Beispiel #1
0
void Graph::augment(node *s_start, node *t_start, captype *cap_middle, captype *rev_cap_middle)
{
	node *i;
	arc_forward *a;
	captype bottleneck;
	nodeptr *np;


	/* 1. Finding bottleneck capacity */
	/* 1a - the source tree */
	bottleneck = *cap_middle;
	for (i=s_start; ; )
	{
		a = i -> parent;
		if (a == TERMINAL) break;
		if (IS_ODD(a))
		{
			a = MAKE_EVEN(a);
			if (bottleneck > a->r_cap) bottleneck = a -> r_cap;
			i = NEIGHBOR_NODE_REV(i, a -> shift);
		}
		else
		{
			if (bottleneck > a->r_rev_cap) bottleneck = a -> r_rev_cap;
			i = NEIGHBOR_NODE(i, a -> shift);
		}
	}
	if (bottleneck > i->tr_cap) bottleneck = i -> tr_cap;
	/* 1b - the sink tree */
	for (i=t_start; ; )
	{
		a = i -> parent;
		if (a == TERMINAL) break;
		if (IS_ODD(a))
		{
			a = MAKE_EVEN(a);
			if (bottleneck > a->r_rev_cap) bottleneck = a -> r_rev_cap;
			i = NEIGHBOR_NODE_REV(i, a -> shift);
		}
		else
		{
			if (bottleneck > a->r_cap) bottleneck = a -> r_cap;
			i = NEIGHBOR_NODE(i, a -> shift);
		}
	}
	if (bottleneck > - i->tr_cap) bottleneck = - i -> tr_cap;


	/* 2. Augmenting */
	/* 2a - the source tree */
	*rev_cap_middle += bottleneck;
	*cap_middle -= bottleneck;
	for (i=s_start; ; )
	{
		a = i -> parent;
		if (a == TERMINAL) break;
		if (IS_ODD(a))
		{
			a = MAKE_EVEN(a);
			a -> r_rev_cap += bottleneck;
			a -> r_cap -= bottleneck;
			if (!a->r_cap)
			{
				/* add i to the adoption list */
				i -> parent = ORPHAN;
				np = nodeptr_block -> New();
				np -> ptr = i;
				np -> next = orphan_first;
				orphan_first = np;
			}
			i = NEIGHBOR_NODE_REV(i, a -> shift);
		}
		else
		{
			a -> r_cap += bottleneck;
			a -> r_rev_cap -= bottleneck;
			if (!a->r_rev_cap)
			{
				/* add i to the adoption list */
				i -> parent = ORPHAN;
				np = nodeptr_block -> New();
				np -> ptr = i;
				np -> next = orphan_first;
				orphan_first = np;
			}
			i = NEIGHBOR_NODE(i, a -> shift);
		}
	}
	i -> tr_cap -= bottleneck;
	if (!i->tr_cap)
	{
		/* add i to the adoption list */
		i -> parent = ORPHAN;
		np = nodeptr_block -> New();
		np -> ptr = i;
		np -> next = orphan_first;
		orphan_first = np;
	}
	/* 2b - the sink tree */
	for (i=t_start; ; )
	{
		a = i -> parent;
		if (a == TERMINAL) break;
		if (IS_ODD(a))
		{
			a = MAKE_EVEN(a);
			a -> r_cap += bottleneck;
			a -> r_rev_cap -= bottleneck;
			if (!a->r_rev_cap)
			{
				/* add i to the adoption list */
				i -> parent = ORPHAN;
				np = nodeptr_block -> New();
				np -> ptr = i;
				np -> next = orphan_first;
				orphan_first = np;
			}
			i = NEIGHBOR_NODE_REV(i, a -> shift);
		}
		else
		{
			a -> r_rev_cap += bottleneck;
			a -> r_cap -= bottleneck;
			if (!a->r_cap)
			{
				/* add i to the adoption list */
				i -> parent = ORPHAN;
				np = nodeptr_block -> New();
				np -> ptr = i;
				np -> next = orphan_first;
				orphan_first = np;
			}
			i = NEIGHBOR_NODE(i, a -> shift);
		}
	}
	i -> tr_cap += bottleneck;
	if (!i->tr_cap)
	{
		/* add i to the adoption list */
		i -> parent = ORPHAN;
		np = nodeptr_block -> New();
		np -> ptr = i;
		np -> next = orphan_first;
		orphan_first = np;
	}


