Beispiel #1
0
/*
==============
R_CalcBones

    The list of bones[] should only be built and modified from within here
==============
*/
void R_CalcBones(mdsHeader_t *header, const refEntity_t *refent, int *boneList, int numBones)
{
	int   i;
	int   *boneRefs;
	float torsoWeight;

	// if the entity has changed since the last time the bones were built, reset them
	if (memcmp(&lastBoneEntity, refent, sizeof(refEntity_t)))
	{
		// different, cached bones are not valid
		memset(validBones, 0, header->numBones);
		lastBoneEntity = *refent;

		// (SA) also reset these counter statics
		//----(SA)	print stats for the complete model (not per-surface)
		if (r_bonesDebug->integer == 4 && totalrt)
		{
			Ren_Print("Lod %.2f  verts %4d/%4d  tris %4d/%4d  (%.2f%%)\n",
			          lodScale,
			          totalrv,
			          totalv,
			          totalrt,
			          totalt,
			          ( float )(100.0 * totalrt) / (float) totalt);
		}
		totalrv = totalrt = totalv = totalt = 0;
	}

	memset(newBones, 0, header->numBones);

	if (refent->oldframe == refent->frame)
	{
		backlerp  = 0;
		frontlerp = 1;
	}
	else
	{
		backlerp  = refent->backlerp;
		frontlerp = 1.0f - backlerp;
	}

	if (refent->oldTorsoFrame == refent->torsoFrame)
	{
		torsoBacklerp  = 0;
		torsoFrontlerp = 1;
	}
	else
	{
		torsoBacklerp  = refent->torsoBacklerp;
		torsoFrontlerp = 1.0f - torsoBacklerp;
	}

	frameSize = (int) (sizeof(mdsFrame_t) + (header->numBones - 1) * sizeof(mdsBoneFrameCompressed_t));

	frame = ( mdsFrame_t * )((byte *)header + header->ofsFrames +
	                         refent->frame * frameSize);
	torsoFrame = ( mdsFrame_t * )((byte *)header + header->ofsFrames +
	                              refent->torsoFrame * frameSize);
	oldFrame = ( mdsFrame_t * )((byte *)header + header->ofsFrames +
	                            refent->oldframe * frameSize);
	oldTorsoFrame = ( mdsFrame_t * )((byte *)header + header->ofsFrames +
	                                 refent->oldTorsoFrame * frameSize);

	// lerp all the needed bones (torsoParent is always the first bone in the list)
	cBoneList      = frame->bones;
	cBoneListTorso = torsoFrame->bones;

	boneInfo = ( mdsBoneInfo_t * )((byte *)header + header->ofsBones);
	boneRefs = boneList;
	//
	Matrix3Transpose(refent->torsoAxis, torsoAxis);

#ifdef HIGH_PRECISION_BONES
	if (qtrue)
	{
#else
	if (!backlerp && !torsoBacklerp)
	{
#endif
		for (i = 0; i < numBones; i++, boneRefs++)
		{
			if (validBones[*boneRefs])
			{
				// this bone is still in the cache
				bones[*boneRefs] = rawBones[*boneRefs];
				continue;
			}

			// find our parent, and make sure it has been calculated
			if ((boneInfo[*boneRefs].parent >= 0) && (!validBones[boneInfo[*boneRefs].parent] && !newBones[boneInfo[*boneRefs].parent]))
			{
				R_CalcBone(header, refent, boneInfo[*boneRefs].parent);
			}

			R_CalcBone(header, refent, *boneRefs);
		}
	}
	else        // interpolated
	{
		cOldBoneList      = oldFrame->bones;
		cOldBoneListTorso = oldTorsoFrame->bones;

		for (i = 0; i < numBones; i++, boneRefs++)
		{
			if (validBones[*boneRefs])
			{
				// this bone is still in the cache
				bones[*boneRefs] = rawBones[*boneRefs];
				continue;
			}

