bool ON_Circle::Create( // circle through three 3d points const ON_3dPoint& P, const ON_3dPoint& Q, const ON_3dPoint& R ) { ON_3dPoint C; ON_3dVector X, Y, Z; // return ( radius > 0.0 && plane.IsValid() ); //m_point[0] = P; //m_point[1] = Q; //m_point[2] = R; // get normal bool rc = Z.PerpendicularTo( P, Q, R ); // get center as the intersection of 3 planes // ON_Plane plane0( P, Z ); ON_Plane plane1( 0.5*(P+Q), P-Q ); ON_Plane plane2( 0.5*(R+Q), R-Q ); if ( !ON_Intersect( plane0, plane1, plane2, C ) ) rc = false; X = P - C; radius = X.Length(); if ( radius == 0.0 ) rc = false; X.Unitize(); Y = ON_CrossProduct( Z, X ); Y.Unitize(); plane.origin = C; plane.xaxis = X; plane.yaxis = Y; plane.zaxis = Z; plane.UpdateEquation(); return rc; }
static void test_psi(ON_3dPoint &p, ON_Surface &s) { ON_wString wstr; ON_TextLog textlog(wstr); ON_ClassArray<ON_PX_EVENT> x; // Use default tolerance ON_Intersect(p, s, x); // XXX: How to simply show a surface? bu_log("(%f,%f,%f) and a surface:\n", p[0], p[1], p[2]); if (x.Count() == 0) { bu_log("No intersection.\n"); } else { for (int i = 0; i < x.Count(); i++) x[i].Dump(textlog); ON_String str(wstr); bu_log(str.Array()); } bu_log("\n\n"); }
static void test_ppi(ON_3dPoint &p1, ON_3dPoint &p2) { ON_wString wstr; ON_TextLog textlog(wstr); ON_ClassArray<ON_PX_EVENT> x; // Use default tolerance ON_Intersect(p1, p2, x); bu_log("(%f,%f,%f) and (%f,%f,%f):\n", p1[0], p1[1], p1[2], p2[0], p2[1], p2[2]); if (x.Count() == 0) { bu_log("No intersection.\n"); } else { for (int i = 0; i < x.Count(); i++) x[i].Dump(textlog); ON_String str(wstr); bu_log(str.Array()); } bu_log("\n\n"); }
double ON_Line::MinimumDistanceTo( const ON_Line& L ) const { ON_3dPoint A, B; double a, b, t, x, d; bool bCheckA, bCheckB; bool bGoodX = ON_Intersect(*this,L,&a,&b); bCheckA = true; if ( a < 0.0) a = 0.0; else if (a > 1.0) a = 1.0; else bCheckA=!bGoodX; bCheckB = true; if ( b < 0.0) b = 0.0; else if (b > 1.0) b = 1.0; else bCheckB=!bGoodX; A = PointAt(a); B = L.PointAt(b); d = A.DistanceTo(B); if ( bCheckA ) { L.ClosestPointTo(A,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; x = L.PointAt(t).DistanceTo(A); if ( x < d ) d = x; } if ( bCheckB ) { ClosestPointTo(B,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; x = PointAt(t).DistanceTo(B); if (x < d ) d = x; } return d; }
static void test_pci(ON_3dPoint &p, ON_Curve &c) { ON_wString wstr; ON_TextLog textlog(wstr); ON_ClassArray<ON_PX_EVENT> x; // Use default tolerance ON_Intersect(p, c, x); ON_3dPoint start = c.PointAtStart(); ON_3dPoint end = c.PointAtEnd(); bu_log("(%f,%f,%f) and [(%f,%f,%f) to (%f,%f,%f)]:\n", p[0], p[1], p[2], start[0], start[1], start[2], end[0], end[1], end[2]); if (x.Count() == 0) { bu_log("No intersection.\n"); } else { for (int i = 0; i < x.Count(); i++) x[i].Dump(textlog); ON_String str(wstr); bu_log(str.Array()); } bu_log("\n\n"); }