	flow += bottleneck;
}
Beispiel #2
0
void Graph::process_sink_orphan(node *i)
{
	node *j;
	arc_forward *a0_for, *a0_for_first, *a0_for_last;
	arc_reverse *a0_rev, *a0_rev_first, *a0_rev_last;
	arc_forward *a0_min = NULL, *a;
	nodeptr *np;
	int d, d_min = INFINITE_D;

	/* trying to find a new parent */
	a0_for_first = i -> first_out;
	if (IS_ODD(a0_for_first))
	{
		a0_for_first = (arc_forward *) (((char *)a0_for_first) + 1);
		a0_for_last = (arc_forward *) ((a0_for_first ++) -> shift);
	}
	else a0_for_last = (i + 1) -> first_out;
	a0_rev_first = i -> first_in;
	if (IS_ODD(a0_rev_first))
	{
		a0_rev_first = (arc_reverse *) (((char *)a0_rev_first) + 1);
		a0_rev_last  = (arc_reverse *) ((a0_rev_first ++) -> sister);
	}
	else a0_rev_last = (i + 1) -> first_in;


	for (a0_for=a0_for_first; a0_for<a0_for_last; a0_for++)
	if (a0_for->r_cap)
	{
		j = NEIGHBOR_NODE(i, a0_for -> shift);
		if (j->is_sink && (a=j->parent))
		{
			/* checking the origin of j */
			d = 0;
			while ( 1 )
			{
				if (j->TS == TIME)
				{
					d += j -> DIST;
					break;
				}
				a = j -> parent;
				d ++;
				if (a==TERMINAL)
				{
					j -> TS = TIME;
					j -> DIST = 1;
					break;
				}
				if (a==ORPHAN) { d = INFINITE_D; break; }
				if (IS_ODD(a))
					j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
				else
					j = NEIGHBOR_NODE(j, a -> shift);
			}
			if (d<INFINITE_D) /* j originates from the sink - done */
			{
				if (d<d_min)
				{
					a0_min = a0_for;
					d_min = d;
				}
				/* set marks along the path */
				for (j=NEIGHBOR_NODE(i, a0_for->shift); j->TS!=TIME; )
				{
					j -> TS = TIME;
					j -> DIST = d --;
					a = j->parent;
					if (IS_ODD(a))
						j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
					else
						j = NEIGHBOR_NODE(j, a -> shift);
				}
			}
		}
	}
	for (a0_rev=a0_rev_first; a0_rev<a0_rev_last; a0_rev++)
	{
		a0_for = a0_rev -> sister;
		if (a0_for->r_rev_cap)
		{
			j = NEIGHBOR_NODE_REV(i, a0_for -> shift);
			if (j->is_sink && (a=j->parent))
			{
				/* checking the origin of j */
				d = 0;
				while ( 1 )
				{
					if (j->TS == TIME)
					{
						d += j -> DIST;
						break;
					}
					a = j -> parent;
					d ++;
					if (a==TERMINAL)
					{
						j -> TS = TIME;
						j -> DIST = 1;
						break;
					}
					if (a==ORPHAN) { d = INFINITE_D; break; }
					if (IS_ODD(a))
						j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
					else
						j = NEIGHBOR_NODE(j, a -> shift);
				}
				if (d<INFINITE_D) /* j originates from the sink - done */
				{
					if (d<d_min)
					{
						a0_min = MAKE_ODD(a0_for);
						d_min = d;
					}
					/* set marks along the path */
					for (j=NEIGHBOR_NODE_REV(i,a0_for->shift); j->TS!=TIME; )
					{
						j -> TS = TIME;
						j -> DIST = d --;
						a = j->parent;
						if (IS_ODD(a))
							j = NEIGHBOR_NODE_REV(j, MAKE_EVEN(a) -> shift);
						else
							j = NEIGHBOR_NODE(j, a -> shift);
					}
				}
			}
		}
	}

	if (i->parent = a0_min)
	{
		i -> TS = TIME;
		i -> DIST = d_min + 1;
	}
	else
	{
		/* no parent is found */
		i -> TS = 0;