			// find our parent, and make sure it has been calculated
			if ((boneInfo[*boneRefs].parent >= 0) && (!validBones[boneInfo[*boneRefs].parent] && !newBones[boneInfo[*boneRefs].parent]))
			{
				R_CalcBoneLerp(header, refent, boneInfo[*boneRefs].parent);
			}

			R_CalcBoneLerp(header, refent, *boneRefs);
		}
	}

	// adjust for torso rotations
	torsoWeight = 0;
	boneRefs    = boneList;
	for (i = 0; i < numBones; i++, boneRefs++)
	{
		thisBoneInfo = &boneInfo[*boneRefs];
		bonePtr      = &bones[*boneRefs];
		// add torso rotation
		if (thisBoneInfo->torsoWeight > 0)
		{
			if (!newBones[*boneRefs])
			{
				// just copy it back from the previous calc
				bones[*boneRefs] = oldBones[*boneRefs];
				continue;
			}

			if (!(thisBoneInfo->flags & BONEFLAG_TAG))
			{
				// 1st multiply with the bone->matrix
				// 2nd translation for rotation relative to bone around torso parent offset
				VectorSubtract(bonePtr->translation, torsoParentOffset, t);
				Matrix4FromAxisPlusTranslation(bonePtr->matrix, t, m1);
				// 3rd scaled rotation
				// 4th translate back to torso parent offset
				// use previously created matrix if available for the same weight
				if (torsoWeight != thisBoneInfo->torsoWeight)
				{
					Matrix4FromScaledAxisPlusTranslation(torsoAxis, thisBoneInfo->torsoWeight, torsoParentOffset, m2);
					torsoWeight = thisBoneInfo->torsoWeight;
				}
				// multiply matrices to create one matrix to do all calculations
				Matrix4MultiplyInto3x3AndTranslation(m2, m1, bonePtr->matrix, bonePtr->translation);

			}
			else        // tag's require special handling
			{   // rotate each of the axis by the torsoAngles
				LocalScaledMatrixTransformVector(bonePtr->matrix[0], thisBoneInfo->torsoWeight, torsoAxis, tmpAxis[0]);
				LocalScaledMatrixTransformVector(bonePtr->matrix[1], thisBoneInfo->torsoWeight, torsoAxis, tmpAxis[1]);
				LocalScaledMatrixTransformVector(bonePtr->matrix[2], thisBoneInfo->torsoWeight, torsoAxis, tmpAxis[2]);
				memcpy(bonePtr->matrix, tmpAxis, sizeof(tmpAxis));

				// rotate the translation around the torsoParent
				VectorSubtract(bonePtr->translation, torsoParentOffset, t);
				LocalScaledMatrixTransformVector(t, thisBoneInfo->torsoWeight, torsoAxis, bonePtr->translation);
				VectorAdd(bonePtr->translation, torsoParentOffset, bonePtr->translation);
			}
		}
	}

	// backup the final bones
	memcpy(oldBones, bones, sizeof(bones[0]) * header->numBones);
}

#ifdef DBG_PROFILE_BONES
#define DBG_SHOWTIME    Ren_Print("%i: %i, ", di++, (dt = ri.Milliseconds()) - ldt); ldt = dt;
#else
#define DBG_SHOWTIME    ;
#endif

/*
==============
RB_SurfaceAnim
==============
*/
void RB_SurfaceAnim(mdsSurface_t *surface)
{
	int         j, k;
	refEntity_t *refent;
	int         *boneList;
	mdsHeader_t *header;

#ifdef DBG_PROFILE_BONES
	int di = 0, dt, ldt;

	dt  = ri.Milliseconds();
	ldt = dt;
#endif

	refent   = &backEnd.currentEntity->e;
	boneList = ( int * )((byte *)surface + surface->ofsBoneReferences);
	header   = ( mdsHeader_t * )((byte *)surface + surface->ofsHeader);

	R_CalcBones(header, (const refEntity_t *)refent, boneList, surface->numBoneReferences);

