Beispiel #1
0
//----------------------------------------------------------------------
//
//	ProcessFork
//
//	Create a new process and make it runnable.  This involves the
//	following steps:
//	* Allocate resources for the process (PCB, memory, etc.)
//	* Initialize the resources
//	* Place the PCB on the runnable queue
//
//	NOTE: This code has been tested for system processes, but not
//	for user processes.
//
//----------------------------------------------------------------------
int
ProcessFork (VoidFunc func, uint32 param, int p_nice, int p_info,char *name, int isUser)
{
  int		i, j, fd, n;
  Link		*l;
  int		start, codeS, codeL, dataS, dataL;
  uint32	*stackframe;
  int		newPage;
  PCB		*pcb;
  int	addr = 0;
  int		intrs;
  unsigned char buf[100];
  uint32 dum[MAX_ARGS+8], count, offset;
  char *str;


  intrs = DisableIntrs ();
  dbprintf ('I', "Old interrupt value was 0x%x.\n", intrs);
  dbprintf ('p', "Entering ProcessFork args=0x%x 0x%x %s %d\n", func,
	    param, name, isUser);
  // Get a free PCB for the new process
  if (QueueEmpty (&freepcbs)) {
    printf ("FATAL error: no free processes!\n");
    exitsim ();	// NEVER RETURNS!
  }
  l = QueueFirst (&freepcbs);
  dbprintf ('p', "Got a link @ 0x%x\n", l);
  QueueRemove (l);
  pcb = (PCB *)(l->object);
  // This prevents someone else from grabbing this process
  ProcessSetStatus (pcb, PROCESS_STATUS_RUNNABLE);

  // At this point, the PCB is allocated and nobody else can get it.
  // However, it's not in the run queue, so it won't be run.  Thus, we
  // can turn on interrupts here.
  dbprintf ('I', "Before restore interrupt value is 0x%x.\n", CurrentIntrs());
  RestoreIntrs (intrs);
  dbprintf ('I', "New interrupt value is 0x%x.\n", CurrentIntrs());

  // Copy the process name into the PCB.
  dstrcpy (pcb->name, name);

  //----------------------------------------------------------------------
  // This section initializes the memory for this process
  //----------------------------------------------------------------------
  // For now, we'll use one user page and a page for the system stack.
  // For system processes, though, all pages must be contiguous.
  // Of course, system processes probably need just a single page for
  // their stack, and don't need any code or data pages allocated for them.
  pcb->npages = 1;
  newPage = MemoryAllocPage ();
  if (newPage == 0) {
    printf ("aFATAL: couldn't allocate memory - no free pages!\n");
    exitsim ();	// NEVER RETURNS!
  }
  pcb->pagetable[0] = MemorySetupPte (newPage);
  newPage = MemoryAllocPage ();
  if (newPage == 0) {
    printf ("bFATAL: couldn't allocate system stack - no free pages!\n");
    exitsim ();	// NEVER RETURNS!
  }
  pcb->sysStackArea = newPage * MEMORY_PAGE_SIZE;


  //---------------------------------------
  // Lab3: initialized pcb member for your scheduling algorithm here
  //--------------------------------------
  pcb->p_nice = p_nice < 0 ? 0 : p_nice;
  pcb->p_info = p_info;
  pcb->sleeptime = my_timer_get();
  pcb->estcpu = 0;
  pcb->prio = PUSER;
  pcb->processed = 1 - processedFlag;
  pcb->estcputime = 0;
  //----------------------------------------------------------------------
  // Stacks grow down from the top.  The current system stack pointer has
  // to be set to the bottom of the interrupt stack frame, which is at the
  // high end (address-wise) of the system stack.
  stackframe = ((uint32 *)(pcb->sysStackArea + MEMORY_PAGE_SIZE)) -
    (PROCESS_STACK_FRAME_SIZE + 8);
  // The system stack pointer is set to the base of the current interrupt
  // stack frame.
  pcb->sysStackPtr = stackframe;
  // The current stack frame pointer is set to the same thing.
  pcb->currentSavedFrame = stackframe;

  dbprintf ('p',
	    "Setting up PCB @ 0x%x (sys stack=0x%x, mem=0x%x, size=0x%x)\n",
	    pcb, pcb->sysStackArea, pcb->pagetable[0],
	    pcb->npages * MEMORY_PAGE_SIZE);