		/* process neighbors */
		for (a0_for=a0_for_first; a0_for<a0_for_last; a0_for++)
		{
			j = NEIGHBOR_NODE(i, a0_for -> shift);
			if (j->is_sink && (a=j->parent))
			{
				if (a0_for->r_cap) set_active(j);
				if (a!=TERMINAL && a!=ORPHAN && IS_ODD(a) && NEIGHBOR_NODE_REV(j, MAKE_EVEN(a)->shift)==i)
				{
					/* add j to the adoption list */
					j -> parent = ORPHAN;
					np = nodeptr_block -> New();
					np -> ptr = j;
					if (orphan_last) orphan_last -> next = np;
					else             orphan_first        = np;
					orphan_last = np;
					np -> next = NULL;
				}
			}
		}
		for (a0_rev=a0_rev_first; a0_rev<a0_rev_last; a0_rev++)
		{
			a0_for = a0_rev -> sister;
			j = NEIGHBOR_NODE_REV(i, a0_for -> shift);
			if (j->is_sink && (a=j->parent))
			{
				if (a0_for->r_rev_cap) set_active(j);
				if (a!=TERMINAL && a!=ORPHAN && !IS_ODD(a) && NEIGHBOR_NODE(j, a->shift)==i)
				{
					/* add j to the adoption list */
					j -> parent = ORPHAN;
					np = nodeptr_block -> New();
					np -> ptr = j;
					if (orphan_last) orphan_last -> next = np;
					else             orphan_first        = np;
					orphan_last = np;
					np -> next = NULL;
				}
			}
		}
	}
}
Beispiel #3
0
Graph::flowtype Graph::maxflow()
{
    node *i, *j, *current_node = NULL, *s_start, *t_start = NULL;
    captype *cap_middle = NULL, *rev_cap_middle = NULL;
    arc_forward *a_for, *a_for_first, *a_for_last;
    arc_reverse *a_rev, *a_rev_first, *a_rev_last;
    nodeptr *np, *np_next;

    prepare_graph();
    maxflow_init();
    nodeptr_block = new DBlock<nodeptr>(NODEPTR_BLOCK_SIZE, error_function);

    while ( 1 )
    {
        if ((i=current_node))
        {
            i -> next = NULL; /* remove active flag */
            if (!i->parent) i = NULL;
        }
        if (!i)
        {
            if (!(i = next_active())) break;
        }

        /* growth */
        s_start = NULL;

        a_for_first = i -> first_out;
        if (IS_ODD(a_for_first))
        {
            a_for_first = (arc_forward *) (((char *)a_for_first) + 1);
            a_for_last = (arc_forward *) ((a_for_first ++) -> shift);
        }
        else a_for_last = (i + 1) -> first_out;
        a_rev_first = i -> first_in;
        if (IS_ODD(a_rev_first))
        {
            a_rev_first = (arc_reverse *) (((char *)a_rev_first) + 1);
            a_rev_last = (arc_reverse *) ((a_rev_first ++) -> sister);
        }
        else a_rev_last = (i + 1) -> first_in;

