Beispiel #1
0
Cone::Cone() : ObjectBase(CONE_OBJECT)
{
    apex = Vector3d(0.0, 0.0, 1.0);
    base = Vector3d(0.0, 0.0, 0.0);

    apex_radius = 1.0;
    base_radius = 0.0;

    dist = 0.0;

    Trans = Create_Transform();

    /* Cone/Cylinder has capped ends by default. */

    Set_Flag(this, CLOSED_FLAG);

    /* Default bounds */

    Make_BBox(BBox, -1.0, -1.0, 0.0, 2.0, 2.0, 1.0);
}
Beispiel #2
0
Lemon::Lemon() : ObjectBase(LEMON_OBJECT)
{
    apex = Vector3d(0.0, 0.0, 1.0);
    base = Vector3d(0.0, 0.0, 0.0);

    apex_radius = 0.0;
    base_radius = 0.0;

    inner_radius = 0.5;

    Trans = Create_Transform();

    /* Lemon has capped ends by default. */

    Set_Flag(this, CLOSED_FLAG);

    /* Default bounds */

    Make_BBox(BBox, -1.0, -1.0, 0.0, 2.0, 2.0, 1.0);
}
static BBOX_TREE *create_bbox_node(int size)
{
  BBOX_TREE *New;

  New = (BBOX_TREE *)POV_MALLOC(sizeof(BBOX_TREE), "bounding box node");

  New->Infinite = false;

  New->Entries = size;

  Make_BBox(New->BBox, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

  if (size)
  {
    New->Node = (BBOX_TREE **)POV_MALLOC(size*sizeof(BBOX_TREE *), "bounding box node");
  }
  else
  {
    New->Node = NULL;
  }

  return (New);
}
Beispiel #4
0
void Fractal::Compute_BBox()
{
    DBL R;

    switch (Algebra)
    {
        case QUATERNION_TYPE:

            R = 1.0 + sqrt(Sqr(Julia_Parm[X]) + Sqr(Julia_Parm[Y]) + Sqr(Julia_Parm[Z]) + Sqr(Julia_Parm[T]));
            R += Fractal_Tolerance; /* fix bug when Julia_Parameter exactly 0 */

            if (R > 2.0)
            {
                R = 2.0;
            }

            Exit_Value = Sqr(R) + Fractal_Tolerance;

            break;

        case HYPERCOMPLEX_TYPE:
        default:

            R = 4.0;

            Exit_Value = 16.0;

            break;
    }

    Radius_Squared = Sqr(R);

    Make_BBox(BBox, -R, -R, -R, 2.0 * R, 2.0 * R, 2.0 * R);

    Recompute_BBox(&BBox, Trans);
}
Beispiel #5
0
DISC *Create_Disc ()
{
  DISC *New;

  New = (DISC *)POV_MALLOC(sizeof (DISC), "disc");

  INIT_OBJECT_FIELDS(New, DISC_OBJECT, &Disc_Methods)

  Make_Vector (New->center, 0.0, 0.0, 0.0);
  Make_Vector (New->normal, 0.0, 0.0, 1.0);

  New->iradius2 = 0.0;
  New->oradius2 = 1.0;

  New->d = 0.0;

  New->Trans = Create_Transform();

  /* Default bounds */

  Make_BBox(New->BBox, -1.0, -1.0, -Small_Tolerance, 2.0,  2.0, 2.0 * Small_Tolerance);

  return (New);
}
Beispiel #6
0
void Compute_Quadric_BBox(QUADRIC *Quadric, VECTOR ClipMin, VECTOR  ClipMax)
{
  DBL A, B, C, D, E, F, G, H, I, J;
  DBL a, b, c, d;
  DBL rx, ry, rz, rx1, rx2, ry1, ry2, rz1, rz2, x, y, z;
  DBL New_Volume, Old_Volume;
  VECTOR Min, Max, TmpMin, TmpMax, NewMin, NewMax, T1;
  BBOX Old;
  OBJECT *Sib;

  /*
   * Check for 'normal' form. If the quadric isn't in it's normal form
   * we can't do anything (we could, but that would be to tedious!
   * Diagonalising the quadric's 4x4 matrix, i.e. finding its eigenvalues
   * and eigenvectors -> solving a 4th order polynom).
   */