	DBG_SHOWTIME

	// calculate LOD
	// TODO: lerp the radius and origin
	VectorAdd(refent->origin, frame->localOrigin, vec);
	lodRadius = frame->radius;
	lodScale  = RB_CalcMDSLod(refent, vec, lodRadius, header->lodBias, header->lodScale);


//DBG_SHOWTIME

	// modification to allow dead skeletal bodies to go below minlod (experiment)
	if (refent->reFlags & REFLAG_DEAD_LOD)
	{
		if (lodScale < 0.35)       // allow dead to lod down to 35% (even if below surf->minLod) (%35 is arbitrary and probably not good generally.  worked for the blackguard/infantry as a test though)
		{
			lodScale = 0.35;
		}
		render_count = ROUND_INT(surface->numVerts * lodScale);

	}
	else
	{
		render_count = ROUND_INT(surface->numVerts * lodScale);
		if (render_count < surface->minLod)
		{
			if (!(refent->reFlags & REFLAG_DEAD_LOD))
			{
				render_count = surface->minLod;
			}
		}
	}

	if (render_count > surface->numVerts)
	{
		render_count = surface->numVerts;
	}

	RB_CheckOverflow(render_count, surface->numTriangles);

//DBG_SHOWTIME

	// setup triangle list
	RB_CheckOverflow(surface->numVerts, surface->numTriangles * 3);

//DBG_SHOWTIME

	collapse_map = ( int * )(( byte * )surface + surface->ofsCollapseMap);
	triangles    = ( int * )((byte *)surface + surface->ofsTriangles);
	indexes      = surface->numTriangles * 3;
	baseIndex    = tess.numIndexes;
	baseVertex   = tess.numVertexes;
	oldIndexes   = baseIndex;

	tess.numVertexes += render_count;

	pIndexes = &tess.indexes[baseIndex];

//DBG_SHOWTIME

	if (render_count == surface->numVerts)
	{
		memcpy(pIndexes, triangles, sizeof(triangles[0]) * indexes);
		if (baseVertex)
		{
			glIndex_t *indexesEnd;
			for (indexesEnd = pIndexes + indexes ; pIndexes < indexesEnd ; pIndexes++)
			{
				*pIndexes += baseVertex;
			}
		}
		tess.numIndexes += indexes;
	}
	else
	{
		int *collapseEnd;

		pCollapse = collapse;
		for (j = 0; j < render_count; pCollapse++, j++)
		{
			*pCollapse = j;
		}

		pCollapseMap = &collapse_map[render_count];
		for (collapseEnd = collapse + surface->numVerts ; pCollapse < collapseEnd; pCollapse++, pCollapseMap++)
		{
			*pCollapse = collapse[*pCollapseMap];
		}

		for (j = 0 ; j < indexes ; j += 3)
		{
			p0 = collapse[*(triangles++)];
			p1 = collapse[*(triangles++)];
			p2 = collapse[*(triangles++)];

			// FIXME
			// note:  serious optimization opportunity here,
			//  by sorting the triangles the following "continue"
			//  could have been made into a "break" statement.
			if (p0 == p1 || p1 == p2 || p2 == p0)
			{
				continue;
			}

			*(pIndexes++)    = baseVertex + p0;
			*(pIndexes++)    = baseVertex + p1;
			*(pIndexes++)    = baseVertex + p2;
			tess.numIndexes += 3;
		}

		baseIndex = tess.numIndexes;
	}

//DBG_SHOWTIME

	// deform the vertexes by the lerped bones

	numVerts   = surface->numVerts;
	v          = ( mdsVertex_t * )((byte *)surface + surface->ofsVerts);
	tempVert   = ( float * )(tess.xyz + baseVertex);
	tempNormal = ( float * )(tess.normal + baseVertex);
	for (j = 0; j < render_count; j++, tempVert += 4, tempNormal += 4)
	{
		mdsWeight_t *w;