        if (!i->is_sink)
        {
            /* grow source tree */
            for (a_for=a_for_first; a_for<a_for_last; a_for++)
            if (a_for->r_cap)
            {
                j = NEIGHBOR_NODE(i, a_for -> shift);
                if (!j->parent)
                {
                    j -> is_sink = 0;
                    j -> parent = MAKE_ODD(a_for);
                    j -> TS = i -> TS;
                    j -> DIST = i -> DIST + 1;
                    set_active(j);
                }
                else if (j->is_sink)
                {
                    s_start = i;
                    t_start = j;
                    cap_middle     = & ( a_for -> r_cap );
                    rev_cap_middle = & ( a_for -> r_rev_cap );
                    break;
                }
                else if (j->TS <= i->TS &&
                         j->DIST > i->DIST)
                {
                    /* heuristic - trying to make the distance from j to the source shorter */
                    j -> parent = MAKE_ODD(a_for);
                    j -> TS = i -> TS;
                    j -> DIST = i -> DIST + 1;
                }
            }
            if (!s_start)
            for (a_rev=a_rev_first; a_rev<a_rev_last; a_rev++)
            {
                a_for = a_rev -> sister;
                if (a_for->r_rev_cap)
                {
                    j = NEIGHBOR_NODE_REV(i, a_for -> shift);
                    if (!j->parent)
                    {
                        j -> is_sink = 0;
                        j -> parent = a_for;
                        j -> TS = i -> TS;
                        j -> DIST = i -> DIST + 1;
                        set_active(j);
                    }
                    else if (j->is_sink)
                    {
                        s_start = i;
                        t_start = j;
                        cap_middle     = & ( a_for -> r_rev_cap );
                        rev_cap_middle = & ( a_for -> r_cap );
                        break;
                    }
                    else if (j->TS <= i->TS &&
                             j->DIST > i->DIST)
                    {
                        /* heuristic - trying to make the distance from j to the source shorter */
                        j -> parent = a_for;
                        j -> TS = i -> TS;
                        j -> DIST = i -> DIST + 1;
                    }
                }
            }
        }
        else
        {
            /* grow sink tree */
            for (a_for=a_for_first; a_for<a_for_last; a_for++)
            if (a_for->r_rev_cap)
            {
                j = NEIGHBOR_NODE(i, a_for -> shift);
                if (!j->parent)
                {
                    j -> is_sink = 1;
                    j -> parent = MAKE_ODD(a_for);
                    j -> TS = i -> TS;
                    j -> DIST = i -> DIST + 1;
                    set_active(j);
                }
                else if (!j->is_sink)
                {
                    s_start = j;
                    t_start = i;
                    cap_middle     = & ( a_for -> r_rev_cap );
                    rev_cap_middle = & ( a_for -> r_cap );
                    break;
                }
                else if (j->TS <= i->TS &&
                         j->DIST > i->DIST)
                {
                    /* heuristic - trying to make the distance from j to the sink shorter */
                    j -> parent = MAKE_ODD(a_for);
                    j -> TS = i -> TS;
                    j -> DIST = i -> DIST + 1;
                }
            }
            for (a_rev=a_rev_first; a_rev<a_rev_last; a_rev++)
            {
                a_for = a_rev -> sister;
                if (a_for->r_cap)
                {
                    j = NEIGHBOR_NODE_REV(i, a_for -> shift);
                    if (!j->parent)
                    {
                        j -> is_sink = 1;
                        j -> parent = a_for;
                        j -> TS = i -> TS;
                        j -> DIST = i -> DIST + 1;
                        set_active(j);
                    }
                    else if (!j->is_sink)
                    {
                        s_start = j;
                        t_start = i;
                        cap_middle     = & ( a_for -> r_cap );
                        rev_cap_middle = & ( a_for -> r_rev_cap );
                        break;
                    }
                    else if (j->TS <= i->TS &&
                             j->DIST > i->DIST)
                    {
                        /* heuristic - trying to make the distance from j to the sink shorter */
                        j -> parent = a_for;
                        j -> TS = i -> TS;
                        j -> DIST = i -> DIST + 1;
                    }
                }
            }
        }

        TIME ++;

        if (s_start)
        {
            i -> next = i; /* set active flag */
            current_node = i;

            /* augmentation */
            augment(s_start, t_start, cap_middle, rev_cap_middle);
            /* augmentation end */

            /* adoption */
            while ((np=orphan_first))
            {
                np_next = np -> next;
                np -> next = NULL;

                while ((np=orphan_first))
                {
                    orphan_first = np -> next;
                    i = np -> ptr;
                    nodeptr_block -> Delete(np);
                    if (!orphan_first) orphan_last = NULL;
                    if (i->is_sink) process_sink_orphan(i);
                    else            process_source_orphan(i);
                }

                orphan_first = np_next;
            }
            /* adoption end */
        }
        else current_node = NULL;
    }

    delete nodeptr_block;

    return flow;
}