// XXX: initCL should be removed from libosd
void
OsdClKernelDispatcher::initCL() {

    cl_int ciErrNum;

    cl_platform_id cpPlatform = 0;
    cl_uint num_platforms;
    ciErrNum = clGetPlatformIDs(0, NULL, &num_platforms);
    if (ciErrNum != CL_SUCCESS) {
        OSD_ERROR("Error %i in clGetPlatformIDs call.\n", ciErrNum);
        exit(1);
    }
    if (num_platforms == 0) {
        OSD_ERROR("No OpenCL platform found.\n");
        exit(1);
    }
    cl_platform_id *clPlatformIDs;
    clPlatformIDs = new cl_platform_id[num_platforms];
    ciErrNum = clGetPlatformIDs(num_platforms, clPlatformIDs, NULL);
    char chBuffer[1024];
    for (cl_uint i = 0; i < num_platforms; ++i) {
        ciErrNum = clGetPlatformInfo(clPlatformIDs[i], CL_PLATFORM_NAME, 1024, chBuffer,NULL);
        if (ciErrNum == CL_SUCCESS) {
            cpPlatform = clPlatformIDs[i];
        }
    }
    // -------------
    clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &_clDevice, NULL);

#if defined(_WIN32)
    cl_context_properties props[] = {
        CL_GL_CONTEXT_KHR, (cl_context_properties)wglGetCurrentContext(),
        CL_WGL_HDC_KHR, (cl_context_properties)wglGetCurrentDC(),
        CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform,
        0
    };
#elif defined(__APPLE__)
    CGLContextObj kCGLContext = CGLGetCurrentContext();
    CGLShareGroupObj kCGLShareGroup = CGLGetShareGroup(kCGLContext);
    cl_context_properties props[] = {
        CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE, (cl_context_properties)kCGLShareGroup,
        0
    };
#else
    cl_context_properties props[] = {
        CL_GL_CONTEXT_KHR, (cl_context_properties)glXGetCurrentContext(),
        CL_GLX_DISPLAY_KHR, (cl_context_properties)glXGetCurrentDisplay(),
        CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform,
        0
    };
#endif

    // XXX context creation should be moved to client code
    _clContext = clCreateContext(props, 1, &_clDevice, NULL, NULL, &ciErrNum);
    CL_CHECK_ERROR(ciErrNum, "clCreateContext\n");

    _clQueue = clCreateCommandQueue(_clContext, _clDevice, 0, &ciErrNum);
    CL_CHECK_ERROR(ciErrNum, "clCreateCommandQueue\n");
}
bool
OsdClKernelDispatcher::ClKernel::Compile(cl_context clContext, int numVertexElements, int numVaryingElements) {

    cl_int ciErrNum;

    _numVertexElements = numVertexElements;
    _numVaryingElements = numVaryingElements;

    char constantDefine[256];
    snprintf(constantDefine, 256, "#define NUM_VERTEX_ELEMENTS %d\n"
             "#define NUM_VARYING_ELEMENTS %d\n", numVertexElements, numVaryingElements);

    const char *sources[] = { constantDefine, clSource };

    _clProgram = clCreateProgramWithSource(clContext, 2, sources, 0, &ciErrNum);
    CL_CHECK_ERROR(ciErrNum, "clCreateProgramWithSource\n");

    ciErrNum = clBuildProgram(_clProgram, 0, NULL, NULL, NULL, NULL);
    if (ciErrNum != CL_SUCCESS) {
        OSD_ERROR("ERROR in clBuildProgram %d\n", ciErrNum);
        char cBuildLog[10240];
        clGetProgramBuildInfo(_clProgram, _clDevice, CL_PROGRAM_BUILD_LOG,
                              sizeof(cBuildLog), cBuildLog, NULL);
        OSD_ERROR(cBuildLog);
        return false;
    }

    // -------
    _clBilinearEdge   = buildKernel(_clProgram, "computeBilinearEdge");
    _clBilinearVertex = buildKernel(_clProgram, "computeBilinearVertex");
    _clCatmarkFace    = buildKernel(_clProgram, "computeFace");
    _clCatmarkEdge    = buildKernel(_clProgram, "computeEdge");
    _clCatmarkVertexA = buildKernel(_clProgram, "computeVertexA");
    _clCatmarkVertexB = buildKernel(_clProgram, "computeVertexB");
    _clLoopEdge       = buildKernel(_clProgram, "computeEdge");
    _clLoopVertexA    = buildKernel(_clProgram, "computeVertexA");
    _clLoopVertexB    = buildKernel(_clProgram, "computeLoopVertexB");

    return true;
}
Beispiel #3
0
bool
OsdMesh::Create(OsdHbrMesh *hbrMesh, int level, int kernel, int exact, std::vector<int> * remap) {

    if (_dispatcher)
        delete _dispatcher;
    _dispatcher = OsdKernelDispatcher::CreateKernelDispatcher(level, kernel);

    if (not _dispatcher) {
        OSD_ERROR("Unknown kernel %d\n", kernel);
        return false;
    }