		VectorClear(tempVert);

		w = v->weights;
		for (k = 0 ; k < v->numWeights ; k++, w++)
		{
			bone = &bones[w->boneIndex];
			LocalAddScaledMatrixTransformVectorTranslate(w->offset, w->boneWeight, bone->matrix, bone->translation, tempVert);
		}

		LocalMatrixTransformVector(v->normal, bones[v->weights[0].boneIndex].matrix, tempNormal);

		tess.texCoords0[baseVertex + j].v[0] = v->texCoords[0];
		tess.texCoords0[baseVertex + j].v[1] = v->texCoords[1];

		v = (mdsVertex_t *)&v->weights[v->numWeights];
	}

	DBG_SHOWTIME

	if (r_bonesDebug->integer)
	{
		if (r_bonesDebug->integer < 3)
		{
			int i;

			// DEBUG: show the bones as a stick figure with axis at each bone
			boneRefs = ( int * )((byte *)surface + surface->ofsBoneReferences);
			for (i = 0; i < surface->numBoneReferences; i++, boneRefs++)
			{
				bonePtr = &bones[*boneRefs];

				GL_Bind(tr.whiteImage);
				qglLineWidth(1);
				qglBegin(GL_LINES);
				for (j = 0; j < 3; j++)
				{
					VectorClear(vec);
					vec[j] = 1;
					qglColor3fv(vec);
					qglVertex3fv(bonePtr->translation);
					VectorMA(bonePtr->translation, 5, bonePtr->matrix[j], vec);
					qglVertex3fv(vec);
				}
				qglEnd();

				// connect to our parent if it's valid
				if (validBones[boneInfo[*boneRefs].parent])
				{
					qglLineWidth(2);
					qglBegin(GL_LINES);
					qglColor3f(.6, .6, .6);
					qglVertex3fv(bonePtr->translation);
					qglVertex3fv(bones[boneInfo[*boneRefs].parent].translation);
					qglEnd();
				}

				qglLineWidth(1);
			}
		}

		if (r_bonesDebug->integer == 3 || r_bonesDebug->integer == 4)
		{
			int render_indexes = (tess.numIndexes - oldIndexes);

			// show mesh edges
			tempVert   = ( float * )(tess.xyz + baseVertex);
			tempNormal = ( float * )(tess.normal + baseVertex);

			GL_Bind(tr.whiteImage);
			qglLineWidth(1);
			qglBegin(GL_LINES);
			qglColor3f(.0, .0, .8);

			pIndexes = &tess.indexes[oldIndexes];
			for (j = 0; j < render_indexes / 3; j++, pIndexes += 3)
			{
				qglVertex3fv(tempVert + 4 * pIndexes[0]);
				qglVertex3fv(tempVert + 4 * pIndexes[1]);

				qglVertex3fv(tempVert + 4 * pIndexes[1]);
				qglVertex3fv(tempVert + 4 * pIndexes[2]);

				qglVertex3fv(tempVert + 4 * pIndexes[2]);
				qglVertex3fv(tempVert + 4 * pIndexes[0]);
			}

			qglEnd();

			// track debug stats
			if (r_bonesDebug->integer == 4)
			{
				totalrv += render_count;
				totalrt += render_indexes / 3;
				totalv  += surface->numVerts;
				totalt  += surface->numTriangles;
			}

			if (r_bonesDebug->integer == 3)
			{
				Ren_Print("Lod %.2f  verts %4d/%4d  tris %4d/%4d  (%.2f%%)\n", lodScale, render_count, surface->numVerts, render_indexes / 3, surface->numTriangles,
				          ( float )(100.0 * render_indexes / 3) / (float) surface->numTriangles);
			}
		}
	}

	if (r_bonesDebug->integer > 1)
	{
		// dont draw the actual surface
		tess.numIndexes  = oldIndexes;
		tess.numVertexes = baseVertex;
		return;
	}