int ON_Intersect( const ON_Line& line, const ON_Arc& arc, double* line_t0, ON_3dPoint& arc_point0, double* line_t1, ON_3dPoint& arc_point1 ) { ON_Circle c = arc; ON_3dPoint p[2]; double t[2], a[2], s; ON_BOOL32 b[2] = {false,false}; int i, xcnt = ON_Intersect( line, c, &t[0], p[0], &t[1], p[1] ); if ( xcnt > 0 ) { // make sure points are on the arc; ON_Interval arc_domain = arc.DomainRadians(); for ( i = 0; i < xcnt; i++ ) { b[i] = c.ClosestPointTo(p[i], &a[i]); if ( b[i] ) { s = arc_domain.NormalizedParameterAt(a[i]); if ( s < 0.0 ) { if ( s >= -ON_SQRT_EPSILON ) { a[i] = arc_domain[0]; p[i] = c.PointAt(a[i]); b[i] = line.ClosestPointTo( p[i], &t[i] ); } else b[i] = false; } else if ( s > 1.0 ) { if ( s <= 1.0+ON_SQRT_EPSILON ) { a[i] = arc_domain[1]; p[i] = c.PointAt(a[i]); b[i] = line.ClosestPointTo( p[i], &t[i] ); } else b[i] = false; } } } if ( !b[0] && !b[1] ) xcnt = 0; if ( xcnt == 2 ) { if ( !b[1] ) xcnt = 1; if ( !b[0] ) { xcnt = 1; b[0] = b[1]; t[0] = t[1]; a[0] = a[1]; p[0] = p[1]; b[1] = 0; } if ( xcnt == 2 && t[0] == t[1] ) { xcnt = 1; b[1] = 0; ON_3dPoint q = line.PointAt(t[0]); if ( p[0].DistanceTo(q) > p[1].DistanceTo(q) ) { a[0] = a[1]; t[0] = t[1]; p[0] = p[1]; } } } if ( xcnt == 1 && !b[0] ) xcnt = 0; if ( xcnt >= 1 ) { if ( line_t0 ) *line_t0 = t[0]; arc_point0 = p[0]; } if ( xcnt == 2 ) { if ( line_t1 ) *line_t1 = t[1]; arc_point1 = p[1]; } } return xcnt; }
int ON_Intersect( // returns 0 = no intersections, // 1 = one intersection, // 2 = 2 intersections // 3 = line lies on cylinder // If 0 is returned, first point is point // on line closest to cylinder and 2nd point is the point // on the sphere closest to the line. // If 1 is returned, first point is obtained by evaluating // the line and the second point is obtained by evaluating // the cylinder. const ON_Line& line, const ON_Cylinder& cylinder, // if cylinder.height[0]==cylinder.height[1], // then infinite cyl is used. Otherwise // finite cyl is used. ON_3dPoint& A, ON_3dPoint& B // intersection point(s) returned here ) { ON_BOOL32 bFiniteCyl = true; int rc = 0; const double cylinder_radius = fabs(cylinder.circle.radius); double tol = cylinder_radius*ON_SQRT_EPSILON; if ( tol < ON_ZERO_TOLERANCE ) tol = ON_ZERO_TOLERANCE; ON_Line axis; axis.from = cylinder.circle.plane.origin + cylinder.height[0]*cylinder.circle.plane.zaxis; axis.to = cylinder.circle.plane.origin + cylinder.height[1]*cylinder.circle.plane.zaxis; if ( axis.Length() <= tol ) { axis.to = cylinder.circle.plane.origin + cylinder.circle.plane.zaxis; bFiniteCyl = false; } //ON_BOOL32 bIsParallel = false; double line_t, axis_t; if ( !ON_Intersect(line,axis,&line_t,&axis_t) ) { axis.ClosestPointTo( cylinder.circle.plane.origin, &axis_t ); line.ClosestPointTo( cylinder.circle.plane.origin, &line_t ); } ON_3dPoint line_point = line.PointAt(line_t); ON_3dPoint axis_point = axis.PointAt(axis_t); double d = line_point.DistanceTo(axis_point); if ( bFiniteCyl ) { if ( axis_t < 0.0 ) axis_t = 0.0; else if ( axis_t > 1.0 ) axis_t = 1.0; axis_point = axis.PointAt(axis_t); } if ( d >= cylinder_radius-tol) { rc = ( d <= cylinder_radius+tol ) ? 