  /* Get quadrics coefficients. */

  A = Quadric->Square_Terms[X];
  E = Quadric->Square_Terms[Y];
  H = Quadric->Square_Terms[Z];
  B = Quadric->Mixed_Terms[X] / 2.0;
  C = Quadric->Mixed_Terms[Y] / 2.0;
  F = Quadric->Mixed_Terms[Z] / 2.0;
  D = Quadric->Terms[X] / 2.0;
  G = Quadric->Terms[Y] / 2.0;
  I = Quadric->Terms[Z] / 2.0;
  J = Quadric->Constant;

  /* Set small values to 0. */

  if (fabs(A) < EPSILON) A = 0.0;
  if (fabs(B) < EPSILON) B = 0.0;
  if (fabs(C) < EPSILON) C = 0.0;
  if (fabs(D) < EPSILON) D = 0.0;
  if (fabs(E) < EPSILON) E = 0.0;
  if (fabs(F) < EPSILON) F = 0.0;
  if (fabs(G) < EPSILON) G = 0.0;
  if (fabs(H) < EPSILON) H = 0.0;
  if (fabs(I) < EPSILON) I = 0.0;
  if (fabs(J) < EPSILON) J = 0.0;

  /* Non-zero mixed terms --> return */

  if ((B != 0.0) || (C != 0.0) || (F != 0.0))
  {
    return;
  }

  /* Non-zero linear terms --> get translation vector */

  if ((D != 0.0) || (G != 0.0) || (I != 0.0))
  {
    if (A != 0.0)
    {
      T1[X] = -D / A;
    }
    else
    {
      if (D != 0.0)
      {
       T1[X] = J / (2.0 * D);
      }
      else
      {
        T1[X] = 0.0;
      }
    }

    if (E != 0.0)
    {
      T1[Y] = -G / E;
    }
    else
    {
      if (G != 0.0)
      {
        T1[Y] = J / (2.0 * G);
      }
      else
      {
        T1[Y] = 0.0;
      }
    }

    if (H != 0.0)
    {
      T1[Z] = -I / H;
    }
    else
    {
      if (I != 0.0)
      {
        T1[Z] = J / (2.0 * I);
      }
      else
      {
        T1[Z] = 0.0;
      }
    }

    /* Recalculate coefficients. */

    D += A * T1[X];
    G += E * T1[Y];
    I += H * T1[Z];
    J -= T1[X]*(A*T1[X] + 2.0*D) + T1[Y]*(E*T1[Y] + 2.0*G) + T1[Z]*(H*T1[Z] + 2.0*I);
  }
  else
  {
    Make_Vector(T1, 0.0, 0.0, 0.0);
  }

  /* Get old bounding box. */

  Old = Quadric->BBox;

  /* Init new bounding box. */

  NewMin[X] = NewMin[Y] = NewMin[Z] = -BOUND_HUGE/2;
  NewMax[X] = NewMax[Y] = NewMax[Z] =  BOUND_HUGE/2;

  /* Get the bounding box of the clipping object. */

  if (Quadric->Clip != NULL)
  {
    Min[X] = Min[Y] = Min[Z] = -BOUND_HUGE;
    Max[X] = Max[Y] = Max[Z] =  BOUND_HUGE;

    /* Intersect the members bounding boxes. */

    for (Sib = Quadric->Clip; Sib != NULL; Sib = Sib->Sibling)
    {
      if (!Test_Flag(Sib, INVERTED_FLAG))
      {
        if (Sib->Methods == &Plane_Methods)
        {
          Compute_Plane_Min_Max((PLANE *)Sib, TmpMin, TmpMax);
        }
        else
        {
          Make_min_max_from_BBox(TmpMin, TmpMax, Sib->BBox);
        }

        Min[X] = max(Min[X], TmpMin[X]);
        Min[Y] = max(Min[Y], TmpMin[Y]);
        Min[Z] = max(Min[Z], TmpMin[Z]);
        Max[X] = min(Max[X], TmpMax[X]);
        Max[Y] = min(Max[Y], TmpMax[Y]);
        Max[Z] = min(Max[Z], TmpMax[Z]);
      }
    }

