Beispiel #1
0
/*
 * PgArchiverMain
 *
 *	The argc/argv parameters are valid only in EXEC_BACKEND case.  However,
 *	since we don't use 'em, it hardly matters...
 */
NON_EXEC_STATIC void
PgArchiverMain(int argc, char *argv[])
{
	/*
	 * Ignore all signals usually bound to some action in the postmaster,
	 * except for SIGHUP, SIGTERM, SIGUSR1, SIGUSR2, and SIGQUIT.
	 */
	pqsignal(SIGHUP, ArchSigHupHandler);
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, ArchSigTermHandler);
	pqsignal(SIGQUIT, pgarch_exit);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, pgarch_waken);
	pqsignal(SIGUSR2, pgarch_waken_stop);
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);
	PG_SETMASK(&UnBlockSig);

	/*
	 * Identify myself via ps
	 */
	init_ps_display("archiver process", "", "", "");

	pgarch_MainLoop();

	exit(0);
}
Beispiel #2
0
/*
 * WalSndQuickDieHandler() occurs when signalled SIGQUIT by the postmaster.
 *
 * Some backend has bought the farm,
 * so we need to stop what we're doing and exit.
 */
static void
WalSndQuickDieHandler(SIGNAL_ARGS)
{
	PG_SETMASK(&BlockSig);

	/*
	 * We DO NOT want to run proc_exit() callbacks -- we're here because
	 * shared memory may be corrupted, so we don't want to try to clean up our
	 * transaction.  Just nail the windows shut and get out of town.  Now that
	 * there's an atexit callback to prevent third-party code from breaking
	 * things by calling exit() directly, we have to reset the callbacks
	 * explicitly to make this work as intended.
	 */
	on_exit_reset();

	/*
	 * Note we do exit(2) not exit(0).	This is to force the postmaster into a
	 * system reset cycle if some idiot DBA sends a manual SIGQUIT to a random
	 * backend.  This is necessary precisely because we don't clean up our
	 * shared memory state.  (The "dead man switch" mechanism in pmsignal.c
	 * should ensure the postmaster sees this as a crash, too, but no harm in
	 * being doubly sure.)
	 */
	exit(2);
}
Beispiel #3
0
/* Main entry point for walsender process */
int
WalSenderMain(void)
{
	MemoryContext walsnd_context;

	am_cascading_walsender = RecoveryInProgress();

	/* Create a per-walsender data structure in shared memory */
	InitWalSnd();

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 *
	 * XXX: we don't actually attempt error recovery in walsender, we just
	 * close the connection and exit.
	 */
	walsnd_context = AllocSetContextCreate(TopMemoryContext,
										   "Wal Sender",
										   ALLOCSET_DEFAULT_MINSIZE,
										   ALLOCSET_DEFAULT_INITSIZE,
										   ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(walsnd_context);

	/* Set up resource owner */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "walsender top-level resource owner");

	/* Unblock signals (they were blocked when the postmaster forked us) */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Use the recovery target timeline ID during recovery
	 */
	if (am_cascading_walsender)
		ThisTimeLineID = GetRecoveryTargetTLI();

	/* Tell the standby that walsender is ready for receiving commands */
	ReadyForQuery(DestRemote);

	/* Handle handshake messages before streaming */
	WalSndHandshake();

	/* Initialize shared memory status */
	{
		/* use volatile pointer to prevent code rearrangement */
		volatile WalSnd *walsnd = MyWalSnd;

		SpinLockAcquire(&walsnd->mutex);
		walsnd->sentPtr = sentPtr;
		SpinLockRelease(&walsnd->mutex);
	}

	SyncRepInitConfig();

	/* Main loop of walsender */
	return WalSndLoop();
}
Beispiel #4
0
/* ----------------------------------
 *	Startup Process main entry point
 * ----------------------------------
 */
void
StartupProcessMain(void)
{
	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us.
	 */
	pqsignal(SIGHUP, StartupProcSigHupHandler); /* reload config file */
	pqsignal(SIGINT, SIG_IGN);	/* ignore query cancel */
	pqsignal(SIGTERM, StartupProcShutdownHandler);		/* request shutdown */
	pqsignal(SIGQUIT, startupproc_quickdie);	/* hard crash time */
	InitializeTimeouts();		/* establishes SIGALRM handler */
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, StartupProcSigUsr1Handler);
	pqsignal(SIGUSR2, StartupProcTriggerHandler);

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/*
	 * Register timeouts needed for standby mode
	 */
	RegisterTimeout(STANDBY_DEADLOCK_TIMEOUT, StandbyDeadLockHandler);
	RegisterTimeout(STANDBY_TIMEOUT, StandbyTimeoutHandler);

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Do what we came for.
	 */
	StartupXLOG();

	/*
	 * Exit normally. Exit code 0 tells postmaster that we completed recovery
	 * successfully.
	 */
	proc_exit(0);
}
Beispiel #5
0
/*
 * resetTimers - disable process interval timers
 *
 * Testing has shown that fork on some systems doesn't clear timers as it should and
 * exec is subjected to *fatal* interruption by timers so the timers are disabled
 * before the fork is done.  Before resetting the interval timers, the all signals
 * are blocked.  After resetting the interval timers, the signal mask is restored.
 *
 * otimers: a pointer to an itmers struct to contain the old timer values.  If
 * 		NULL, the old timer valuess are not preserved.
 *
 * Errors from setitimer are not expected and are handled using Assert (as in
 * PGSempahoreLockTimed).
 */
void
resetTimers(struct itimers *otimers)
{
	int			err;
	struct itimerval xtimer;	/* Zero timer for disabling */
	struct itimerval *p_rtimer = NULL;	/* ITIMER_REAL */
	struct itimerval *p_vtimer = NULL;	/* ITIMER_VIRTUAL */
	struct itimerval *p_ptimer = NULL;	/* ITIMER_PROF */

	if (otimers != NULL)
	{
		p_rtimer = &otimers->rtimer;
		p_vtimer = &otimers->vtimer;
		p_ptimer = &otimers->ptimer;
	}

	/*
	 * Block signals while capturing timers.
	 */
	PG_SETMASK(&BlockSig);

	/*
	 * Disable all process interval timers preserving the old values if
	 * requested.
	 */
	timerclear(&xtimer.it_interval);
	timerclear(&xtimer.it_value);

	err = setitimer(ITIMER_REAL, &xtimer, p_rtimer);
	Assert(err == 0);

	err = setitimer(ITIMER_VIRTUAL, &xtimer, p_vtimer);
	Assert(err == 0);

	err = setitimer(ITIMER_REAL, &xtimer, p_ptimer);
	Assert(err == 0);

	/*
	 * Restore signal mask.
	 */
	PG_SETMASK(&UnBlockSig);
}
Beispiel #6
0
/* Main entry point for walsender process */
int
WalSenderMain(void)
{
	MemoryContext walsnd_context;

	if (RecoveryInProgress())
		ereport(FATAL,
				(errcode(ERRCODE_CANNOT_CONNECT_NOW),
				 errmsg("recovery is still in progress, can't accept WAL streaming connections")));

	/* Create a per-walsender data structure in shared memory */
	InitWalSnd();

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 *
	 * XXX: we don't actually attempt error recovery in walsender, we just
	 * close the connection and exit.
	 */
	walsnd_context = AllocSetContextCreate(TopMemoryContext,
										   "Wal Sender",
										   ALLOCSET_DEFAULT_MINSIZE,
										   ALLOCSET_DEFAULT_INITSIZE,
										   ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(walsnd_context);

	/* Unblock signals (they were blocked when the postmaster forked us) */
	PG_SETMASK(&UnBlockSig);

	/* Tell the standby that walsender is ready for receiving commands */
	ReadyForQuery(DestRemote);

	/* Handle handshake messages before streaming */
	WalSndHandshake();

	/* Initialize shared memory status */
	{
		/* use volatile pointer to prevent code rearrangement */
		volatile WalSnd *walsnd = MyWalSnd;

		SpinLockAcquire(&walsnd->mutex);
		walsnd->sentPtr = sentPtr;
		SpinLockRelease(&walsnd->mutex);
	}

	/* Main loop of walsender */
	return WalSndLoop();
}
Beispiel #7
0
/*
 * PgArchiverMain
 *
 *	The argc/argv parameters are valid only in EXEC_BACKEND case.  However,
 *	since we don't use 'em, it hardly matters...
 */
NON_EXEC_STATIC void
PgArchiverMain(int argc, char *argv[])
{
	IsUnderPostmaster = true;	/* we are a postmaster subprocess now */

	MyProcPid = getpid();		/* reset MyProcPid */

	MyStartTime = time(NULL);	/* record Start Time for logging */

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	InitializeLatchSupport();	/* needed for latch waits */

	InitLatch(&mainloop_latch); /* initialize latch used in main loop */

	/*
	 * Ignore all signals usually bound to some action in the postmaster,
	 * except for SIGHUP, SIGTERM, SIGUSR1, SIGUSR2, and SIGQUIT.
	 */
	pqsignal(SIGHUP, ArchSigHupHandler);
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, ArchSigTermHandler);
	pqsignal(SIGQUIT, pgarch_exit);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, pgarch_waken);
	pqsignal(SIGUSR2, pgarch_waken_stop);
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);
	PG_SETMASK(&UnBlockSig);

	/*
	 * Identify myself via ps
	 */
	init_ps_display("archiver process", "", "", "");

	pgarch_MainLoop();

	exit(0);
}
Beispiel #8
0
/*
 * bg_quickdie() occurs when signalled SIGQUIT by the postmaster.
 *
 * Some backend has bought the farm,
 * so we need to stop what we're doing and exit.
 */
static void
bg_quickdie(SIGNAL_ARGS)
{
	PG_SETMASK(&BlockSig);