1 : 0; A = line_point; ON_3dVector V = line_point - axis_point; if ( bFiniteCyl ) { V = V - (V*cylinder.circle.plane.zaxis)*cylinder.circle.plane.zaxis; } V.Unitize(); B = axis_point + cylinder_radius*V; if ( rc == 1 ) { // check for overlap ON_3dPoint P = axis.ClosestPointTo(line.from); d = P.DistanceTo(line.from); if ( fabs(d-cylinder_radius) <= tol ) { P = axis.ClosestPointTo(line.to); d = P.DistanceTo(line.to); if ( fabs(d-cylinder_radius) <= tol ) { rc = 3; A = cylinder.ClosestPointTo(line.from); B = cylinder.ClosestPointTo(line.to); } } } } else { // transform to coordinate system where equation of cyl // is x^2 + y^2 = R^2 and solve for line parameter(s). ON_Xform xform; xform.Rotation( cylinder.circle.plane, ON_xy_plane ); ON_Line L = line; L.Transform(xform); const double x0 = L.from.x; const double x1 = L.to.x; const double x1mx0 = x1-x0; double ax = x1mx0*x1mx0; double bx = 2.0*x1mx0*x0; double cx = x0*x0; const double y0 = L.from.y; const double y1 = L.to.y; const double y1my0 = y1-y0; double ay = y1my0*y1my0; double by = 2.0*y1my0*y0; double cy = y0*y0; double t0, t1; int qerc = ON_SolveQuadraticEquation(ax+ay, bx+by, cx+cy-cylinder_radius*cylinder_radius, &t0,&t1); if ( qerc == 2 ) { // complex roots - ignore (tiny) imaginary part caused by computational noise. t1 = t0; } A = cylinder.ClosestPointTo(line.PointAt(t0)); B = cylinder.ClosestPointTo(line.PointAt(t1)); d = A.DistanceTo(B); if ( d <= ON_ZERO_TOLERANCE ) { A = line_point; ON_3dVector V = line_point - axis_point; if ( bFiniteCyl ) { V = V - (V*cylinder.circle.plane.zaxis)*cylinder.circle.plane.zaxis; } V.Unitize(); B = axis_point + cylinder_radius*V; rc = 1; } else rc = 2; } return rc; }
bool ON_Line::IsFartherThan( double d, const ON_Line& L ) const { ON_3dPoint A, B; double a, b, t, x; bool bCheckA, bCheckB; a = from.x; if (to.x < a) {b=a; a = to.x;} else b = to.x; if ( b+d < L.from.x && b+d < L.to.x ) return true; if ( a-d > L.from.x && a-d > L.to.x ) return true; a = from.y; if (to.y < a) {b=a; a = to.y;} else b = to.y; if ( b+d < L.from.y && b+d < L.to.y ) return true; if ( a-d > L.from.y && a-d > L.to.y ) return true; a = from.z; if (to.z < a) {b=a; a = to.z;} else b = to.z; if ( b+d < L.from.z && b+d < L.to.z ) return true; if ( a-d > L.from.z && a-d > L.to.z ) return true; if ( !ON_Intersect(*this,L,&a,&b) ) { // lines are parallel or anti parallel if ( Direction()*L.Direction() >= 0.0 ) { // lines are parallel a = 0.0; L.ClosestPointTo(from,&b); // If ( b >= 0.0), then this->from and L(b) are a pair of closest points. if ( b < 0.0 ) { // Othersise L.from and this(a) are a pair of closest points. b = 0.0; ClosestPointTo(L.from,&a); } } else { // lines are anti parallel a = 1.0; L.ClosestPointTo(to,&b); // If ( b >= 0.0), then this->to and L(b) are a pair of closest points. if ( b < 0.0 ) { // Othersise L.to and this(a) are a pair of closest points. b = 0.0; ClosestPointTo(L.from,&a); } } } A = PointAt(a); B = L.PointAt(b); x = A.DistanceTo(B); if (x > d) return true; bCheckA = true; if ( a < 0.0) a = 0.0; else if (a > 1.0) a = 1.0; else bCheckA=false; if (bCheckA ) { A = PointAt(a); L.ClosestPointTo(A,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; x = L.PointAt(t).DistanceTo(A); } bCheckB = true; if ( b < 0.0) b = 0.0; else if (b > 1.0) b = 1.0; else bCheckB=false; if ( bCheckB ) { B = L.PointAt(b); ClosestPointTo(B,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; t = PointAt(t).DistanceTo(B); if ( bCheckA ) { if ( t<x ) x = t; } else { x = t; } } return (x > d); }