, MM_lc_log2);
m_apm_subtract(tmp7, x, tmp8);

/*
 *     guarantee that |tmp7| is between 0.1 and 0.9999999....
 *     (in practice, the upper limit only reaches log(2), 0.693... )
 */

while (TRUE)
  {
   if (tmp7->m_apm_sign != 0)
     {
      if (tmp7->m_apm_exponent == 0)
        break;
     }
     
   if (tmp7->m_apm_sign >= 0)
     {
      nn++;
      m_apm_subtract(tmp8, tmp7, MM_lc_log2);
      m_apm_copy(tmp7, tmp8);
     }
   else
     {
      nn--;
      m_apm_add(tmp8, tmp7, MM_lc_log2);
      m_apm_copy(tmp7, tmp8);
     }
  }

m_apm_multiply(tmp9, tmp7, MM_exp_512R);

/* perform the series expansion ... */

M_raw_exp(tmp8, dplaces, tmp9);

/*
 *   raise result to the 512 power
 *
 *   note : x ^ 512  =  (((x ^ 2) ^ 2) ^ 2) ... 9 times
 */

ii = 9;

while (TRUE)
  {
   m_apm_multiply(tmp9, tmp8, tmp8);
   m_apm_round(tmp8, dplaces, tmp9);

   if (--ii == 0)
     break;
  }

/* now compute 2 ^ N */

m_apm_integer_pow(tmp7, dplaces, MM_Two, nn);

m_apm_multiply(tmp9, tmp7, tmp8);
m_apm_round(r, places, tmp9);

M_restore_stack(3);                    /* restore the 3 locals we used here */
}
Beispiel #3
0
void	m_apm_log(M_APM r, int places, M_APM a)
{
M_APM   tmp0, tmp1, tmp2;
int	mexp, dplaces;

if (a->m_apm_sign <= 0)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
                       "Warning! ... \'m_apm_log\', Negative argument");
   M_set_to_zero(r);
   return;
  }

tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

dplaces = places + 8;

/*
 *    if the input is real close to 1, use the series expansion
 *    to compute the log.
 *    
 *    0.9999 < a < 1.0001
 */

m_apm_subtract(tmp0, a, MM_One);

if (tmp0->m_apm_sign == 0)    /* is input exactly 1 ?? */
  {                           /* if so, result is 0    */
   M_set_to_zero(r);
   M_restore_stack(3);   
   return;
  }

if (tmp0->m_apm_exponent <= -4)
  {
   M_log_near_1(r, places, tmp0);
   M_restore_stack(3);   
   return;
  }

/* make sure our log(10) is accurate enough for this calculation */
/* (and log(2) which is called from M_log_basic_iteration) */

M_check_log_places(dplaces + 25);

mexp = a->m_apm_exponent;
if (mexp >= -4 && mexp <= 4)
  {
   M_log_basic_iteration(r, places, a);
  }
else
  {
   /*
    *  use log (x * y) = log(x) + log(y)
    *
    *  here we use y = exponent of our base 10 number.
    *
    *  let 'C' = log(10) = 2.3025850929940....
    *
    *  then log(x * y) = log(x) + ( C * base_10_exponent )
    */

   m_apm_copy(tmp2, a);
   
   mexp = tmp2->m_apm_exponent - 2;
   tmp2->m_apm_exponent = 2;              /* force number between 10 & 100 */
   
   M_log_basic_iteration(tmp0, dplaces, tmp2);
   
   m_apm_set_long(tmp1, (long)mexp);
   m_apm_multiply(tmp2, tmp1, MM_lc_log10);
   m_apm_add(tmp1, tmp2, tmp0);
   
   m_apm_round(r, places, tmp1);
  }

M_restore_stack(3);                    /* restore the 3 locals we used here */
}