	/*
	 * DO NOT proc_exit() -- we're here because shared memory may be
	 * corrupted, so we don't want to try to clean up our transaction. Just
	 * nail the windows shut and get out of town.
	 *
	 * Note we do exit(2) not exit(0).	This is to force the postmaster into a
	 * system reset cycle if some idiot DBA sends a manual SIGQUIT to a random
	 * backend.  This is necessary precisely because we don't clean up our
	 * shared memory state.
	 */
	exit(2);
}
Beispiel #9
0
/*
 * ServiceQuickDie() occurs when signalled SIGQUIT by the postmaster.
 *
 * Some backend has bought the farm,
 * so we need to stop what we're doing and exit.
 */
static void
ServiceQuickDie(SIGNAL_ARGS)
{
	PG_SETMASK(&BlockSig);

	ereport(LOG,
			(errmsg("terminating immediately")));


	/* DO ANY SPECIAL SERVICE QUICKDIE HANDLING HERE */

	/*
	 * NOTE: see MPP-9518, MPP-9396, we need to make sure the atexit()
	 * hooks get cleaned up before calling exit(). quickdie() knows how
	 * to do that.
	 */
	quickdie(PASS_SIGNAL_ARGS);
	/* not reached */
}
Beispiel #10
0
/*
 * PgArchiverMain
 *
 *	The argc/argv parameters are valid only in EXEC_BACKEND case.  However,
 *	since we don't use 'em, it hardly matters...
 */
NON_EXEC_STATIC void
PgArchiverMain(int argc, char *argv[])
{
	IsUnderPostmaster = true;	/* we are a postmaster subprocess now */

	MyProcPid = getpid();		/* reset MyProcPid */

	/* Lose the postmaster's on-exit routines */
	on_exit_reset();

	/*
	 * Ignore all signals usually bound to some action in the postmaster,
	 * except for SIGHUP, SIGUSR1 and SIGQUIT.
	 */
	pqsignal(SIGHUP, ArchSigHupHandler);
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, SIG_IGN);
	pqsignal(SIGQUIT, pgarch_exit);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, pgarch_waken);
	pqsignal(SIGUSR2, SIG_IGN);
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);
	PG_SETMASK(&UnBlockSig);

	/*
	 * Identify myself via ps
	 */
	init_ps_display("archiver process", "", "");
	set_ps_display("");

	pgarch_MainLoop();

	exit(0);
}
Beispiel #11
0
/*
 * Main entry point for syslogger process
 * argc/argv parameters are valid only in EXEC_BACKEND case.
 */
NON_EXEC_STATIC void
SysLoggerMain(int argc, char *argv[])
{
#ifndef WIN32
	char		logbuffer[READ_BUF_SIZE];
	int			bytes_in_logbuffer = 0;
#endif
	char	   *currentLogDir;
	char	   *currentLogFilename;
	int			currentLogRotationAge;
	pg_time_t	now;

	IsUnderPostmaster = true;	/* we are a postmaster subprocess now */

	MyProcPid = getpid();		/* reset MyProcPid */

	MyStartTime = time(NULL);	/* set our start time in case we call elog */
	now = MyStartTime;

#ifdef EXEC_BACKEND
	syslogger_parseArgs(argc, argv);
#endif   /* EXEC_BACKEND */

	am_syslogger = true;

	init_ps_display("logger process", "", "", "");

	/*
	 * If we restarted, our stderr is already redirected into our own input
	 * pipe.  This is of course pretty useless, not to mention that it
	 * interferes with detecting pipe EOF.	Point stderr to /dev/null. This
	 * assumes that all interesting messages generated in the syslogger will
	 * come through elog.c and will be sent to write_syslogger_file.
	 */
	if (redirection_done)
	{
		int			fd = open(DEVNULL, O_WRONLY, 0);

		/*
		 * The closes might look redundant, but they are not: we want to be
		 * darn sure the pipe gets closed even if the open failed.	We can
		 * survive running with stderr pointing nowhere, but we can't afford
		 * to have extra pipe input descriptors hanging around.
		 */
		close(fileno(stdout));
		close(fileno(stderr));
		if (fd != -1)
		{
			dup2(fd, fileno(stdout));
			dup2(fd, fileno(stderr));
			close(fd);
		}
	}

	/*
	 * Syslogger's own stderr can't be the syslogPipe, so set it back to text
	 * mode if we didn't just close it. (It was set to binary in
	 * SubPostmasterMain).
	 */
#ifdef WIN32
	else
		_setmode(_fileno(stderr), _O_TEXT);
#endif

	/*
	 * Also close our copy of the write end of the pipe.  This is needed to
	 * ensure we can detect pipe EOF correctly.  (But note that in the restart
	 * case, the postmaster already did this.)
	 */
#ifndef WIN32
	if (syslogPipe[1] >= 0)
		close(syslogPipe[1]);
	syslogPipe[1] = -1;
#else
	if (syslogPipe[1])
		CloseHandle(syslogPipe[1]);
	syslogPipe[1] = 0;
#endif

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(syslogger probably never has any
	 * child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	InitializeLatchSupport();	/* needed for latch waits */

	/* Initialize private latch for use by signal handlers */
	InitLatch(&sysLoggerLatch);

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * Note: we ignore all termination signals, and instead exit only when all
	 * upstream processes are gone, to ensure we don't miss any dying gasps of
	 * broken backends...
	 */

	pqsignal(SIGHUP, sigHupHandler);	/* set flag to read config file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, SIG_IGN);
	pqsignal(SIGQUIT, SIG_IGN);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, sigUsr1Handler);	/* request log rotation */
	pqsignal(SIGUSR2, SIG_IGN);

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	PG_SETMASK(&UnBlockSig);

#ifdef WIN32
	/* Fire up separate data transfer thread */
	InitializeCriticalSection(&sysloggerSection);
	EnterCriticalSection(&sysloggerSection);

	threadHandle = (HANDLE) _beginthreadex(NULL, 0, pipeThread, NULL, 0, NULL);
	if (threadHandle == 0)
		elog(FATAL, "could not create syslogger data transfer thread: %m");
#endif   /* WIN32 */

	/*
	 * Remember active logfile's name.  We recompute this from the reference
	 * time because passing down just the pg_time_t is a lot cheaper than
	 * passing a whole file path in the EXEC_BACKEND case.
	 */
	last_file_name = logfile_getname(first_syslogger_file_time, NULL);

	/* remember active logfile parameters */
	currentLogDir = pstrdup(Log_directory);
	currentLogFilename = pstrdup(Log_filename);
	currentLogRotationAge = Log_RotationAge;
	/* set next planned rotation time */
	set_next_rotation_time();

	/* main worker loop */
	for (;;)
	{
		bool		time_based_rotation = false;
		int			size_rotation_for = 0;
		long		cur_timeout;
		int			cur_flags;

#ifndef WIN32
		int			rc;
#endif

		/* Clear any already-pending wakeups */
		ResetLatch(&sysLoggerLatch);

		/*
		 * Process any requests or signals received recently.
		 */
		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);

			/*
			 * Check if the log directory or filename pattern changed in
			 * postgresql.conf. If so, force rotation to make sure we're
			 * writing the logfiles in the right place.
			 */
			if (strcmp(Log_directory, currentLogDir) != 0)
			{
				pfree(currentLogDir);
				currentLogDir = pstrdup(Log_directory);
				rotation_requested = true;

				/*
				 * Also, create new directory if not present; ignore errors
				 */
				mkdir(Log_directory, S_IRWXU);
			}
			if (strcmp(Log_filename, currentLogFilename) != 0)
			{
				pfree(currentLogFilename);
				currentLogFilename = pstrdup(Log_filename);
				rotation_requested = true;
			}

			/*
			 * If rotation time parameter changed, reset next rotation time,
			 * but don't immediately force a rotation.
			 */
			if (currentLogRotationAge != Log_RotationAge)
			{
				currentLogRotationAge = Log_RotationAge;
				set_next_rotation_time();
			}

			/*
			 * If we had a rotation-disabling failure, re-enable rotation
			 * attempts after SIGHUP, and force one immediately.
			 */
			if (rotation_disabled)
			{
				rotation_disabled = false;
				rotation_requested = true;
			}
		}

		if (Log_RotationAge > 0 && !rotation_disabled)
		{
			/* Do a logfile rotation if it's time */
			now = (pg_time_t) time(NULL);
			if (now >= next_rotation_time)
				rotation_requested = time_based_rotation = true;
		}

		if (!rotation_requested && Log_RotationSize > 0 && !rotation_disabled)
		{
			/* Do a rotation if file is too big */
			if (ftell(syslogFile) >= Log_RotationSize * 1024L)
			{
				rotation_requested = true;
				size_rotation_for |= LOG_DESTINATION_STDERR;
			}
			if (csvlogFile != NULL &&
				ftell(csvlogFile) >= Log_RotationSize * 1024L)
			{
				rotation_requested = true;
				size_rotation_for |= LOG_DESTINATION_CSVLOG;
			}
		}

		if (rotation_requested)
		{
			/*
			 * Force rotation when both values are zero. It means the request
			 * was sent by pg_rotate_logfile.
			 */
			if (!time_based_rotation && size_rotation_for == 0)
				size_rotation_for = LOG_DESTINATION_STDERR | LOG_DESTINATION_CSVLOG;
			logfile_rotate(time_based_rotation, size_rotation_for);
		}

		/*
		 * Calculate time till next time-based rotation, so that we don't
		 * sleep longer than that.	We assume the value of "now" obtained
		 * above is still close enough.  Note we can't make this calculation
		 * until after calling logfile_rotate(), since it will advance
		 * next_rotation_time.
		 *
		 * Also note that we need to beware of overflow in calculation of the
		 * timeout: with large settings of Log_RotationAge, next_rotation_time
		 * could be more than INT_MAX msec in the future.  In that case we'll
		 * wait no more than INT_MAX msec, and try again.
		 */
		if (Log_RotationAge > 0 && !rotation_disabled)
		{
			pg_time_t	delay;

			delay = next_rotation_time - now;
			if (delay > 0)
			{
				if (delay > INT_MAX / 1000)
					delay = INT_MAX / 1000;
				cur_timeout = delay * 1000L;	/* msec */
			}
			else
				cur_timeout = 0;
			cur_flags = WL_TIMEOUT;
		}
		else
		{
			cur_timeout = -1L;
			cur_flags = 0;
		}