  //----------------------------------------------------------------------
  // This section sets up the stack frame for the process.  This is done
  // so that the frame looks to the interrupt handler like the process
  // was "suspended" right before it began execution.  The standard
  // mechanism of swapping in the registers and returning to the place
  // where it was "interrupted" will then work.
  //----------------------------------------------------------------------

  // The previous stack frame pointer is set to 0, meaning there is no
  // previous frame.
  stackframe[PROCESS_STACK_PREV_FRAME] = 0;

  // Set the base of the level 1 page table.  If there's only one page
  // table level, this is it.  For 2-level page tables, put the address
  // of the level 1 page table here.  For 2-level page tables, we'll also
  // have to build up the necessary tables....
  stackframe[PROCESS_STACK_PTBASE] = (uint32)&(pcb->pagetable[0]);

  // Set the size (maximum number of entries) of the level 1 page table.
  // In our case, it's just one page, but it could be larger.
  stackframe[PROCESS_STACK_PTSIZE] = pcb->npages;

  // Set the number of bits for both the level 1 and level 2 page tables.
  // This can be changed on a per-process basis if desired.  For now,
  // though, it's fixed.
  stackframe[PROCESS_STACK_PTBITS] = (MEMORY_L1_PAGE_SIZE_BITS
					  + (MEMORY_L2_PAGE_SIZE_BITS << 16));


  if (isUser) {
    dbprintf ('p', "About to load %s\n", name);
    fd = ProcessGetCodeInfo (name, &start, &codeS, &codeL, &dataS, &dataL);
    if (fd < 0) {
      // Free newpage and pcb so we don't run out...
      ProcessFreeResources (pcb);
      return (-1);
    }
    dbprintf ('p', "File %s -> start=0x%08x\n", name, start);
    dbprintf ('p', "File %s -> code @ 0x%08x (size=0x%08x)\n", name, codeS,
	      codeL);
    dbprintf ('p', "File %s -> data @ 0x%08x (size=0x%08x)\n", name, dataS,
	      dataL);
    while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0) {
      dbprintf ('p', "Placing %d bytes at vaddr %08x.\n", n, addr - n);
      // Copy the data to user memory.  Note that the user memory needs to
      // have enough space so that this copy will succeed!
      MemoryCopySystemToUser (pcb, buf, addr - n, n);
    }
    FsClose (fd);
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_USER;
    // Set the initial stack pointer correctly.  Currently, it's just set
    // to the top of the (single) user address space allocated to this
    // process.
    str = (char *)param;
    stackframe[PROCESS_STACK_IREG+29] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF;
    // Copy the initial parameter to the top of stack

    MemoryCopySystemToUser (pcb, (char *)str,
			    (char *)stackframe[PROCESS_STACK_IREG+29],
			    SIZE_ARG_BUFF-32);

    offset = get_argument((char *)param);

    dum[2] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF + offset;
    for(count=3;;count++)
    {
      offset=get_argument(NULL);
      dum[count] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF + offset;
      if(offset==0)
      {
        break;
      }
    }
    dum[0] = count-2;
    dum[1] = MEMORY_PAGE_SIZE - SIZE_ARG_BUFF - (count-2)*4;
    MemoryCopySystemToUser (pcb, (char *)dum,
			    (char *)(stackframe[PROCESS_STACK_IREG+29]-count*4),
			    (count)*sizeof(uint32));
    stackframe[PROCESS_STACK_IREG+29] -= 4*count;
    // Set the correct address at which to execute a user process.
    stackframe[PROCESS_STACK_IAR] = (uint32)start;
    pcb->flags |= PROCESS_TYPE_USER;
  } else {
    // Set r31 to ProcessExit().  This will only be called for a system
    // process; user processes do an exit() trap.
    stackframe[PROCESS_STACK_IREG+31] = (uint32)ProcessExit;

    // Set the stack register to the base of the system stack.
    stackframe[PROCESS_STACK_IREG+29]=pcb->sysStackArea + MEMORY_PAGE_SIZE-32;

    // Set the initial parameter properly by placing it on the stack frame
    // at the location pointed to by the "saved" stack pointer (r29).
    *((uint32 *)(stackframe[PROCESS_STACK_IREG+29])) = param;

    // Set up the initial address at which to execute.  This is done by
    // placing the address into the IAR slot of the stack frame.
    stackframe[PROCESS_STACK_IAR] = (uint32)func;

    // Set the initial value for the interrupt status register
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_SYS;