#ifdef DBG_PROFILE_BONES
	Ren_Print("\n");
#endif
}
Beispiel #2
0
/*
==============
R_CalcBones

The list of bones[] should only be built and modified from within here
==============
*/
void R_CalcBones( mdsHeader_t *header, const refEntity_t *refent, int *boneList, int numBones, int renderend ) {

	int i, j;
	int   *boneRefs;
	float torsoWeight;
	mdsBoneFrame_t  *bones, *bonePtr, *parentBone;
	mdsFrame_t      *frame, *torsoFrame;
	mdsBoneInfo_t   *boneInfo, *thisBoneInfo, *parentBoneInfo;
	mdsBoneFrameCompressed_t    *cBonePtr, *cTBonePtr,  *cBoneList, *cBoneListTorso;
	vec3_t t, torsoAxis[3], tmpAxis[3];
	vec3_t torsoParentOffset = {0};
	vec4_t m1[4];
	vec4_t m2[4] = {{0}, {0}, {0}, {0}};
	int frameSize;


	bones = smpbones[renderend];
	frameSize = (int) ( sizeof( mdsFrame_t ) + ( header->numBones - 1 ) * sizeof( mdsBoneFrameCompressed_t ) );
	frame = ( mdsFrame_t * )( (byte *)header + header->ofsFrames + refent->frame * frameSize );
	torsoFrame = ( mdsFrame_t * )( (byte *)header + header->ofsFrames + refent->torsoFrame * frameSize );

	boneInfo = ( mdsBoneInfo_t * )( (byte *)header + header->ofsBones );
	boneRefs = boneList;
	Matrix3Transpose( refent->torsoAxis, torsoAxis );
	cBoneList = frame->bones;
	cBoneListTorso = torsoFrame->bones;

	for ( i = 0; i < numBones; i++, boneRefs++ ) {
		// R_CalcBone( header, refent, *boneRefs );
		int boneNum;
		short   *sh;
		float   *pf, diff;
		vec3_t tangles, angles, vec, v2;
		qboolean isTorso, fullTorso;

		fullTorso = qfalse;
		boneNum = *boneRefs;
		thisBoneInfo = &boneInfo[boneNum];
		if ( thisBoneInfo->torsoWeight ) {
			isTorso = qtrue;
			if ( thisBoneInfo->torsoWeight == 1.0f ) {
				fullTorso = qtrue;
			}
		} else {
			isTorso = qfalse;
		}
		cTBonePtr = &cBoneListTorso[boneNum];
		cBonePtr = &cBoneList[boneNum];

		bonePtr = &bones[ boneNum ];

		// we can assume the parent has already been uncompressed for this frame + lerp
		if ( thisBoneInfo->parent >= 0 ) {
			parentBone = &bones[ thisBoneInfo->parent ];
			parentBoneInfo = &boneInfo[ thisBoneInfo->parent ];
		} else {
			parentBone = NULL;
			parentBoneInfo = NULL;
		}

		// rotation
		if ( fullTorso ) {
			sh = (short *)cTBonePtr->angles;
			pf = angles;
			ANGLES_SHORT_TO_FLOAT( pf, sh );
		} else {
			sh = (short *)cBonePtr->angles;
			pf = angles;
			ANGLES_SHORT_TO_FLOAT( pf, sh );
			if ( isTorso ) {
				sh = (short *)cTBonePtr->angles;
				pf = tangles;
				ANGLES_SHORT_TO_FLOAT( pf, sh );
				// blend the angles together
				for ( j = 0; j < 3; j++ ) {
					diff = tangles[j] - angles[j];
					if ( fabs( diff ) > 180 ) {
						diff = AngleNormalize180( diff );
					}
					angles[j] = angles[j] + thisBoneInfo->torsoWeight * diff;
				}
			}
		}
		AnglesToAxis( angles, bonePtr->matrix );