		/*
		 * Sleep until there's something to do
		 */
#ifndef WIN32
		rc = WaitLatchOrSocket(&sysLoggerLatch,
							   WL_LATCH_SET | WL_SOCKET_READABLE | cur_flags,
							   syslogPipe[0],
							   cur_timeout);

		if (rc & WL_SOCKET_READABLE)
		{
			int			bytesRead;

			bytesRead = read(syslogPipe[0],
							 logbuffer + bytes_in_logbuffer,
							 sizeof(logbuffer) - bytes_in_logbuffer);
			if (bytesRead < 0)
			{
				if (errno != EINTR)
					ereport(LOG,
							(errcode_for_socket_access(),
							 errmsg("could not read from logger pipe: %m")));
			}
			else if (bytesRead > 0)
			{
				bytes_in_logbuffer += bytesRead;
				process_pipe_input(logbuffer, &bytes_in_logbuffer);
				continue;
			}
			else
			{
				/*
				 * Zero bytes read when select() is saying read-ready means
				 * EOF on the pipe: that is, there are no longer any processes
				 * with the pipe write end open.  Therefore, the postmaster
				 * and all backends are shut down, and we are done.
				 */
				pipe_eof_seen = true;

				/* if there's any data left then force it out now */
				flush_pipe_input(logbuffer, &bytes_in_logbuffer);
			}
		}
#else							/* WIN32 */

		/*
		 * On Windows we leave it to a separate thread to transfer data and
		 * detect pipe EOF.  The main thread just wakes up to handle SIGHUP
		 * and rotation conditions.
		 *
		 * Server code isn't generally thread-safe, so we ensure that only one
		 * of the threads is active at a time by entering the critical section
		 * whenever we're not sleeping.
		 */
		LeaveCriticalSection(&sysloggerSection);

		(void) WaitLatch(&sysLoggerLatch,
						 WL_LATCH_SET | cur_flags,
						 cur_timeout);

		EnterCriticalSection(&sysloggerSection);
#endif   /* WIN32 */

		if (pipe_eof_seen)
		{
			/*
			 * seeing this message on the real stderr is annoying - so we make
			 * it DEBUG1 to suppress in normal use.
			 */
			ereport(DEBUG1,
					(errmsg("logger shutting down")));

			/*
			 * Normal exit from the syslogger is here.	Note that we
			 * deliberately do not close syslogFile before exiting; this is to
			 * allow for the possibility of elog messages being generated
			 * inside proc_exit.  Regular exit() will take care of flushing
			 * and closing stdio channels.
			 */
			proc_exit(0);
		}
	}
}
Beispiel #12
0
/*
 * Main entry point for bgwriter process
 *
 * This is invoked from BootstrapMain, which has already created the basic
 * execution environment, but not enabled signals yet.
 */
void
BackgroundWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext bgwriter_context;

	BgWriterShmem->bgwriter_pid = MyProcPid;
	am_bg_writer = true;

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(bgwriter probably never has any
	 * child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
	 * system shutdown cycle, init will SIGTERM all processes at once.	We
	 * want to wait for the backends to exit, whereupon the postmaster will
	 * tell us it's okay to shut down (via SIGUSR2).
	 *
	 * SIGUSR1 is presently unused; keep it spare in case someday we want this
	 * process to participate in sinval messaging.
	 */
	pqsignal(SIGHUP, BgSigHupHandler);	/* set flag to read config file */
	pqsignal(SIGINT, ReqCheckpointHandler);		/* request checkpoint */
	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
	pqsignal(SIGQUIT, bg_quickdie);		/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN); /* reserve for sinval */
	pqsignal(SIGUSR2, ReqShutdownHandler);		/* request shutdown */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
#ifdef HAVE_SIGPROCMASK
	sigdelset(&BlockSig, SIGQUIT);
#else
	BlockSig &= ~(sigmask(SIGQUIT));
#endif

	/*
	 * Initialize so that first time-driven event happens at the correct time.
	 */
	last_checkpoint_time = last_xlog_switch_time = time(NULL);

	/*
	 * Create a resource owner to keep track of our resources (currently only
	 * buffer pins).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Background Writer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	bgwriter_context = AllocSetContextCreate(TopMemoryContext,
											 "Background Writer",
											 ALLOCSET_DEFAULT_MINSIZE,
											 ALLOCSET_DEFAULT_INITSIZE,
											 ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(bgwriter_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().	We don't have very many resources to worry
		 * about in bgwriter, but we do have LWLocks, buffers, and temp files.
		 */
		LWLockReleaseAll();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/* Warn any waiting backends that the checkpoint failed. */
		if (ckpt_active)
		{
			/* use volatile pointer to prevent code rearrangement */
			volatile BgWriterShmemStruct *bgs = BgWriterShmem;

			SpinLockAcquire(&bgs->ckpt_lck);
			bgs->ckpt_failed++;
			bgs->ckpt_done = bgs->ckpt_started;
			SpinLockRelease(&bgs->ckpt_lck);

			ckpt_active = false;
		}

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(bgwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(bgwriter_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Loop forever
	 */
	for (;;)
	{
		bool		do_checkpoint = false;
		int			flags = 0;
		time_t		now;
		int			elapsed_secs;

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (!PostmasterIsAlive(true))
			exit(1);

		/*
		 * Process any requests or signals received recently.
		 */
		AbsorbFsyncRequests();

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (checkpoint_requested)
		{
			checkpoint_requested = false;
			do_checkpoint = true;
			BgWriterStats.m_requested_checkpoints++;
		}
		if (shutdown_requested)
		{
			/*
			 * From here on, elog(ERROR) should end with exit(1), not send
			 * control back to the sigsetjmp block above
			 */
			ExitOnAnyError = true;
			/* Close down the database */
			ShutdownXLOG(0, 0);
			DumpFreeSpaceMap(0, 0);
			/* Normal exit from the bgwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Force a checkpoint if too much time has elapsed since the last one.
		 * Note that we count a timed checkpoint in stats only when this
		 * occurs without an external request, but we set the CAUSE_TIME flag
		 * bit even if there is also an external request.
		 */
		now = time(NULL);
		elapsed_secs = now - last_checkpoint_time;
		if (elapsed_secs >= CheckPointTimeout)
		{
			if (!do_checkpoint)
				BgWriterStats.m_timed_checkpoints++;
			do_checkpoint = true;
			flags |= CHECKPOINT_CAUSE_TIME;
		}

		/*
		 * Do a checkpoint if requested, otherwise do one cycle of
		 * dirty-buffer writing.
		 */
		if (do_checkpoint)
		{
			/* use volatile pointer to prevent code rearrangement */
			volatile BgWriterShmemStruct *bgs = BgWriterShmem;

			/*
			 * Atomically fetch the request flags to figure out what kind of a
			 * checkpoint we should perform, and increase the started-counter
			 * to acknowledge that we've started a new checkpoint.
			 */
			SpinLockAcquire(&bgs->ckpt_lck);
			flags |= bgs->ckpt_flags;
			bgs->ckpt_flags = 0;
			bgs->ckpt_started++;
			SpinLockRelease(&bgs->ckpt_lck);

			/*
			 * We will warn if (a) too soon since last checkpoint (whatever
			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
			 * since the last checkpoint start.  Note in particular that this
			 * implementation will not generate warnings caused by
			 * CheckPointTimeout < CheckPointWarning.
			 */
			if ((flags & CHECKPOINT_CAUSE_XLOG) &&
				elapsed_secs < CheckPointWarning)
				ereport(LOG,
						(errmsg("checkpoints are occurring too frequently (%d seconds apart)",
								elapsed_secs),
						 errhint("Consider increasing the configuration parameter \"checkpoint_segments\".")));

			/*
			 * Initialize bgwriter-private variables used during checkpoint.
			 */
			ckpt_active = true;
			ckpt_start_recptr = GetInsertRecPtr();
			ckpt_start_time = now;
			ckpt_cached_elapsed = 0;

			/*
			 * Do the checkpoint.
			 */
			CreateCheckPoint(flags);

			/*
			 * After any checkpoint, close all smgr files.	This is so we
			 * won't hang onto smgr references to deleted files indefinitely.
			 */
			smgrcloseall();

			/*
			 * Indicate checkpoint completion to any waiting backends.
			 */
			SpinLockAcquire(&bgs->ckpt_lck);
			bgs->ckpt_done = bgs->ckpt_started;
			SpinLockRelease(&bgs->ckpt_lck);

			ckpt_active = false;

			/*
			 * Note we record the checkpoint start time not end time as
			 * last_checkpoint_time.  This is so that time-driven checkpoints
			 * happen at a predictable spacing.
			 */
			last_checkpoint_time = now;
		}
		else
			BgBufferSync();

		/* Check for archive_timeout and switch xlog files if necessary. */
		CheckArchiveTimeout();

		/* Nap for the configured time. */
		BgWriterNap();
	}
}
Beispiel #13
0
/*
 * Main entry point for walwriter process
 *
 * This is invoked from BootstrapMain, which has already created the basic
 * execution environment, but not enabled signals yet.
 */
void
WalWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext walwriter_context;

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(walwriter probably never has any
	 * child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * We have no particular use for SIGINT at the moment, but seems
	 * reasonable to treat like SIGTERM.
	 */
	pqsignal(SIGHUP, WalSigHupHandler); /* set flag to read config file */
	pqsignal(SIGINT, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGTERM, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGQUIT, wal_quickdie);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN); /* reserve for ProcSignal */
	pqsignal(SIGUSR2, SIG_IGN); /* not used */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Create a resource owner to keep track of our resources (not clear that
	 * we need this, but may as well have one).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Writer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	walwriter_context = AllocSetContextCreate(TopMemoryContext,
											  "Wal Writer",
											  ALLOCSET_DEFAULT_MINSIZE,
											  ALLOCSET_DEFAULT_INITSIZE,
											  ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(walwriter_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * This code is heavily based on bgwriter.c, q.v.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().	We don't have very many resources to worry
		 * about in walwriter, but we do have LWLocks, and perhaps buffers?
		 */
		LWLockReleaseAll();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(walwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(walwriter_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Loop forever
	 */
	for (;;)
	{
		long		udelay;