    Assign_Vector(ClipMin, Min);
    Assign_Vector(ClipMax, Max);
  }

  /* Translate clipping box. */

  VSubEq(ClipMin, T1);
  VSubEq(ClipMax, T1);

  /* We want A to be non-negative. */

  if (A < 0.0)
  {
    A = -A;
    D = -D;
    E = -E;
    G = -G;
    H = -H;
    I = -I;
    J = -J;
  }

  /*
   *
   * Check for ellipsoid.
   *
   *    x*x     y*y     z*z
   *   ----- + ----- + ----- - 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H > 0.0) && (J < 0.0))
  {
    a = sqrt(-J/A);
    b = sqrt(-J/E);
    c = sqrt(-J/H);

    NewMin[X] = -a;
    NewMin[Y] = -b;
    NewMin[Z] = -c;
    NewMax[X] = a;
    NewMax[Y] = b;
    NewMax[Z] = c;
  }

  /*
   *
   * Check for cylinder (x-axis).
   *
   *    y*y     z*z
   *   ----- + ----- - 1 = 0
   *    b*b     c*c
   *
   */

  if ((A == 0.0) && (E > 0.0) && (H > 0.0) && (J < 0.0))
  {
    b = sqrt(-J/E);
    c = sqrt(-J/H);

    NewMin[Y] = -b;
    NewMin[Z] = -c;
    NewMax[Y] = b;
    NewMax[Z] = c;
  }

  /*
   *
   * Check for cylinder (y-axis).
   *
   *    x*x     z*z
   *   ----- + ----- - 1 = 0
   *    a*a     c*c
   *
   */

  if ((A > 0.0) && (E == 0.0) && (H > 0.0) && (J < 0.0))
  {
    a = sqrt(-J/A);
    c = sqrt(-J/H);

    NewMin[X] = -a;
    NewMin[Z] = -c;
    NewMax[X] = a;
    NewMax[Z] = c;
  }

  /*
   *
   * Check for cylinder (z-axis).
   * 
   *    x*x     y*y
   *   ----- + ----- - 1 = 0
   *    a*a     b*b
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H == 0.0) && (J < 0.0))
  {
    a = sqrt(-J/A);
    b = sqrt(-J/E);

    NewMin[X] = -a;
    NewMin[Y] = -b;
    NewMax[X] = a;
    NewMax[Y] = b;
  }

  /*
   *
   * Check for cone (x-axis).
   *
   *    x*x     y*y     z*z
   *   ----- - ----- - ----- = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H < 0.0) && (J == 0.0))
  {
    a = sqrt(1.0/A);
    b = sqrt(-1.0/E);
    c = sqrt(-1.0/H);

    /* Get radii for lower x value. */

    x = ClipMin[X];

    ry1 = fabs(x * b / a);
    rz1 = fabs(x * c / a);

    /* Get radii for upper x value. */

    x = ClipMax[X];

    ry2 = fabs(x * b / a);
    rz2 = fabs(x * c / a);

    ry = max(ry1, ry2);
    rz = max(rz1, rz2);

    NewMin[Y] = -ry;
    NewMin[Z] = -rz;
    NewMax[Y] = ry;
    NewMax[Z] = rz;
  }

  /*
   *
   *  Check for cone (y-axis).
   *
   *    x*x     y*y     z*z
   *   ----- - ----- + ----- = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H > 0.0) && (J == 0.0))
  {
    a = sqrt(1.0/A);
    b = sqrt(-1.0/E);
    c = sqrt(1.0/H);

    /* Get radii for lower y value. */

    y = ClipMin[Y];

    rx1 = fabs(y * a / b);
    rz1 = fabs(y * c / b);

    /* Get radii for upper y value. */

    y = ClipMax[Y];

    rx2 = fabs(y * a / b);
    rz2 = fabs(y * c / b);

    rx = max(rx1, rx2);
    rz = max(rz1, rz2);