    _level = level;
    _exact = exact;

    // create Far mesh
    OSD_DEBUG("Create MeshFactory\n");

    FarMeshFactory<OsdVertex> meshFactory(hbrMesh, _level);

    _farMesh = meshFactory.Create(_dispatcher);

    OSD_DEBUG("PREP: NumCoarseVertex = %d\n", _farMesh->GetNumCoarseVertices());
    OSD_DEBUG("PREP: NumVertex = %d\n", _farMesh->GetNumVertices());

    createTables( _farMesh->GetSubdivision() );

    FarVertexEditTables<OsdVertex> const *editTables = _farMesh->GetVertexEdit();
    if (editTables)
        createEditTables( editTables );

    // copy the remapping table if the client needs to remap vertex indices from
    // Osd to Hbr for comparison / regression purposes.
    if (remap)
        (*remap)=meshFactory.GetRemappingTable();

    return true;
}
Beispiel #4
0
OsdHbrMesh * 
ConvertToHBR( int nVertices,
              std::vector<int>   const & faceVertCounts,
              std::vector<int>   const & faceIndices,
              std::vector<int>   const & vtxCreaseIndices,
              std::vector<double> const & vtxCreases,
              std::vector<int>   const & edgeCrease1Indices,  // face index, local edge index
              std::vector<float> const & edgeCreases1,
              std::vector<int>   const & edgeCrease2Indices,  // 2 vertex indices (Maya friendly)
              std::vector<double> const & edgeCreases2,
              OsdHbrMesh::InterpolateBoundaryMethod interpBoundary,
              HbrMeshUtil::SchemeType scheme,
              bool usingPtex,
              FVarDataDesc const * fvarDesc,
              std::vector<float> const * fvarData
            )
{

    static OpenSubdiv::HbrBilinearSubdivision<OpenSubdiv::OsdVertex> _bilinear;
    static OpenSubdiv::HbrLoopSubdivision<OpenSubdiv::OsdVertex> _loop;
    static OpenSubdiv::HbrCatmarkSubdivision<OpenSubdiv::OsdVertex> _catmark;

    // Build HBR mesh with/without face varying data, according to input data.
    // If a face-varying descriptor is passed in its memory needs to stay 
    // alive as long as this hbrMesh is alive (for indices and widths arrays). 
    OsdHbrMesh *hbrMesh;
    if ( fvarDesc )
    {
        if (scheme == HbrMeshUtil::kCatmark)
            hbrMesh = new OsdHbrMesh(&_catmark,  fvarDesc->getCount(), 
                                                 fvarDesc->getIndices(), 
                                                 fvarDesc->getWidths(), 
                                                 fvarDesc->getTotalWidth());
        else if (scheme == HbrMeshUtil::kLoop)
            hbrMesh = new OsdHbrMesh(&_loop,     fvarDesc->getCount(), 
                                                 fvarDesc->getIndices(), 
                                                 fvarDesc->getWidths(), 
                                                 fvarDesc->getTotalWidth());
        else 
            hbrMesh = new OsdHbrMesh(&_bilinear, fvarDesc->getCount(),
                                                 fvarDesc->getIndices(), 
                                                 fvarDesc->getWidths(), 
                                                 fvarDesc->getTotalWidth());
    }
    else
    {
        if (scheme == HbrMeshUtil::kCatmark)
            hbrMesh = new OsdHbrMesh(&_catmark);
        else if (scheme == HbrMeshUtil::kLoop)
            hbrMesh = new OsdHbrMesh(&_loop);
        else
            hbrMesh = new OsdHbrMesh(&_bilinear);
    }


    // create empty verts: actual vertices initialized in UpdatePoints();
    OpenSubdiv::OsdVertex v;
    for (int i = 0; i < nVertices; ++i) {
        hbrMesh->NewVertex(i, v);
    }

    std::vector<int> vIndex;
    int nFaces = (int)faceVertCounts.size();
    int fvcOffset = 0;          // face-vertex count offset
    int ptxIdx = 0;

    for (int fi = 0; fi < nFaces; ++fi) 
    {
        int nFaceVerts = faceVertCounts[fi];
        vIndex.resize(nFaceVerts);

        bool valid = true;
        for (int fvi = 0; fvi < nFaceVerts; ++fvi) 
        {
            vIndex[fvi] = faceIndices[fvi + fvcOffset];
            int vNextIndex = faceIndices[(fvi+1) % nFaceVerts + fvcOffset];

            // check for non-manifold face
            OsdHbrVertex * origin = hbrMesh->GetVertex(vIndex[fvi]);
            OsdHbrVertex * destination = hbrMesh->GetVertex(vNextIndex);
            if (!origin || !destination) {
                OSD_ERROR("ERROR : An edge was specified that connected a nonexistent vertex");
                valid = false;
            }

            if (origin == destination) {
                OSD_ERROR("ERROR : An edge was specified that connected a vertex to itself");
                valid = false;
            }