    // Mark this as a system process.
    pcb->flags |= PROCESS_TYPE_SYSTEM;
  }

  // Place the PCB onto the run queue.
  intrs = DisableIntrs ();
  QueueInsertLast (&runQueue[pcb->prio/4], l);
  RestoreIntrs (intrs);

  // If this is the first process, make it the current one
  if (currentPCB == NULL) {
    dbprintf ('p', "Setting currentPCB=0x%x, stackframe=0x%x\n",
	      pcb, pcb->currentSavedFrame);
    currentPCB = pcb;
  }
  dbprintf ('p', "Leaving ProcessFork (%s)\n", name);
  // Return the process number (found by subtracting the PCB number
  // from the base of the PCB array).
  return (pcb - pcbs);
}
Beispiel #2
0
//----------------------------------------------------------------------
//
//	ProcessFork
//
//	Create a new process and make it runnable.  This involves the
//	following steps:
//	* Allocate resources for the process (PCB, memory, etc.)
//	* Initialize the resources
//	* Place the PCB on the runnable queue
//
//	NOTE: This code has been tested for system processes, but not
//	for user processes.
//
//----------------------------------------------------------------------
int ProcessFork (VoidFunc func, uint32 param, char *name, int isUser) {
  int i;                   // Loop index variable
  int fd, n;               // Used for reading code from files.
  int start, codeS, codeL; // Used for reading code from files.
  int dataS, dataL;        // Used for reading code from files.
  int addr = 0;            // Used for reading code from files.
  unsigned char buf[100];  // Used for reading code from files.
  uint32 *stackframe;      // Stores address of current stack frame.
  PCB *pcb;                // Holds pcb while we build it for this process.
  int intrs;               // Stores previous interrupt settings.
  uint32  initial_user_params[MAX_ARGS+2]; // Initial memory for user parameters (argc, argv)
                                           // initial_user_params[0] = argc
                                           // initial_user_params[1] = argv, points to initial_user_params[2]
                                           // initial_user_params[2] = address of string for argv[0]
                                           // initial_user_params[3] = address of string for argv[1]
                                           //                           ...
  uint32 argc=0;           // running counter for number of arguments
  uint32 offset;           // Used in parsing command line argument strings, holds offset (in bytes) from
                           // beginning of the string to the current argument.
  uint32 initial_user_params_bytes;  // total number of bytes in initial user parameters array
  int newPage;


  intrs = DisableIntrs ();
  dbprintf ('I', "Old interrupt value was 0x%x.\n", intrs);
  dbprintf ('p', "Entering ProcessFork args=0x%x 0x%x %s %d\n", (int)func,
	    param, name, isUser);
  // Get a free PCB for the new process
  if (AQueueEmpty(&freepcbs)) {
    printf ("FATAL error: no free processes!\n");
    exitsim ();	// NEVER RETURNS!
  }
  pcb = (PCB *)AQueueObject(AQueueFirst (&freepcbs));
  dbprintf ('p', "Got a link @ 0x%x\n", (int)(pcb->l));
  if (AQueueRemove (&(pcb->l)) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not remove link from freepcbsQueue in ProcessFork!\n");
    exitsim();
  }
  // This prevents someone else from grabbing this process
  ProcessSetStatus (pcb, PROCESS_STATUS_RUNNABLE);

  // At this point, the PCB is allocated and nobody else can get it.
  // However, it's not in the run queue, so it won't be run.  Thus, we
  // can turn on interrupts here.
  RestoreIntrs (intrs);

  // Copy the process name into the PCB.
  dstrcpy(pcb->name, name);