    NewMin[X] = -rx;
    NewMin[Z] = -rz;
    NewMax[X] = rx;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for cone (z-axis).
   * 
   *    x*x     y*y     z*z
   *   ----- + ----- - ----- = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H < 0.0) && (J == 0.0))
  {
    a = sqrt(1.0/A);
    b = sqrt(1.0/E);
    c = sqrt(-1.0/H);

    /* Get radii for lower z value. */

    z = ClipMin[Z];

    rx1 = fabs(z * a / c);
    ry1 = fabs(z * b / c);

    /* Get radii for upper z value. */

    z = ClipMax[Z];

    rx2 = fabs(z * a / c);
    ry2 = fabs(z * b / c);

    rx = max(rx1, rx2);
    ry = max(ry1, ry2);

    NewMin[X] = -rx;
    NewMin[Y] = -ry;
    NewMax[X] = rx;
    NewMax[Y] = ry;
  }

  /*
   *
   * Check for hyperboloid (x-axis).
   *
   *    x*x     y*y     z*z
   *   ----- - ----- - ----- + 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H < 0.0) && (J > 0.0))
  {
    /* Get radii for lower x value. */

    x = ClipMin[X];

    d = 1.0 + A * Sqr(x);

    ry1 = sqrt(-d / E);
    rz1 = sqrt(-d / H);

    /* Get radii for upper x value. */

    x = ClipMax[X];

    d = 1.0 + A * Sqr(x);

    ry2 = sqrt(-d / E);
    rz2 = sqrt(-d / H);

    ry = max(ry1, ry2);
    rz = max(rz1, rz2);

    NewMin[Y] = -ry;
    NewMin[Z] = -rz;
    NewMax[Y] = ry;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for hyperboloid (y-axis).
   * 
   *    x*x     y*y     z*z
   *   ----- - ----- + ----- - 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H > 0.0) && (J < 0.0))
  {
    /* Get radii for lower y value. */

    y = ClipMin[Y];

    d = 1.0 - E * Sqr(y);

    rx1 = sqrt(d / A);
    rz1 = sqrt(d / H);

    /* Get radii for upper y value. */

    y = ClipMax[Y];

    d = 1.0 - E * Sqr(y);

    rx2 = sqrt(d / A);
    rz2 = sqrt(d / H);

    rx = max(rx1, rx2);
    rz = max(rz1, rz2);

    NewMin[X] = -rx;
    NewMin[Z] = -rz;
    NewMax[X] = rx;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for hyperboloid (z-axis).
   *
   *    x*x     y*y     z*z
   *   ----- + ----- - ----- - 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H < 0.0) && (J < 0.0))
  {
    /* Get radii for lower z value. */

    z = ClipMin[Z];

    d = 1.0 - H * Sqr(z);

    rx1 = sqrt(d / A);
    ry1 = sqrt(d / E);

    /* Get radii for upper z value. */

    z = ClipMax[Z];

    d = 1.0 - H * Sqr(z);

    rx2 = sqrt(d / A);
    ry2 = sqrt(d / E);

    rx = max(rx1, rx2);
    ry = max(ry1, ry2);

    NewMin[X] = -rx;
    NewMin[Y] = -ry;
    NewMax[X] = rx;
    NewMax[Y] = ry;
  }

  /*
   *
   * Check for paraboloid (x-axis).
   *
   *        y*y     z*z
   *   x - ----- - ----- = 0
   *        b*b     c*c
   *
   */

  if ((A == 0.0) && (D != 0.0) && (E != 0.0) && (H != 0.0) && (J == 0.0))
  {
    /* Get radii for lower x value. */

    x = ClipMin[X];

    ry1 = sqrt(fabs(2.0 * D * x / E));
    rz1 = sqrt(fabs(2.0 * D * x / H));

    /* Get radii for upper x value. */

    x = ClipMax[X];

    ry2 = sqrt(fabs(2.0 * D * x / E));
    rz2 = sqrt(fabs(2.0 * D * x / H));

    ry = max(ry1, ry2);
    rz = max(rz1, rz2);