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (!PostmasterIsAlive(true))
			exit(1);

		/*
		 * Process any requests or signals received recently.
		 */
		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (shutdown_requested)
		{
			/* Normal exit from the walwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Do what we're here for...
		 */
		XLogBackgroundFlush();

		/*
		 * Delay until time to do something more, but fall out of delay
		 * reasonably quickly if signaled.
		 */
		udelay = WalWriterDelay * 1000L;
		while (udelay > 999999L)
		{
			if (got_SIGHUP || shutdown_requested)
				break;
			pg_usleep(1000000L);
			udelay -= 1000000L;
		}
		if (!(got_SIGHUP || shutdown_requested))
			pg_usleep(udelay);
	}
}
Beispiel #14
0
/*
 * Main entry point for syslogger process
 * argc/argv parameters are valid only in EXEC_BACKEND case.
 */
NON_EXEC_STATIC void
SysLoggerMain(int argc, char *argv[])
{
	char	   *currentLogDir;
	char	   *currentLogFilename;
	int			currentLogRotationAge;

	IsUnderPostmaster = true;	/* we are a postmaster subprocess now */

	MyProcPid = getpid();		/* reset MyProcPid */

	/* Lose the postmaster's on-exit routines */
	on_exit_reset();

#ifdef EXEC_BACKEND
	syslogger_parseArgs(argc, argv);
#endif   /* EXEC_BACKEND */

	am_syslogger = true;

	init_ps_display("logger process", "", "");
	set_ps_display("");

	/*
	 * If we restarted, our stderr is already redirected into our own
	 * input pipe.	This is of course pretty useless, not to mention that
	 * it interferes with detecting pipe EOF.  Point stderr to /dev/null.
	 * This assumes that all interesting messages generated in the
	 * syslogger will come through elog.c and will be sent to
	 * write_syslogger_file.
	 */
	if (redirection_done)
	{
		int			fd = open(NULL_DEV, O_WRONLY);

		/*
		 * The closes might look redundant, but they are not: we want to
		 * be darn sure the pipe gets closed even if the open failed.  We
		 * can survive running with stderr pointing nowhere, but we can't
		 * afford to have extra pipe input descriptors hanging around.
		 */
		close(fileno(stdout));
		close(fileno(stderr));
		dup2(fd, fileno(stdout));
		dup2(fd, fileno(stderr));
		close(fd);
	}

	/*
	 * Also close our copy of the write end of the pipe.  This is needed
	 * to ensure we can detect pipe EOF correctly.	(But note that in the
	 * restart case, the postmaster already did this.)
	 */
#ifndef WIN32
	if (syslogPipe[1] >= 0)
		close(syslogPipe[1]);
	syslogPipe[1] = -1;
#else
	if (syslogPipe[1])
		CloseHandle(syslogPipe[1]);
	syslogPipe[1] = 0;
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * Note: we ignore all termination signals, and instead exit only when
	 * all upstream processes are gone, to ensure we don't miss any dying
	 * gasps of broken backends...
	 */

	pqsignal(SIGHUP, sigHupHandler);	/* set flag to read config file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, SIG_IGN);
	pqsignal(SIGQUIT, SIG_IGN);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN);
	pqsignal(SIGUSR2, SIG_IGN);

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	PG_SETMASK(&UnBlockSig);

#ifdef WIN32
	/* Fire up separate data transfer thread */
	InitializeCriticalSection(&sysfileSection);

	{
		unsigned int tid;

		threadHandle = (HANDLE) _beginthreadex(0, 0, pipeThread, 0, 0, &tid);
	}
#endif   /* WIN32 */

	/* remember active logfile parameters */
	currentLogDir = pstrdup(Log_directory);
	currentLogFilename = pstrdup(Log_filename);
	currentLogRotationAge = Log_RotationAge;
	/* set next planned rotation time */
	set_next_rotation_time();

	/* main worker loop */
	for (;;)
	{
		bool		rotation_requested = false;
		bool		time_based_rotation = false;

#ifndef WIN32
		char		logbuffer[1024];
		int			bytesRead;
		int			rc;
		fd_set		rfds;
		struct timeval timeout;
#endif

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);

			/*
			 * Check if the log directory or filename pattern changed in 
			 * postgresql.conf. If so, force rotation to make sure we're 
			 * writing the logfiles in the right place.
			 */
			if (strcmp(Log_directory, currentLogDir) != 0)
			{
				pfree(currentLogDir);
				currentLogDir = pstrdup(Log_directory);
				rotation_requested = true;
			}
			if (strcmp(Log_filename, currentLogFilename) != 0)
			{
				pfree(currentLogFilename);
				currentLogFilename = pstrdup(Log_filename);
				rotation_requested = true;
			}
			/*
			 * If rotation time parameter changed, reset next rotation time,
			 * but don't immediately force a rotation.
			 */
			if (currentLogRotationAge != Log_RotationAge)
			{
				currentLogRotationAge = Log_RotationAge;
				set_next_rotation_time();
			}
		}

		if (!rotation_requested && Log_RotationAge > 0)
		{
			/* Do a logfile rotation if it's time */
			pg_time_t	now = time(NULL);

			if (now >= next_rotation_time)
				rotation_requested = time_based_rotation = true;
		}

		if (!rotation_requested && Log_RotationSize > 0)
		{
			/* Do a rotation if file is too big */
			if (ftell(syslogFile) >= Log_RotationSize * 1024L)
				rotation_requested = true;
		}

		if (rotation_requested)
			logfile_rotate(time_based_rotation);

#ifndef WIN32

		/*
		 * Wait for some data, timing out after 1 second
		 */
		FD_ZERO(&rfds);
		FD_SET(syslogPipe[0], &rfds);
		timeout.tv_sec = 1;
		timeout.tv_usec = 0;

		rc = select(syslogPipe[0] + 1, &rfds, NULL, NULL, &timeout);

		if (rc < 0)
		{
			if (errno != EINTR)
				ereport(LOG,
						(errcode_for_socket_access(),
					   errmsg("select() failed in logger process: %m")));
		}
		else if (rc > 0 && FD_ISSET(syslogPipe[0], &rfds))
		{
			bytesRead = piperead(syslogPipe[0],
								 logbuffer, sizeof(logbuffer));

			if (bytesRead < 0)
			{
				if (errno != EINTR)
					ereport(LOG,
							(errcode_for_socket_access(),
						 errmsg("could not read from logger pipe: %m")));
			}
			else if (bytesRead > 0)
			{
				write_syslogger_file_binary(logbuffer, bytesRead);
				continue;
			}
			else
			{
				/*
				 * Zero bytes read when select() is saying read-ready
				 * means EOF on the pipe: that is, there are no longer any
				 * processes with the pipe write end open.	Therefore, the
				 * postmaster and all backends are shut down, and we are
				 * done.
				 */
				pipe_eof_seen = true;
			}
		}
#else							/* WIN32 */

		/*
		 * On Windows we leave it to a separate thread to transfer data
		 * and detect pipe EOF.  The main thread just wakes up once a
		 * second to check for SIGHUP and rotation conditions.
		 */
		pgwin32_backend_usleep(1000000);
#endif   /* WIN32 */

		if (pipe_eof_seen)
		{
			ereport(LOG,
					(errmsg("logger shutting down")));

			/*
			 * Normal exit from the syslogger is here.	Note that we
			 * deliberately do not close syslogFile before exiting; this
			 * is to allow for the possibility of elog messages being
			 * generated inside proc_exit.	Regular exit() will take care
			 * of flushing and closing stdio channels.
			 */
			proc_exit(0);
		}
	}
}
Beispiel #15
0
/*
 * Common service main.
 */
void
ServiceMain(ServiceCtrl *serviceCtrl)
{
	ServiceConfig *serviceConfig;

	sigjmp_buf	local_sigjmp_buf;

	Assert(serviceCtrl != NULL);
	serviceConfig = (ServiceConfig*)serviceCtrl->serviceConfig;
	Assert(serviceConfig != NULL);

	IsUnderPostmaster = true;

	/* reset MyProcPid */
	MyProcPid = getpid();


	/* Lose the postmaster's on-exit routines */
	on_exit_reset();

	/* Identify myself via ps */
	init_ps_display(serviceConfig->psTitle, "", "", "");

	if (serviceConfig->ServiceEarlyInit != NULL)
	{
		serviceConfig->ServiceEarlyInit();
	}
	else
	{
		SetProcessingMode(InitProcessing);
	}

	/*
	 * Set up signal handlers.	We operate on databases much like a regular
	 * backend, so we use the same signal handling.  See equivalent code in
	 * tcop/postgres.c.
	 *
	 * Currently, we don't pay attention to postgresql.conf changes that
	 * happen during a single daemon iteration, so we can ignore SIGHUP.
	 */
	pqsignal(SIGHUP, SIG_IGN);

	/*
	 * Presently, SIGINT will lead to autovacuum shutdown, because that's how
	 * we handle ereport(ERROR).  It could be improved however.
	 */
	pqsignal(SIGINT, StatementCancelHandler);
	pqsignal(SIGTERM, ServiceDie);
	pqsignal(SIGQUIT, ServiceQuickDie);
	pqsignal(SIGALRM, handle_sig_alarm);

	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, procsignal_sigusr1_handler);
	/* We don't listen for async notifies */
	pqsignal(SIGUSR2, serviceConfig->ServiceRequestShutdown);
	pqsignal(SIGFPE, FloatExceptionHandler);
	pqsignal(SIGCHLD, SIG_DFL);

#ifdef SIGBUS
    pqsignal(SIGBUS, HandleCrash);
#endif
#ifdef SIGILL
    pqsignal(SIGILL, HandleCrash);
#endif
#ifdef SIGSEGV
    pqsignal(SIGSEGV, HandleCrash);
#endif