  //----------------------------------------------------------------------
  // This section initializes the memory for this process
  //----------------------------------------------------------------------
  // Allocate 1 page for system stack, 1 page for user stack (at top of
  // virtual address space), and 4 pages for user code and global data.
  //---------------------------------------------------------
  // STUDENT: allocate pages for a new process here.  The
  // code below assumes that you set the "stackframe" variable
  // equal to the last 4-byte-aligned address in physical page
  // for the system stack.
  //---------------------------------------------------------
  // Pages for code and global data and Heap
  pcb->npages = 5;
  for(i = 0; i < pcb->npages; i++) {
    newPage = MemoryAllocPage();
    if(newPage == MEM_FAIL) {
      printf ("FATAL: couldn't allocate memory - no free pages!\n");
      ProcessFreeResources (pcb);
      return PROCESS_FORK_FAIL;
    }
    pcb->pagetable[i] = MemorySetupPte (newPage);
  }
  // Initialize nodes in pool
  for (i = 1; i <= MEM_HEAP_MAX_NODES; i++) {
    pcb->htree_array[i].parent = NULL;
    pcb->htree_array[i].cleft = NULL;
    pcb->htree_array[i].crght = NULL;
    pcb->htree_array[i].index = i;
    pcb->htree_array[i].size = -1;
    pcb->htree_array[i].addr = -1;
    pcb->htree_array[i].inuse = 0;
    pcb->htree_array[i].order = -1;
  }
  // Initialize Heap tree
  pcb->htree_array[1].size = MEM_PAGESIZE;
  pcb->htree_array[1].addr = 0;
  pcb->htree_array[1].order = 7;
  // user stack
  pcb->npages += 1;
  newPage = MemoryAllocPage();
  if(newPage == MEM_FAIL) {
    printf ("FATAL: couldn't allocate user stack - no free pages!\n");
    ProcessFreeResources (pcb);
    return PROCESS_FORK_FAIL;
  }
  pcb->pagetable[MEM_ADDRESS_TO_PAGE(MEM_MAX_VIRTUAL_ADDRESS)] = MemorySetupPte (newPage);

  // for system stack
  newPage = MemoryAllocPage ();
  if(newPage == MEM_FAIL) {
    printf ("FATAL: couldn't allocate system stack - no free pages!\n");
    ProcessFreeResources (pcb);
    return PROCESS_FORK_FAIL;
  }

  pcb->sysStackArea = newPage * MEM_PAGESIZE;
  //----------------------------------------------------------------------
  // Stacks grow down from the top.  The current system stack pointer has
  // to be set to the bottom of the interrupt stack frame, which is at the
  // high end (address-wise) of the system stack.
  stackframe = (uint32 *)(pcb->sysStackArea + MEM_PAGESIZE - 4);
  dbprintf('p', "ProcessFork: SystemStack page=%d sysstackarea=0x%x\n", newPage, pcb->sysStackArea);

  // Now that the stack frame points at the bottom of the system stack memory area, we need to
  // move it up (decrement it) by one stack frame size because we're about to fill in the
  // initial stack frame that will be loaded for this PCB when it gets switched in by
  // ProcessSchedule the first time.
  stackframe -= PROCESS_STACK_FRAME_SIZE;

  // The system stack pointer is set to the base of the current interrupt stack frame.
  pcb->sysStackPtr = stackframe;
  // The current stack frame pointer is set to the same thing.
  pcb->currentSavedFrame = stackframe;

  dbprintf ('p', "Setting up PCB @ 0x%x (sys stack=0x%x, mem=0x%x, size=0x%x)\n",
    (int)pcb, pcb->sysStackArea, pcb->pagetable[0], pcb->npages * MEM_PAGESIZE);

  //----------------------------------------------------------------------
  // This section sets up the stack frame for the process.  This is done
  // so that the frame looks to the interrupt handler like the process
  // was "suspended" right before it began execution.  The standard
  // mechanism of swapping in the registers and returning to the place
  // where it was "interrupted" will then work.
  //----------------------------------------------------------------------

  // The previous stack frame pointer is set to 0, meaning there is no
  // previous frame.
  dbprintf('p', "ProcessFork: stackframe = 0x%x\n", (int)stackframe);
  stackframe[PROCESS_STACK_PREV_FRAME] = 0;

  //----------------------------------------------------------------------
  // STUDENT: setup the PTBASE, PTBITS, and PTSIZE here on the current
  // stack frame.
  //----------------------------------------------------------------------
  // Set the base of the level 1 page table.  If there's only one page
  // table level, this is it.  For 2-level page tables, put the address
  // of the level 1 page table here.  For 2-level page tables, we'll also
  // have to build up the necessary tables....
  stackframe[PROCESS_STACK_PTBASE] = (uint32)(&(pcb->pagetable[0]));

  // Set the size (maximum number of entries) of the level 1 page table.
  // In our case, it's just one page, but it could be larger.
  stackframe[PROCESS_STACK_PTSIZE] = MEM_PAGE_TBL_SIZE;