            OsdHbrHalfedge * opposite = destination->GetEdge(origin);
            if (opposite && opposite->GetOpposite()) {
                OSD_ERROR("ERROR : A non-manifold edge incident to more than 2 faces was found");
                valid = false;
            }

            if (origin->GetEdge(destination)) {
                OSD_ERROR("ERROR : An edge connecting two vertices was specified more than once. "
                          "It's likely that an incident face was flipped");
                valid = false;
            }
        }

        if ( valid ) 
        {
            if (scheme == HbrMeshUtil::kLoop) {
                // triangulate
                int triangle[3];
                triangle[0] = vIndex[0];
                for (int fvi = 2; fvi < nFaceVerts; ++fvi) {
                    triangle[1] = vIndex[fvi-1];
                    triangle[2] = vIndex[fvi];
                    hbrMesh->NewFace(3, triangle, 0);
                }
                // ptex not fully implemented for loop, yet
                // fvar not fully implemented for loop, yet

            } else {

                // bilinear not entirely implemented

                OsdHbrFace *face = hbrMesh->NewFace(nFaceVerts, &(vIndex[0]), 0);

                if (usingPtex) {
                    face->SetPtexIndex(ptxIdx);
                    ptxIdx += (nFaceVerts == 4) ? 1 : nFaceVerts;
                }

                if (fvarData) {
                    int fvarWidth = hbrMesh->GetTotalFVarWidth();
                    const float *faceData = &(*fvarData)[ fvcOffset*fvarWidth ];
                    for(int fvi=0; fvi<nFaceVerts; ++fvi)
                    {
                        OsdHbrVertex *v = hbrMesh->GetVertex( vIndex[fvi] );
                        OsdHbrFVarData& fvarData = v->GetFVarData(face);
                        if ( ! fvarData.IsInitialized() )
                        {
                            fvarData.SetAllData( fvarWidth, faceData );
                        }
                        else if (!fvarData.CompareAll(fvarWidth, faceData))
                        {
                            OsdHbrFVarData& fvarData = v->NewFVarData(face);
                            fvarData.SetAllData( fvarWidth, faceData );
                        }

                        // advance pointer to next set of face-varying data
                        faceData += fvarWidth;
                    }
                }
            }
        } else {
            OSD_ERROR("Face %d will be ignored\n", fi);
        }

        fvcOffset += nFaceVerts;
    }

    // Assign boundary interpolation methods
    hbrMesh->SetInterpolateBoundaryMethod(interpBoundary);
    if ( fvarDesc ) 
        hbrMesh->SetFVarInterpolateBoundaryMethod(fvarDesc->getInterpBoundary());

    // XXX hbr behavior doesn't match naming of k_Interpolate constants
    // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryEdgeAndCorner);   // no for cube
    // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryNone);            // yes for cube
    // hbrMesh->SetFVarInterpolateBoundaryMethod(OsdHbrMesh::k_InterpolateBoundaryEdgeOnly);


    // set edge crease in two different indexing way
    size_t nEdgeCreases = edgeCreases1.size();
    for (size_t i = 0; i < nEdgeCreases; ++i) {
        if (edgeCreases1[i] <= 0.0)
            continue;

        OsdHbrHalfedge * e = hbrMesh->
            GetFace(edgeCrease1Indices[i*2])->
            GetEdge(edgeCrease1Indices[i*2+1]);

        if (!e) {
            OSD_ERROR("Can't find edge (face %d edge %d)\n",
                      edgeCrease1Indices[i*2], edgeCrease1Indices[i*2+1]);
            continue;
        }
        e->SetSharpness(static_cast<float>(edgeCreases1[i]));
    }
    nEdgeCreases = edgeCreases2.size();
    for (size_t i = 0; i < nEdgeCreases; ++i) {
        if (edgeCreases2[i] <= 0.0)
            continue;

        OsdHbrVertex * v0 = hbrMesh->GetVertex(edgeCrease2Indices[i*2]);
        OsdHbrVertex * v1 = hbrMesh->GetVertex(edgeCrease2Indices[i*2+1]);
        OsdHbrHalfedge * e = NULL;

        if (v0 && v1)
            if (!(e = v0->GetEdge(v1)))
                e = v1->GetEdge(v0);
        if (!e) {
            OSD_ERROR("ERROR can't find edge");
            continue;
        }
        e->SetSharpness(static_cast<float>(edgeCreases2[i]));
    }

    // set corner
    {
        size_t nVertexCreases = vtxCreases.size();
        for (size_t i = 0; i < nVertexCreases; ++i) {
            if (vtxCreases[i] <= 0.0)
                continue;
            OsdHbrVertex * v = hbrMesh->GetVertex(vtxCreaseIndices[i]);
            if (!v) {
                OSD_ERROR("Can't find vertex %d\n", vtxCreaseIndices[i]);
                continue;
            }
            v->SetSharpness(static_cast<float>(vtxCreases[i]));
        }
    }

    hbrMesh->Finish();
    return hbrMesh;
}