	/* Early initialization */
	BaseInit();

	if (serviceConfig->ServicePostgresInit != NULL)
	{
		serviceConfig->ServicePostgresInit();
	}

	SetProcessingMode(NormalProcessing);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Prevents interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * We can now go away.	Note that because we'll call InitProcess, a
		 * callback will be registered to do ProcKill, which will clean up
		 * necessary state.
		 */
		proc_exit(0);
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	PG_SETMASK(&UnBlockSig);

	/* set up a listener port and put it in shmem*/
	serviceCtrl->listenerPort = ServiceListenerSetup(serviceCtrl);

	if (serviceConfig->ServiceInit != NULL)
	{
		serviceConfig->ServiceInit(serviceCtrl->listenerPort);
	}

	/* listen loop */
	ServiceListenLoop(serviceCtrl);

	proc_exit(0);
}
Beispiel #16
0
/*
 * Main entry point for checkpointer process
 *
 * This is invoked from AuxiliaryProcessMain, which has already created the
 * basic execution environment, but not enabled signals yet.
 */
void
CheckpointerMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext checkpointer_context;

	CheckpointerShmem->checkpointer_pid = MyProcPid;

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
	 * system shutdown cycle, init will SIGTERM all processes at once.  We
	 * want to wait for the backends to exit, whereupon the postmaster will
	 * tell us it's okay to shut down (via SIGUSR2).
	 */
	pqsignal(SIGHUP, ChkptSigHupHandler);		/* set flag to read config
												 * file */
	pqsignal(SIGINT, ReqCheckpointHandler);		/* request checkpoint */
	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
	pqsignal(SIGQUIT, chkpt_quickdie);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, chkpt_sigusr1_handler);
	pqsignal(SIGUSR2, ReqShutdownHandler);		/* request shutdown */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Initialize so that first time-driven event happens at the correct time.
	 */
	last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL);

	/*
	 * Create a resource owner to keep track of our resources (currently only
	 * buffer pins).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Checkpointer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	checkpointer_context = AllocSetContextCreate(TopMemoryContext,
												 "Checkpointer",
												 ALLOCSET_DEFAULT_SIZES);
	MemoryContextSwitchTo(checkpointer_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().  We don't have very many resources to worry
		 * about in checkpointer, but we do have LWLocks, buffers, and temp
		 * files.
		 */
		LWLockReleaseAll();
		ConditionVariableCancelSleep();
		pgstat_report_wait_end();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_SMgr();
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/* Warn any waiting backends that the checkpoint failed. */
		if (ckpt_active)
		{
			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
			CheckpointerShmem->ckpt_failed++;
			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
			SpinLockRelease(&CheckpointerShmem->ckpt_lck);

			ckpt_active = false;
		}

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(checkpointer_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(checkpointer_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Ensure all shared memory values are set correctly for the config. Doing
	 * this here ensures no race conditions from other concurrent updaters.
	 */
	UpdateSharedMemoryConfig();

	/*
	 * Advertise our latch that backends can use to wake us up while we're
	 * sleeping.
	 */
	ProcGlobal->checkpointerLatch = &MyProc->procLatch;

	/*
	 * Loop forever
	 */
	for (;;)
	{
		bool		do_checkpoint = false;
		int			flags = 0;
		pg_time_t	now;
		int			elapsed_secs;
		int			cur_timeout;
		int			rc;

		/* Clear any already-pending wakeups */
		ResetLatch(MyLatch);

		/*
		 * Process any requests or signals received recently.
		 */
		AbsorbFsyncRequests();

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);

			/*
			 * Checkpointer is the last process to shut down, so we ask it to
			 * hold the keys for a range of other tasks required most of which
			 * have nothing to do with checkpointing at all.
			 *
			 * For various reasons, some config values can change dynamically
			 * so the primary copy of them is held in shared memory to make
			 * sure all backends see the same value.  We make Checkpointer
			 * responsible for updating the shared memory copy if the
			 * parameter setting changes because of SIGHUP.
			 */
			UpdateSharedMemoryConfig();
		}
		if (checkpoint_requested)
		{
			checkpoint_requested = false;
			do_checkpoint = true;
			BgWriterStats.m_requested_checkpoints++;
		}
		if (shutdown_requested)
		{
			/*
			 * From here on, elog(ERROR) should end with exit(1), not send
			 * control back to the sigsetjmp block above
			 */
			ExitOnAnyError = true;
			/* Close down the database */
			ShutdownXLOG(0, 0);
			/* Normal exit from the checkpointer is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Force a checkpoint if too much time has elapsed since the last one.
		 * Note that we count a timed checkpoint in stats only when this
		 * occurs without an external request, but we set the CAUSE_TIME flag
		 * bit even if there is also an external request.
		 */
		now = (pg_time_t) time(NULL);
		elapsed_secs = now - last_checkpoint_time;
		if (elapsed_secs >= CheckPointTimeout)
		{
			if (!do_checkpoint)
				BgWriterStats.m_timed_checkpoints++;
			do_checkpoint = true;
			flags |= CHECKPOINT_CAUSE_TIME;
		}

		/*
		 * Do a checkpoint if requested.
		 */
		if (do_checkpoint)
		{
			bool		ckpt_performed = false;
			bool		do_restartpoint;

			/*
			 * Check if we should perform a checkpoint or a restartpoint. As a
			 * side-effect, RecoveryInProgress() initializes TimeLineID if
			 * it's not set yet.
			 */
			do_restartpoint = RecoveryInProgress();

			/*
			 * Atomically fetch the request flags to figure out what kind of a
			 * checkpoint we should perform, and increase the started-counter
			 * to acknowledge that we've started a new checkpoint.
			 */
			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
			flags |= CheckpointerShmem->ckpt_flags;
			CheckpointerShmem->ckpt_flags = 0;
			CheckpointerShmem->ckpt_started++;
			SpinLockRelease(&CheckpointerShmem->ckpt_lck);

			/*
			 * The end-of-recovery checkpoint is a real checkpoint that's
			 * performed while we're still in recovery.
			 */
			if (flags & CHECKPOINT_END_OF_RECOVERY)
				do_restartpoint = false;

			/*
			 * We will warn if (a) too soon since last checkpoint (whatever
			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
			 * since the last checkpoint start.  Note in particular that this
			 * implementation will not generate warnings caused by
			 * CheckPointTimeout < CheckPointWarning.
			 */
			if (!do_restartpoint &&
				(flags & CHECKPOINT_CAUSE_XLOG) &&
				elapsed_secs < CheckPointWarning)
				ereport(LOG,
						(errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
				"checkpoints are occurring too frequently (%d seconds apart)",
									   elapsed_secs,
									   elapsed_secs),
						 errhint("Consider increasing the configuration parameter \"max_wal_size\".")));

			/*
			 * Initialize checkpointer-private variables used during
			 * checkpoint.
			 */
			ckpt_active = true;
			if (do_restartpoint)
				ckpt_start_recptr = GetXLogReplayRecPtr(NULL);
			else
				ckpt_start_recptr = GetInsertRecPtr();
			ckpt_start_time = now;
			ckpt_cached_elapsed = 0;

			/*
			 * Do the checkpoint.
			 */
			if (!do_restartpoint)
			{
				CreateCheckPoint(flags);
				ckpt_performed = true;
			}
			else
				ckpt_performed = CreateRestartPoint(flags);

			/*
			 * After any checkpoint, close all smgr files.  This is so we
			 * won't hang onto smgr references to deleted files indefinitely.
			 */
			smgrcloseall();

			/*
			 * Indicate checkpoint completion to any waiting backends.
			 */
			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
			SpinLockRelease(&CheckpointerShmem->ckpt_lck);

			if (ckpt_performed)
			{
				/*
				 * Note we record the checkpoint start time not end time as
				 * last_checkpoint_time.  This is so that time-driven
				 * checkpoints happen at a predictable spacing.
				 */
				last_checkpoint_time = now;
			}
			else
			{
				/*
				 * We were not able to perform the restartpoint (checkpoints
				 * throw an ERROR in case of error).  Most likely because we
				 * have not received any new checkpoint WAL records since the
				 * last restartpoint. Try again in 15 s.
				 */
				last_checkpoint_time = now - CheckPointTimeout + 15;
			}

			ckpt_active = false;
		}

		/* Check for archive_timeout and switch xlog files if necessary. */
		CheckArchiveTimeout();

		/*
		 * Send off activity statistics to the stats collector.  (The reason
		 * why we re-use bgwriter-related code for this is that the bgwriter
		 * and checkpointer used to be just one process.  It's probably not
		 * worth the trouble to split the stats support into two independent
		 * stats message types.)
		 */
		pgstat_send_bgwriter();

		/*
		 * Sleep until we are signaled or it's time for another checkpoint or
		 * xlog file switch.
		 */
		now = (pg_time_t) time(NULL);
		elapsed_secs = now - last_checkpoint_time;
		if (elapsed_secs >= CheckPointTimeout)
			continue;			/* no sleep for us ... */
		cur_timeout = CheckPointTimeout - elapsed_secs;
		if (XLogArchiveTimeout > 0 && !RecoveryInProgress())
		{
			elapsed_secs = now - last_xlog_switch_time;
			if (elapsed_secs >= XLogArchiveTimeout)
				continue;		/* no sleep for us ... */
			cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
		}

		rc = WaitLatch(MyLatch,
					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
					   cur_timeout * 1000L /* convert to ms */,
					   WAIT_EVENT_CHECKPOINTER_MAIN);

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			exit(1);
	}
}
Beispiel #17
0
/**
 * This method is called after fork of the sweeper process. It sets up signal
 * handlers and does initialization that is required by a postgres backend.
 */
NON_EXEC_STATIC void
BackoffSweeperMain(int argc, char *argv[])
{
	sigjmp_buf	local_sigjmp_buf;

	IsUnderPostmaster = true;
	isSweeperProcess = true;