  // Set the number of bits for both the level 1 and level 2 page tables.
  // This can be changed on a per-process basis if desired.  For now,
  // though, it's fixed.
  stackframe[PROCESS_STACK_PTBITS] = (MEM_L1FIELD_FIRST_BITNUM << 16) + MEM_L1FIELD_FIRST_BITNUM;

  if (isUser) {
    dbprintf ('p', "About to load %s\n", name);
    fd = ProcessGetCodeInfo (name, &start, &codeS, &codeL, &dataS, &dataL);
    if (fd < 0) {
      // Free newPage and pcb so we don't run out...
      ProcessFreeResources (pcb);
      return (-1);
    }

    dbprintf ('p', "File %s -> start=0x%08x\n", name, start);
    dbprintf ('p', "File %s -> code @ 0x%08x (size=0x%08x)\n", name, codeS,
	      codeL);
    dbprintf ('p', "File %s -> data @ 0x%08x (size=0x%08x)\n", name, dataS,
	      dataL);

    while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0) {
      dbprintf ('i', "Placing %d bytes at vaddr %08x.\n", n, addr - n);
      // Copy the data to user memory.  Note that the user memory needs to
      // have enough space so that this copy will succeed!
      MemoryCopySystemToUser (pcb, buf, (char *)(addr - n), n);
    }
    FsClose (fd);
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_USER;

    //----------------------------------------------------------------------
    // STUDENT: setup the initial user stack pointer here as the top
    // of the process's virtual address space (4-byte aligned).
    //----------------------------------------------------------------------
    stackframe[PROCESS_STACK_USER_STACKPOINTER] = MEM_MAX_VIRTUAL_ADDRESS - 3;
    dbprintf('p', "ProcessFork: UserStack usrsp=0x%x\n", stackframe[PROCESS_STACK_USER_STACKPOINTER]);

    //--------------------------------------------------------------------
    // This part is setting up the initial user stack with argc and argv.
    //--------------------------------------------------------------------

    // Copy the entire set of strings of command line parameters onto the user stack.
    // The "param" variable is a pointer to the start of a sequenial set of strings,
    // each ending with its own '\0' character.  The final "string" of the sequence
    // must be an empty string to indicate that the sequence is done.  Since we
    // can't figure out how long the set of strings actually is in this scenario,
    // we have to copy the maximum possible string length and parse things manually.
    stackframe[PROCESS_STACK_USER_STACKPOINTER] -= SIZE_ARG_BUFF;
    MemoryCopySystemToUser (pcb, (char *)param, (char *)stackframe[PROCESS_STACK_USER_STACKPOINTER], SIZE_ARG_BUFF);

    // Now that the main string is copied into the user space, we need to setup
    // argv as an array of pointers into that string, and argc as the total
    // number of arguments found in the string.  The first call to get_argument
    // should return 0 as the offset of the first string.
    offset = get_argument((char *)param);

    // Compute the addresses in user space of where each string for the command line arguments
    // begins.  These addresses make up the argv array.
    for(argc=0; argc < MAX_ARGS; argc++) {
      // The "+2" is because initial_user_params[0] is argc, and initial_user_params[1] is argv.
      // The address can be found as the current stack pointer (which points to the start of
      // the params list) plus the byte offset of the parameter from the beginning of
      // the list of parameters.
      initial_user_params[argc+2] = stackframe[PROCESS_STACK_USER_STACKPOINTER] + offset;
      offset = get_argument(NULL);
      if (offset == 0) {
        initial_user_params[argc+2+1] = 0; // last entry should be a null value
        break;
      }
    }
    // argc is currently the index of the last command line argument.  We need it to instead
    // be the number of command line arguments, so we increment it by 1.
    argc++;

    // Now argc can be stored properly
    initial_user_params[0] = argc;

    // Compute where initial_user_params[3] will be copied in user space as the
    // base of the array of string addresses.  The entire initial_user_params array
    // of uint32's will be copied onto the stack.  We'll move the stack pointer by
    // the necessary amount, then start copying the array.  Therefore, initial_user_params[3]
    // will reside at the current stack pointer value minus the number of command line
    // arguments (argc).
    initial_user_params[1] = stackframe[PROCESS_STACK_USER_STACKPOINTER] - (argc*sizeof(uint32));

    // Now copy the actual memory.  Remember that stacks grow down from the top of memory, so
    // we need to move the stack pointer first, then do the copy.  The "+2", as before, is
    // because initial_user_params[0] is argc, and initial_user_params[1] is argv.
    initial_user_params_bytes = (argc + 2) * sizeof(uint32);

    stackframe[PROCESS_STACK_USER_STACKPOINTER] -= initial_user_params_bytes;
    MemoryCopySystemToUser (pcb, (char *)initial_user_params, (char *)(stackframe[PROCESS_STACK_USER_STACKPOINTER]), initial_user_params_bytes);

    // Set the correct address at which to execute a user process.
    stackframe[PROCESS_STACK_IAR] = (uint32)start;

    // Flag this as a user process
    pcb->flags |= PROCESS_TYPE_USER;
  } else {
    // Don't worry about messing with any code here for kernel processes because
    // there aren't any kernel processes in DLXOS.