		// translation
		if ( parentBone ) {

			if ( fullTorso ) {
				sh = (short *)cTBonePtr->ofsAngles; pf = angles;
				*( pf++ ) = SHORT2ANGLE( *( sh++ ) ); *( pf++ ) = SHORT2ANGLE( *( sh++ ) ); *( pf++ ) = 0;
				LocalAngleVector( angles, vec );
			} else {

				sh = (short *)cBonePtr->ofsAngles; pf = angles;
				*( pf++ ) = SHORT2ANGLE( *( sh++ ) ); *( pf++ ) = SHORT2ANGLE( *( sh++ ) ); *( pf++ ) = 0;
				LocalAngleVector( angles, vec );

				if ( isTorso ) {
					sh = (short *)cTBonePtr->ofsAngles;
					pf = tangles;
					*( pf++ ) = SHORT2ANGLE( *( sh++ ) ); *( pf++ ) = SHORT2ANGLE( *( sh++ ) ); *( pf++ ) = 0;
					LocalAngleVector( tangles, v2 );

					// blend the angles together
					SLerp_Normal( vec, v2, thisBoneInfo->torsoWeight, vec );

				}
			}
			LocalVectorMA( parentBone->translation, thisBoneInfo->parentDist, vec, bonePtr->translation );
		} else { // just use the frame position
			bonePtr->translation[0] = frame->parentOffset[0];
			bonePtr->translation[1] = frame->parentOffset[1];
			bonePtr->translation[2] = frame->parentOffset[2];
		}
		if ( boneNum == header->torsoParent ) {
			VectorCopy( bonePtr->translation, torsoParentOffset );
		}
	}

	// adjust for torso rotations
	torsoWeight = 0;
	boneRefs = boneList;
	for ( i = 0; i < numBones; i++, boneRefs++ ) {

		thisBoneInfo = &boneInfo[ *boneRefs ];
		bonePtr = &bones[ *boneRefs ];
		// add torso rotation
		if ( thisBoneInfo->torsoWeight > 0 ) {

			if ( !( thisBoneInfo->flags & BONEFLAG_TAG ) ) {

				// 1st multiply with the bone->matrix
				// 2nd translation for rotation relative to bone around torso parent offset
				VectorSubtract( bonePtr->translation, torsoParentOffset, t );
				Matrix4FromAxisPlusTranslation( bonePtr->matrix, t, m1 );
				// 3rd scaled rotation
				// 4th translate back to torso parent offset
				// use previously created matrix if available for the same weight
				if ( torsoWeight != thisBoneInfo->torsoWeight ) {
					Matrix4FromScaledAxisPlusTranslation( torsoAxis, thisBoneInfo->torsoWeight, torsoParentOffset, m2 );
					torsoWeight = thisBoneInfo->torsoWeight;
				}
				// multiply matrices to create one matrix to do all calculations
				Matrix4MultiplyInto3x3AndTranslation( m2, m1, bonePtr->matrix, bonePtr->translation );

			} else {    // tag's require special handling

				// rotate each of the axis by the torsoAngles
				LocalScaledMatrixTransformVector( bonePtr->matrix[0], thisBoneInfo->torsoWeight, torsoAxis, tmpAxis[0] );
				LocalScaledMatrixTransformVector( bonePtr->matrix[1], thisBoneInfo->torsoWeight, torsoAxis, tmpAxis[1] );
				LocalScaledMatrixTransformVector( bonePtr->matrix[2], thisBoneInfo->torsoWeight, torsoAxis, tmpAxis[2] );
				memcpy( bonePtr->matrix, tmpAxis, sizeof( tmpAxis ) );

				// rotate the translation around the torsoParent
				VectorSubtract( bonePtr->translation, torsoParentOffset, t );
				LocalScaledMatrixTransformVector( t, thisBoneInfo->torsoWeight, torsoAxis, bonePtr->translation );
				VectorAdd( bonePtr->translation, torsoParentOffset, bonePtr->translation );

			}
		}
	}
}