	/* Stay away from PMChildSlot */
	MyPMChildSlot = -1;

	/* reset MyProcPid */
	MyProcPid = getpid();

	/* Lose the postmaster's on-exit routines */
	on_exit_reset();

	/* Identify myself via ps */
	init_ps_display("sweeper process", "", "", "");

	SetProcessingMode(InitProcessing);

	/*
	 * Set up signal handlers.  We operate on databases much like a regular
	 * backend, so we use the same signal handling.  See equivalent code in
	 * tcop/postgres.c.
	 */
	pqsignal(SIGHUP, SIG_IGN);
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN);

	pqsignal(SIGTERM, die);
	pqsignal(SIGQUIT, quickdie);
	pqsignal(SIGUSR2, BackoffRequestShutdown);

	pqsignal(SIGFPE, FloatExceptionHandler);
	pqsignal(SIGCHLD, SIG_DFL);

	/*
	 * Copied from bgwriter
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Sweeper process");

	/* Early initialization */
	BaseInit();

	/* See InitPostgres()... */
	InitProcess();

	SetProcessingMode(NormalProcessing);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Prevents interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * We can now go away.  Note that because we'll call InitProcess, a
		 * callback will be registered to do ProcKill, which will clean up
		 * necessary state.
		 */
		proc_exit(0);
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	PG_SETMASK(&UnBlockSig);

	MyBackendId = InvalidBackendId;

	/* main loop */
	BackoffSweeperLoop();

	/* One iteration done, go away */
	proc_exit(0);
}
Beispiel #18
0
/*
 * Main entry point for syslogger process
 * argc/argv parameters are valid only in EXEC_BACKEND case.
 */
NON_EXEC_STATIC void
SysLoggerMain(int argc, char *argv[])
{
#ifndef WIN32
	char		logbuffer[READ_BUF_SIZE];
	int			bytes_in_logbuffer = 0;
#endif
	char	   *currentLogDir;
	char	   *currentLogFilename;
	int			currentLogRotationAge;

	IsUnderPostmaster = true;	/* we are a postmaster subprocess now */

	MyProcPid = getpid();		/* reset MyProcPid */

	MyStartTime = time(NULL);	/* set our start time in case we call elog */

#ifdef EXEC_BACKEND
	syslogger_parseArgs(argc, argv);
#endif   /* EXEC_BACKEND */

	am_syslogger = true;

	init_ps_display("logger process", "", "", "");

	/*
	 * If we restarted, our stderr is already redirected into our own input
	 * pipe.  This is of course pretty useless, not to mention that it
	 * interferes with detecting pipe EOF.	Point stderr to /dev/null. This
	 * assumes that all interesting messages generated in the syslogger will
	 * come through elog.c and will be sent to write_syslogger_file.
	 */
	if (redirection_done)
	{
		int			fd = open(DEVNULL, O_WRONLY, 0);

		/*
		 * The closes might look redundant, but they are not: we want to be
		 * darn sure the pipe gets closed even if the open failed.	We can
		 * survive running with stderr pointing nowhere, but we can't afford
		 * to have extra pipe input descriptors hanging around.
		 */
		close(fileno(stdout));
		close(fileno(stderr));
		if (fd != -1)
		{
			dup2(fd, fileno(stdout));
			dup2(fd, fileno(stderr));
			close(fd);
		}
	}

	/*
	 * Syslogger's own stderr can't be the syslogPipe, so set it back to text
	 * mode if we didn't just close it. (It was set to binary in
	 * SubPostmasterMain).
	 */
#ifdef WIN32
	else
		_setmode(_fileno(stderr), _O_TEXT);
#endif

	/*
	 * Also close our copy of the write end of the pipe.  This is needed to
	 * ensure we can detect pipe EOF correctly.  (But note that in the restart
	 * case, the postmaster already did this.)
	 */
#ifndef WIN32
	if (syslogPipe[1] >= 0)
		close(syslogPipe[1]);
	syslogPipe[1] = -1;
#else
	if (syslogPipe[1])
		CloseHandle(syslogPipe[1]);
	syslogPipe[1] = 0;
#endif

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(syslogger probably never has any
	 * child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * Note: we ignore all termination signals, and instead exit only when all
	 * upstream processes are gone, to ensure we don't miss any dying gasps of
	 * broken backends...
	 */

	pqsignal(SIGHUP, sigHupHandler);	/* set flag to read config file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, SIG_IGN);
	pqsignal(SIGQUIT, SIG_IGN);
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, sigUsr1Handler);	/* request log rotation */
	pqsignal(SIGUSR2, SIG_IGN);

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	PG_SETMASK(&UnBlockSig);

#ifdef WIN32
	/* Fire up separate data transfer thread */
	InitializeCriticalSection(&sysloggerSection);
	EnterCriticalSection(&sysloggerSection);

	threadHandle = (HANDLE) _beginthreadex(NULL, 0, pipeThread, NULL, 0, NULL);
	if (threadHandle == 0)
		elog(FATAL, "could not create syslogger data transfer thread: %m");
#endif   /* WIN32 */

	/* remember active logfile parameters */
	currentLogDir = pstrdup(Log_directory);
	currentLogFilename = pstrdup(Log_filename);
	currentLogRotationAge = Log_RotationAge;
	/* set next planned rotation time */
	set_next_rotation_time();

	/* main worker loop */
	for (;;)
	{
		bool		time_based_rotation = false;
		int			size_rotation_for = 0;

#ifndef WIN32
		int			bytesRead;
		int			rc;
		fd_set		rfds;
		struct timeval timeout;
#endif

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);

			/*
			 * Check if the log directory or filename pattern changed in
			 * postgresql.conf. If so, force rotation to make sure we're
			 * writing the logfiles in the right place.
			 */
			if (strcmp(Log_directory, currentLogDir) != 0)
			{
				pfree(currentLogDir);
				currentLogDir = pstrdup(Log_directory);
				rotation_requested = true;
			}
			if (strcmp(Log_filename, currentLogFilename) != 0)
			{
				pfree(currentLogFilename);
				currentLogFilename = pstrdup(Log_filename);
				rotation_requested = true;
			}

			/*
			 * If rotation time parameter changed, reset next rotation time,
			 * but don't immediately force a rotation.
			 */
			if (currentLogRotationAge != Log_RotationAge)
			{
				currentLogRotationAge = Log_RotationAge;
				set_next_rotation_time();
			}
		}

		if (!rotation_requested && Log_RotationAge > 0)
		{
			/* Do a logfile rotation if it's time */
			pg_time_t	now = (pg_time_t) time(NULL);

			if (now >= next_rotation_time)
				rotation_requested = time_based_rotation = true;
		}

		if (!rotation_requested && Log_RotationSize > 0)
		{
			/* Do a rotation if file is too big */
			if (ftell(syslogFile) >= Log_RotationSize * 1024L)
			{
				rotation_requested = true;
				size_rotation_for |= LOG_DESTINATION_STDERR;
			}
			if (csvlogFile != NULL &&
				ftell(csvlogFile) >= Log_RotationSize * 1024L)
			{
				rotation_requested = true;
				size_rotation_for |= LOG_DESTINATION_CSVLOG;
			}
		}

		if (rotation_requested)
		{
			/*
			 * Force rotation when both values are zero. It means the request
			 * was sent by pg_rotate_logfile.
			 */
			if (!time_based_rotation && size_rotation_for == 0)
				size_rotation_for = LOG_DESTINATION_STDERR | LOG_DESTINATION_CSVLOG;
			logfile_rotate(time_based_rotation, size_rotation_for);
		}

#ifndef WIN32

		/*
		 * Wait for some data, timing out after 1 second
		 */
		FD_ZERO(&rfds);
		FD_SET(syslogPipe[0], &rfds);

		timeout.tv_sec = 1;
		timeout.tv_usec = 0;

		rc = select(syslogPipe[0] + 1, &rfds, NULL, NULL, &timeout);

		if (rc < 0)
		{
			if (errno != EINTR)
				ereport(LOG,
						(errcode_for_socket_access(),
						 errmsg("select() failed in logger process: %m")));
		}
		else if (rc > 0 && FD_ISSET(syslogPipe[0], &rfds))
		{
			bytesRead = piperead(syslogPipe[0],
								 logbuffer + bytes_in_logbuffer,
								 sizeof(logbuffer) - bytes_in_logbuffer);
			if (bytesRead < 0)
			{
				if (errno != EINTR)
					ereport(LOG,
							(errcode_for_socket_access(),
							 errmsg("could not read from logger pipe: %m")));
			}
			else if (bytesRead > 0)
			{
				bytes_in_logbuffer += bytesRead;
				process_pipe_input(logbuffer, &bytes_in_logbuffer);
				continue;
			}
			else
			{
				/*
				 * Zero bytes read when select() is saying read-ready means
				 * EOF on the pipe: that is, there are no longer any processes
				 * with the pipe write end open.  Therefore, the postmaster
				 * and all backends are shut down, and we are done.
				 */
				pipe_eof_seen = true;

				/* if there's any data left then force it out now */
				flush_pipe_input(logbuffer, &bytes_in_logbuffer);
			}
		}
#else							/* WIN32 */

		/*
		 * On Windows we leave it to a separate thread to transfer data and
		 * detect pipe EOF.  The main thread just wakes up once a second to
		 * check for SIGHUP and rotation conditions.
		 *
		 * Server code isn't generally thread-safe, so we ensure that only one
		 * of the threads is active at a time by entering the critical section
		 * whenever we're not sleeping.
		 */
		LeaveCriticalSection(&sysloggerSection);

		pg_usleep(1000000L);

		EnterCriticalSection(&sysloggerSection);
#endif   /* WIN32 */

		if (pipe_eof_seen)
		{
			/*
			 * seeing this message on the real stderr is annoying - so we make
			 * it DEBUG1 to suppress in normal use.
			 */
			ereport(DEBUG1,
					(errmsg("logger shutting down")));