    // Set r31 to ProcessExit().  This will only be called for a system
    // process; user processes do an exit() trap.
    stackframe[PROCESS_STACK_IREG+31] = (uint32)ProcessExit;

    // Set the stack register to the base of the system stack.
    //stackframe[PROCESS_STACK_IREG+29]=pcb->sysStackArea + MEM_PAGESIZE;

    // Set the initial parameter properly by placing it on the stack frame
    // at the location pointed to by the "saved" stack pointer (r29).
    *((uint32 *)(stackframe[PROCESS_STACK_IREG+29])) = param;

    // Set up the initial address at which to execute.  This is done by
    // placing the address into the IAR slot of the stack frame.
    stackframe[PROCESS_STACK_IAR] = (uint32)func;

    // Set the initial value for the interrupt status register
    stackframe[PROCESS_STACK_ISR] = PROCESS_INIT_ISR_SYS;

    // Mark this as a system process.
    pcb->flags |= PROCESS_TYPE_SYSTEM;
  }

  // Place the PCB onto the run queue.
  intrs = DisableIntrs ();
  if ((pcb->l = AQueueAllocLink(pcb)) == NULL) {
    printf("FATAL ERROR: could not get link for forked PCB in ProcessFork!\n");
    exitsim();
  }
  if (AQueueInsertLast(&runQueue, pcb->l) != QUEUE_SUCCESS) {
    printf("FATAL ERROR: could not insert link into runQueue in ProcessFork!\n");
    exitsim();
  }
  RestoreIntrs (intrs);

  // If this is the first process, make it the current one
  if (currentPCB == NULL) {
    dbprintf ('p', "Setting currentPCB=0x%x, stackframe=0x%x\n",
	      (int)pcb, (int)(pcb->currentSavedFrame));
    currentPCB = pcb;
  }

  dbprintf ('p', "Leaving ProcessFork (%s)\n", name);
  // Return the process number (found by subtracting the PCB number
  // from the base of the PCB array).
  return (pcb - pcbs);
}
Beispiel #3
0
//---------------------------------------------------------------------
// MemoryPageFaultHandler is called in traps.c whenever a page fault 
// (better known as a "seg fault" occurs.  If the address that was
// being accessed is on the stack, we need to allocate a new page 
// for the stack.  If it is not on the stack, then this is a legitimate
// seg fault and we should kill the process.  Returns MEM_SUCCESS
// on success, and kills the current process on failure.  Note that
// fault_address is the beginning of the page of the virtual address that 
// caused the page fault, i.e. it is the vaddr with the offset zero-ed
// out.
//
// Note: The existing code is incomplete and only for reference. 
// Feel free to edit.
//---------------------------------------------------------------------
int MemoryPageFaultHandler(PCB *pcb) {
  int newPage;
  printf("debug into pagefault\n");
  if (pcb->currentSavedFrame[PROCESS_STACK_USER_STACKPOINTER]>= pcb->currentSavedFrame[PROCESS_STACK_FAULT])
   { 
     newPage = MemoryAllocPage ();
      if (newPage == MEM_FAIL) {
          printf("FATAL:couldn't allocate memory - no free pages!\n");
          ProcessKill();
    }
     pcb->npages +=1;
     printf("(int)pcb->currentSavedFrame[PROCESS_STACK_FAULT]=0x%x\n",(int)pcb->currentSavedFrame[PROCESS_STACK_FAULT]);
     printf("pcb->currentSavedFrame[PROCESS_STACK_USER_STACKPOINTER]=0x%x\n",pcb->currentSavedFrame[PROCESS_STACK_USER_STACKPOINTER]);
     pcb->pagetable[(int)pcb->currentSavedFrame[PROCESS_STACK_FAULT]/(MEM_PAGESIZE)] = MemorySetupPte(newPage);
     printf("Allocate a newpage, the page number is %d\n",newPage);
     return MEM_SUCCESS;
   }
   else{
     printf("FATAL: page fault!\n");
     ProcessKill();
     return MEM_FAIL;
   }
}