Beispiel #1
0
//============================================================================//
//==                          卡尔曼滤波                                    ==//
//============================================================================//
//==入口参数: 无                                                            ==//
//==出口参数: 无                                                            ==//
//==返回值:   无                                                            ==//
//============================================================================//
void KalMan(void)
{
  unsigned char   i;
  unsigned short  j;
  
  srand(SEED);
  for (i=0; i<X_LENGTH; i++)
  {
    tOpt.XPreOpt[i] = Temp2[i];           //零值初始化
  }
  for (i=0; i<P_LENGTH; i++)
  {
    tCov.PPreOpt[i] = Temp4[i];           //零值初始化
  }
  
  
  for (j=0; j<N; j++)
  {
    Watch1[j] = sin(2*3.14159265/100.0*j);
    Y[0] = Watch1[j] + Random1(0, 0.4);
    Watch2[j] = Y[0];
    MatrixMul(A, tOpt.XPreOpt, X, A_ROW, X_ROW, X_COLUMN);       //  基于系统的上一状态而预测现在状态; X(k|k-1) = A(k,k-1)*X(k-1|k-1)
    
    MatrixCal1(A, tCov.PPreOpt, Temp4, SYS_ORDER);
    MatrixAdd(Temp4, Q, P, P_ROW, P_COLUMN);                     //  预测数据的协方差矩阵; P(k|k-1) = A(k,k-1)*P(k-1|k-1)*A(k,k-1)'+Q
    
    MatrixCal2(C, P, Temp1, C_ROW, C_COLUMN);
    MatrixAdd(Temp1, R, Temp1, R_ROW, R_COLUMN);
    Gauss_Jordan(Temp1, C_ROW);
    MatrixTrans(C, Temp2, C_ROW, C_COLUMN);
    MatrixMul(P, Temp2, Temp22, P_ROW, C_COLUMN, C_ROW);
    MatrixMul(Temp22, Temp1, K, P_ROW, C_ROW, C_ROW);            //  计算卡尔曼增益; K(k) = P(k|k-1)*C' / (C(k)*P(k|k-1)*C(k)' + R)
    
    MatrixMul(C, X, Temp1, C_ROW, X_ROW, X_COLUMN);
    MatrixMinus(Y, Temp1, Temp1, Y_ROW, Y_COLUMN);
    MatrixMul(K, Temp1, Temp2, K_ROW, Y_ROW, Y_COLUMN);
    MatrixAdd(X, Temp2, tOpt.XNowOpt, X_ROW, X_COLUMN);          //  根据估测值和测量值计算当前最优值; X(k|k) = X(k|k-1)+Kg(k)*(Y(k)-C*X(k|k-1))
    
    MatrixMul(K, C, Temp4, K_ROW, C_ROW, C_COLUMN);
    MatrixMinus(I, Temp4, Temp4, I_ROW, I_COLUMN);
    MatrixMul(Temp4, P, tCov.PNowOpt, I_ROW, P_ROW, P_COLUMN);   //  计算更新后估计协防差矩阵; P(k|k) =(I-Kg(k)*C)*P(k|k-1)
    
    for (i=0; i<X_LENGTH; i++)
    {
      tOpt.XPreOpt[i] = tOpt.XNowOpt[i];
    }
    for (i=0; i<P_LENGTH; i++)
    {
      tCov.PPreOpt[i] = tCov.PNowOpt[i];
    }
    Watch3[j] = tOpt.XNowOpt[0];
    
  }//end of for
}
Beispiel #2
0
//============================================================================//
//==                          卡尔曼滤波                                    ==//
//============================================================================//
//==入口参数: 无                                                            ==//
//==出口参数: 无                                                            ==//
//==返回值:   无                                                            ==//
//============================================================================//
void KalMan(u16* in,u16* out)
{
  unsigned char   i;
//  unsigned short  k;
  
  for (i=0; i<LENGTH; i++)
  {
    tOpt.XPreOpt[i] = Temp1[i];           //零值初始化
  }
  for (i=0; i<LENGTH; i++)
  {
    tCov.PPreOpt[i] = Temp2[i];           //零值初始化
  }
  
  
//  for (k=0; k<N; k++)
//  {
    Z[0] = in[0];//(float)ADCSampling();
    MatrixMul(F, tOpt.XPreOpt, X, ORDER, ORDER, ORDER);       //  基于系统的上一状态而预测现在状态; X(k|k-1) = F(k,k-1)*X(k-1|k-1)
    
    MatrixCal(F, tCov.PPreOpt, Temp1, ORDER);
    MatrixAdd(Temp1, Q, P, ORDER, ORDER);                     //  预测数据的协方差矩阵; P(k|k-1) = F(k,k-1)*P(k-1|k-1)*F(k,k-1)'+Q
    
    MatrixCal(H, P, Temp1, ORDER);
    MatrixAdd(Temp1, R, Temp1, ORDER, ORDER);
    Gauss_Jordan(Temp1, ORDER);
    MatrixTrans(H, Temp2, ORDER, ORDER);
    MatrixMul(P, Temp2, Temp3, ORDER, ORDER, ORDER);
    MatrixMul(Temp1, Temp3, K, ORDER, ORDER, ORDER);          //  计算卡尔曼增益; Kg(k) = P(k|k-1)*H' / (H*P(k|k-1)*H' + R)
    
    MatrixMul(H, X, Temp1, ORDER, ORDER, ORDER);
    MatrixMinus(Z, Temp1, Temp1, ORDER, ORDER);
    MatrixMul(K, Temp1, Temp2, ORDER, ORDER, ORDER);
    MatrixAdd(X, Temp2, tOpt.XNowOpt, ORDER, ORDER);          //  根据估测值和测量值计算当前最优值; X(k|k) = X(k|k-1)+Kg(k)*(Z(k)-H*X(k|k-1))
    
    MatrixMul(K, H, Temp1, ORDER, ORDER, ORDER);
    MatrixMinus(I, Temp1, Temp1, ORDER, ORDER);
    MatrixMul(Temp1, P, tCov.PNowOpt, ORDER, ORDER, ORDER);   //  计算更新后估计协防差矩阵; P(k|k) =(I-Kg(k)*H)*P(k|k-1)
    
    for (i=0; i<LENGTH; i++)
    {
      tOpt.XPreOpt[i] = tOpt.XNowOpt[i];
      tCov.PPreOpt[i] = tCov.PNowOpt[i];
    }
		out[0]=(u16)(tOpt.XNowOpt[0]);
//  }
}
Beispiel #3
0
void OpMatrixMinusMatrix (TomVM& vm) {

    // Matrix - Matrix
    // Left matrix at reg2, right matrix at reg1
    if (!ReadMatrix (vm, vm.Reg2 ().IntVal (), m1)
    ||  !ReadMatrix (vm, vm.Reg  ().IntVal (), m2))
        return;

    // Add them
    vmReal result [16];
    MatrixMinus (m1, m2, result);

    // Return as temporary matrix
    vm.Reg ().IntVal () = FillTempRealArray2D (vm.Data (), vm.DataTypes (), 4, 4, result);
}