			/*
			 * Normal exit from the syslogger is here.	Note that we
			 * deliberately do not close syslogFile before exiting; this is to
			 * allow for the possibility of elog messages being generated
			 * inside proc_exit.  Regular exit() will take care of flushing
			 * and closing stdio channels.
			 */
			proc_exit(0);
		}
	}
}
Beispiel #19
0
void
ContQuerySchedulerMain(int argc, char *argv[])
{
	sigjmp_buf local_sigjmp_buf;
	List *dbs = NIL;

	/* we are a postmaster subprocess now */
	IsUnderPostmaster = true;
	am_cont_scheduler = true;

	/* reset MyProcPid */
	MyProcPid = getpid();
	MyPMChildSlot = AssignPostmasterChildSlot();

	/* record Start Time for logging */
	MyStartTime = time(NULL);

	/* Identify myself via ps */
	init_ps_display("continuous query scheduler process", "", "", "");

	ereport(LOG, (errmsg("continuous query scheduler started")));

	if (PostAuthDelay)
		pg_usleep(PostAuthDelay * 1000000L);

	SetProcessingMode(InitProcessing);

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too. This is only for consistency sake, we
	 * never fork the scheduler process. Instead dynamic bgworkers are used.
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Set up signal handlers.  We operate on databases much like a regular
	 * backend, so we use the same signal handling.  See equivalent code in
	 * tcop/postgres.c.
	 */
	pqsignal(SIGHUP, sighup_handler);
	pqsignal(SIGINT, sigint_handler);
	pqsignal(SIGTERM, sigterm_handler);

	pqsignal(SIGQUIT, quickdie);
	InitializeTimeouts(); /* establishes SIGALRM handler */

	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, procsignal_sigusr1_handler);
	pqsignal(SIGUSR2, sigusr2_handler);
	pqsignal(SIGFPE, FloatExceptionHandler);
	pqsignal(SIGCHLD, SIG_DFL);

#define BACKTRACE_SEGFAULTS
#ifdef BACKTRACE_SEGFAULTS
	pqsignal(SIGSEGV, debug_segfault);
#endif

	/* Early initialization */
	BaseInit();

	/*
	 * Create a per-backend PGPROC struct in shared memory, except in the
	 * EXEC_BACKEND case where this was done in SubPostmasterMain. We must do
	 * this before we can use LWLocks (and in the EXEC_BACKEND case we already
	 * had to do some stuff with LWLocks).
	 */
#ifndef EXEC_BACKEND
	InitProcess();
#endif

	InitPostgres(NULL, InvalidOid, NULL, NULL);

	SetProcessingMode(NormalProcessing);

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.
	 */
	ContQuerySchedulerMemCxt = AllocSetContextCreate(TopMemoryContext,
			"ContQuerySchedulerCtx",
			ALLOCSET_DEFAULT_MINSIZE,
			ALLOCSET_DEFAULT_INITSIZE,
			ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(ContQuerySchedulerMemCxt);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * This code is a stripped down version of PostgresMain error recovery.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevents interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Forget any pending QueryCancel or timeout request */
		disable_all_timeouts(false);
		QueryCancelPending = false; /* second to avoid race condition */

		/* Report the error to the server log */
		EmitErrorReport();

		/* Abort the current transaction in order to recover */
		AbortCurrentTransaction();

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(ContQuerySchedulerMemCxt);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(ContQuerySchedulerMemCxt);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  We don't want to be
		 * filling the error logs as fast as we can.
		 */
		pg_usleep(1000000L);
	}
	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/* must unblock signals before calling rebuild_database_list */
	PG_SETMASK(&UnBlockSig);

	ContQuerySchedulerShmem->scheduler_pid = MyProcPid;

	dbs = get_database_list();

	/* Loop forever */
	for (;;)
	{
		ListCell *lc;
		int rc;

		foreach(lc, dbs)
		{
			DatabaseEntry *db_entry = lfirst(lc);
			bool found;
			ContQueryProcGroup *grp = hash_search(ContQuerySchedulerShmem->proc_table, &db_entry->oid, HASH_ENTER, &found);

			/* If we don't have an entry for this dboid, initialize a new one and fire off bg procs */
			if (!found)
			{
				grp->db_oid = db_entry->oid;
				namestrcpy(&grp->db_name, NameStr(db_entry->name));

				start_group(grp);
			}
		}

		/* Allow sinval catchup interrupts while sleeping */
		EnableCatchupInterrupt();

		/*
		 * Wait until naptime expires or we get some type of signal (all the
		 * signal handlers will wake us by calling SetLatch).
		 */
		rc = WaitLatch(&MyProc->procLatch, WL_LATCH_SET | WL_POSTMASTER_DEATH, 0);

		ResetLatch(&MyProc->procLatch);

		DisableCatchupInterrupt();

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			proc_exit(1);

		/* the normal shutdown case */
		if (got_SIGTERM)
			break;

		/* update config? */
		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);

			/* update tuning parameters, so that they can be read downstream by background processes */
			update_tuning_params();
		}

		/* terminate a proc group? */
		if (got_SIGUSR2)
		{
			HASH_SEQ_STATUS status;
			ContQueryProcGroup *grp;

			got_SIGUSR2 = false;

			hash_seq_init(&status, ContQuerySchedulerShmem->proc_table);
			while ((grp = (ContQueryProcGroup *) hash_seq_search(&status)) != NULL)
			{
				ListCell *lc;

				if (!grp->terminate)
					continue;

				foreach(lc, dbs)
				{
					DatabaseEntry *entry = lfirst(lc);
					if (entry->oid == grp->db_oid)
					{
						dbs = list_delete(dbs, entry);
						break;
					}
				}

				terminate_group(grp);
			}
		}
void FileRepResetPeer_Main(void)
{
	/* BASIC PROCESS SETUP */

	FileRepReset_ConfigureSignals();

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding and comments about how the error
	 * handling works.
	 */
	sigjmp_buf		local_sigjmp_buf;
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		HOLD_INTERRUPTS();
		EmitErrorReport();
		proc_exit(EXIT_CODE_SHOULD_ENTER_FAULT);
	}
	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;
	PG_SETMASK(&UnBlockSig);


	/** NOW DO THE ACTUAL WORK */ 
	char messageFromPeer[MESSAGE_FROM_PEER_BUF_SIZE];
	char resetNumberFromPeer[MESSAGE_FROM_PEER_BUF_SIZE];
	char resetNumberThatIndicatesResetComplete[MESSAGE_FROM_PEER_BUF_SIZE];
	struct addrinfo *addrList = NULL;
	char portStr[100];

	PrimaryMirrorModeTransitionArguments args = primaryMirrorGetArgumentsFromLocalMemory();
	Assert(args.mode == PMModePrimarySegment || args.mode == PMModeMirrorSegment);

	snprintf(portStr, sizeof(portStr), "%d", args.peerPostmasterPort);
	if (! determineTargetHost(&addrList, args.peerAddress, portStr))
	{
		elog(WARNING, "during reset, unable to look up address for peer host to coordinate reset; "
				"will transition to fault state.");
		proc_exit(EXIT_CODE_SHOULD_ENTER_FAULT);
	}

	sendMessageToPeerAndExitIfProblem(addrList, "beginPostmasterReset", messageFromPeer,
		resetNumberThatIndicatesResetComplete);

	for ( ;; )
	{
		pg_usleep(10 * 1000L); /* 10 ms */
		sendMessageToPeerAndExitIfProblem(addrList, "getPostmasterResetStatus", messageFromPeer, resetNumberFromPeer );
		if (strequals(messageFromPeer, RESET_STATUS_IS_IN_RESET_PIVOT_POINT))
		{
			if (args.mode == PMModeMirrorSegment)
			{
				/**
				 * peer is in the reset pivot point, we can break out of our checking loop and
				 *   thus exit with a code telling the postmaster to begin the startup sequence again
				 *
				 * this is only done on the mirror as currently the mirror must execute the startup sequence
				 *   before the primary
				 */
				elog(DEBUG1, "peer reset: primary peer has reached reset point");
				break;
			}
		}
		else if (strequals(messageFromPeer, RESET_STATUS_IS_RUNNING))
		{
			/** it's running -- is it >= than the reset number that indicates reset complete one */
			if (strcmp( resetNumberFromPeer, resetNumberThatIndicatesResetComplete) >= 0)
			{
				/** yes, the reset is complete and so we can quit and do a restart */
				elog(DEBUG1, "peer reset: mirror peer reset is complete");
				break;
			}
		}
	}

	proc_exit(EXIT_CODE_SHOULD_RESTART_SHMEM_CLEANLY);
}
Beispiel #21
0
/*
 * Main entry point for walwriter process
 *
 * This is invoked from AuxiliaryProcessMain, which has already created the
 * basic execution environment, but not enabled signals yet.
 */
void
WalWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext walwriter_context;
	int			left_till_hibernate;
	bool		hibernating;

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * We have no particular use for SIGINT at the moment, but seems
	 * reasonable to treat like SIGTERM.
	 */
	pqsignal(SIGHUP, WalSigHupHandler); /* set flag to read config file */
	pqsignal(SIGINT, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGTERM, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGQUIT, wal_quickdie);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, walwriter_sigusr1_handler);
	pqsignal(SIGUSR2, SIG_IGN); /* not used */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Create a resource owner to keep track of our resources (not clear that
	 * we need this, but may as well have one).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Writer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	walwriter_context = AllocSetContextCreate(TopMemoryContext,
											  "Wal Writer",
											  ALLOCSET_DEFAULT_SIZES);
	MemoryContextSwitchTo(walwriter_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * This code is heavily based on bgwriter.c, q.v.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().  We don't have very many resources to worry
		 * about in walwriter, but we do have LWLocks, and perhaps buffers?
		 */
		LWLockReleaseAll();
		ConditionVariableCancelSleep();
		pgstat_report_wait_end();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_SMgr();
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(walwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(walwriter_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Reset hibernation state after any error.
	 */
	left_till_hibernate = LOOPS_UNTIL_HIBERNATE;
	hibernating = false;
	SetWalWriterSleeping(false);