    NewMin[Y] = -ry;
    NewMin[Z] = -rz;
    NewMax[Y] = ry;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for paraboloid (y-axis).
   *
   *        x*x     z*z
   *   y - ----- - ----- = 0
   *        a*a     c*c
   *
   */

  if ((E == 0.0) && (G != 0.0) && (A != 0.0) && (H != 0.0) && (J == 0.0))
  {
    /* Get radii for lower y-value. */

    y = ClipMin[Y];

    rx1 = sqrt(fabs(2.0 * G * y / A));
    rz1 = sqrt(fabs(2.0 * G * y / H));

    /* Get radii for upper y value. */

    y = ClipMax[Y];

    rx2 = sqrt(fabs(2.0 * G * y / A));
    rz2 = sqrt(fabs(2.0 * G * y / H));

    rx = max(rx1, rx2);
    rz = max(rz1, rz2);

    NewMin[X] = -rx;
    NewMin[Z] = -rz;
    NewMax[X] = rx;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for paraboloid (z-axis).
   *
   *        x*x     y*y
   *   z - ----- - ----- = 0
   *        a*a     b*b
   *
   */

  if ((H == 0.0) && (I != 0.0) && (A != 0.0) && (E != 0.0) && (J == 0.0))
  {
    /* Get radii for lower z-value. */

    z = ClipMin[Z];

    rx1 = sqrt(fabs(2.0 * I * z / A));
    ry1 = sqrt(fabs(2.0 * I * z / E));

    /* Get radii for upper z value. */

    z = ClipMax[Z];

    rx2 = sqrt(fabs(2.0 * I * z / A));
    ry2 = sqrt(fabs(2.0 * I * z / E));

    rx = max(rx1, rx2);
    ry = max(ry1, ry2);

    NewMin[X] = -rx;
    NewMin[Y] = -ry;
    NewMax[X] = rx;
    NewMax[Y] = ry;
  }

  /* Intersect clipping object's and quadric's bounding boxes */

  NewMin[X] = max(NewMin[X], ClipMin[X]);
  NewMin[Y] = max(NewMin[Y], ClipMin[Y]);
  NewMin[Z] = max(NewMin[Z], ClipMin[Z]);

  NewMax[X] = min(NewMax[X], ClipMax[X]);
  NewMax[Y] = min(NewMax[Y], ClipMax[Y]);
  NewMax[Z] = min(NewMax[Z], ClipMax[Z]);

  /* Use old or new bounding box? */

  New_Volume = (NewMax[X] - NewMin[X]) * (NewMax[Y] - NewMin[Y]) * (NewMax[Z] - NewMin[Z]);

  BOUNDS_VOLUME(Old_Volume, Old);

  if (New_Volume < Old_Volume)
  {
    /* Add translation. */
	Quadric->Automatic_Bounds = true;

    VAddEq(NewMin, T1);
    VAddEq(NewMax, T1);

    Make_BBox_from_min_max(Quadric->BBox, NewMin, NewMax);

    /* Beware of bounding boxes to large. */

    if ((Quadric->BBox.Lengths[X] > CRITICAL_LENGTH) ||
        (Quadric->BBox.Lengths[Y] > CRITICAL_LENGTH) ||
        (Quadric->BBox.Lengths[Z] > CRITICAL_LENGTH))
    {
      Make_BBox(Quadric->BBox, -BOUND_HUGE/2, -BOUND_HUGE/2, -BOUND_HUGE/2,
        BOUND_HUGE, BOUND_HUGE, BOUND_HUGE);
    }
  }
}
Beispiel #7
0
void Cone::Compute_BBox()
{
    Make_BBox(BBox, -1.0, -1.0, dist, 2.0, 2.0, 1.0-dist);

    Recompute_BBox(&BBox, Trans);
}
void Compute_Cone_BBox(CONE *Cone)
{
  Make_BBox(Cone->BBox, -1.0, -1.0, Cone->dist, 2.0, 2.0, 1.0-Cone->dist);

  Recompute_BBox(&Cone->BBox, Cone->Trans);
}
Beispiel #9
0
void Superellipsoid::Compute_BBox()
{
    Make_BBox(BBox, -1.0001, -1.0001, -1.0001, 2.0002, 2.0002, 2.0002);

    Recompute_BBox(&BBox, Trans);
}