	/*
	 * Advertise our latch that backends can use to wake us up while we're
	 * sleeping.
	 */
	ProcGlobal->walwriterLatch = &MyProc->procLatch;

	/*
	 * Loop forever
	 */
	for (;;)
	{
		long		cur_timeout;
		int			rc;

		/*
		 * Advertise whether we might hibernate in this cycle.  We do this
		 * before resetting the latch to ensure that any async commits will
		 * see the flag set if they might possibly need to wake us up, and
		 * that we won't miss any signal they send us.  (If we discover work
		 * to do in the last cycle before we would hibernate, the global flag
		 * will be set unnecessarily, but little harm is done.)  But avoid
		 * touching the global flag if it doesn't need to change.
		 */
		if (hibernating != (left_till_hibernate <= 1))
		{
			hibernating = (left_till_hibernate <= 1);
			SetWalWriterSleeping(hibernating);
		}

		/* Clear any already-pending wakeups */
		ResetLatch(MyLatch);

		/*
		 * Process any requests or signals received recently.
		 */
		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (shutdown_requested)
		{
			/* Normal exit from the walwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Do what we're here for; then, if XLogBackgroundFlush() found useful
		 * work to do, reset hibernation counter.
		 */
		if (XLogBackgroundFlush())
			left_till_hibernate = LOOPS_UNTIL_HIBERNATE;
		else if (left_till_hibernate > 0)
			left_till_hibernate--;

		/*
		 * Sleep until we are signaled or WalWriterDelay has elapsed.  If we
		 * haven't done anything useful for quite some time, lengthen the
		 * sleep time so as to reduce the server's idle power consumption.
		 */
		if (left_till_hibernate > 0)
			cur_timeout = WalWriterDelay;		/* in ms */
		else
			cur_timeout = WalWriterDelay * HIBERNATE_FACTOR;

		rc = WaitLatch(MyLatch,
					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
					   cur_timeout,
					   WAIT_EVENT_WAL_WRITER_MAIN);

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			exit(1);
	}
}
Beispiel #22
0
/*
 * Main entry point for bgwriter process
 *
 * This is invoked from BootstrapMain, which has already created the basic
 * execution environment, but not enabled signals yet.
 */
void
BackgroundWriterMain(void)
{
    sigjmp_buf	local_sigjmp_buf;
    MemoryContext bgwriter_context;

    am_bg_writer = true;

    /*
     * If possible, make this process a group leader, so that the postmaster
     * can signal any child processes too.	(bgwriter probably never has any
     * child processes, but for consistency we make all postmaster child
     * processes do this.)
     */
#ifdef HAVE_SETSID
    if (setsid() < 0)
        elog(FATAL, "setsid() failed: %m");
#endif

    /*
     * Properly accept or ignore signals the postmaster might send us
     *
     * SIGUSR1 is presently unused; keep it spare in case someday we want this
     * process to participate in ProcSignal signalling.
     */
    pqsignal(SIGHUP, BgSigHupHandler);	/* set flag to read config file */
    pqsignal(SIGINT, SIG_IGN);			/* as of 9.2 no longer requests checkpoint */
    pqsignal(SIGTERM, ReqShutdownHandler); 	/* shutdown */
    pqsignal(SIGQUIT, bg_quickdie);		/* hard crash time */
    pqsignal(SIGALRM, SIG_IGN);
    pqsignal(SIGPIPE, SIG_IGN);
    pqsignal(SIGUSR1, SIG_IGN);			/* reserve for ProcSignal */
    pqsignal(SIGUSR2, SIG_IGN);

    /*
     * Reset some signals that are accepted by postmaster but not here
     */
    pqsignal(SIGCHLD, SIG_DFL);
    pqsignal(SIGTTIN, SIG_DFL);
    pqsignal(SIGTTOU, SIG_DFL);
    pqsignal(SIGCONT, SIG_DFL);
    pqsignal(SIGWINCH, SIG_DFL);

    /* We allow SIGQUIT (quickdie) at all times */
    sigdelset(&BlockSig, SIGQUIT);

    /*
     * Create a resource owner to keep track of our resources (currently only
     * buffer pins).
     */
    CurrentResourceOwner = ResourceOwnerCreate(NULL, "Background Writer");

    /*
     * Create a memory context that we will do all our work in.  We do this so
     * that we can reset the context during error recovery and thereby avoid
     * possible memory leaks.  Formerly this code just ran in
     * TopMemoryContext, but resetting that would be a really bad idea.
     */
    bgwriter_context = AllocSetContextCreate(TopMemoryContext,
                       "Background Writer",
                       ALLOCSET_DEFAULT_MINSIZE,
                       ALLOCSET_DEFAULT_INITSIZE,
                       ALLOCSET_DEFAULT_MAXSIZE);
    MemoryContextSwitchTo(bgwriter_context);

    /*
     * If an exception is encountered, processing resumes here.
     *
     * See notes in postgres.c about the design of this coding.
     */
    if (sigsetjmp(local_sigjmp_buf, 1) != 0)
    {
        /* Since not using PG_TRY, must reset error stack by hand */
        error_context_stack = NULL;

        /* Prevent interrupts while cleaning up */
        HOLD_INTERRUPTS();

        /* Report the error to the server log */
        EmitErrorReport();

        /*
         * These operations are really just a minimal subset of
         * AbortTransaction().	We don't have very many resources to worry
         * about in bgwriter, but we do have LWLocks, buffers, and temp files.
         */
        LWLockReleaseAll();
        AbortBufferIO();
        UnlockBuffers();
        /* buffer pins are released here: */
        ResourceOwnerRelease(CurrentResourceOwner,
                             RESOURCE_RELEASE_BEFORE_LOCKS,
                             false, true);
        /* we needn't bother with the other ResourceOwnerRelease phases */
        AtEOXact_Buffers(false);
        AtEOXact_Files();
        AtEOXact_HashTables(false);

        /*
         * Now return to normal top-level context and clear ErrorContext for
         * next time.
         */
        MemoryContextSwitchTo(bgwriter_context);
        FlushErrorState();

        /* Flush any leaked data in the top-level context */
        MemoryContextResetAndDeleteChildren(bgwriter_context);

        /* Now we can allow interrupts again */
        RESUME_INTERRUPTS();

        /*
         * Sleep at least 1 second after any error.  A write error is likely
         * to be repeated, and we don't want to be filling the error logs as
         * fast as we can.
         */
        pg_usleep(1000000L);

        /*
         * Close all open files after any error.  This is helpful on Windows,
         * where holding deleted files open causes various strange errors.
         * It's not clear we need it elsewhere, but shouldn't hurt.
         */
        smgrcloseall();
    }

    /* We can now handle ereport(ERROR) */
    PG_exception_stack = &local_sigjmp_buf;

    /*
     * Unblock signals (they were blocked when the postmaster forked us)
     */
    PG_SETMASK(&UnBlockSig);

    /*
     * Use the recovery target timeline ID during recovery
     */
    if (RecoveryInProgress())
        ThisTimeLineID = GetRecoveryTargetTLI();

    /*
     * Loop forever
     */
    for (;;)
    {
        /*
         * Emergency bailout if postmaster has died.  This is to avoid the
         * necessity for manual cleanup of all postmaster children.
         */
        if (!PostmasterIsAlive())
            exit(1);

        if (got_SIGHUP)
        {
            got_SIGHUP = false;
            ProcessConfigFile(PGC_SIGHUP);
            /* update global shmem state for sync rep */
        }
        if (shutdown_requested)
        {
            /*
             * From here on, elog(ERROR) should end with exit(1), not send
             * control back to the sigsetjmp block above
             */
            ExitOnAnyError = true;
            /* Normal exit from the bgwriter is here */
            proc_exit(0);		/* done */
        }

        /*
         * Do one cycle of dirty-buffer writing.
         */
        BgBufferSync();

        /* Nap for the configured time. */
        BgWriterNap();
    }
}
Beispiel #23
0
/*
 * AutoVacMain
 */
NON_EXEC_STATIC void
AutoVacMain(int argc, char *argv[])
{
    ListCell   *cell;
    List	   *dblist;
    autovac_dbase *db;
    TransactionId xidForceLimit;
    bool		for_xid_wrap;
    sigjmp_buf	local_sigjmp_buf;

    /* we are a postmaster subprocess now */
    IsUnderPostmaster = true;
    am_autovacuum = true;

    /* MPP-4990: Autovacuum always runs as utility-mode */
    Gp_role = GP_ROLE_UTILITY;

    /* reset MyProcPid */
    MyProcPid = getpid();

    /* record Start Time for logging */
    MyStartTime = time(NULL);

    /* Identify myself via ps */
    init_ps_display("autovacuum process", "", "", "");

    SetProcessingMode(InitProcessing);

    /*
     * If possible, make this process a group leader, so that the postmaster
     * can signal any child processes too.  (autovacuum probably never has
     * any child processes, but for consistency we make all postmaster
     * child processes do this.)
     */
#ifdef HAVE_SETSID
    if (setsid() < 0)
        elog(FATAL, "setsid() failed: %m");
#endif

    /*
     * Set up signal handlers.	We operate on databases much like a regular
     * backend, so we use the same signal handling.  See equivalent code in
     * tcop/postgres.c.
     *
     * Currently, we don't pay attention to postgresql.conf changes that
     * happen during a single daemon iteration, so we can ignore SIGHUP.
     */
    pqsignal(SIGHUP, SIG_IGN);

    /*
     * SIGINT is used to signal cancelling the current table's vacuum; SIGTERM
     * means abort and exit cleanly, and SIGQUIT means abandon ship.
     */
    pqsignal(SIGINT, StatementCancelHandler);
    pqsignal(SIGTERM, die);
    pqsignal(SIGQUIT, quickdie);
    pqsignal(SIGALRM, handle_sig_alarm);

    pqsignal(SIGPIPE, SIG_IGN);
    pqsignal(SIGUSR1, procsignal_sigusr1_handler);
    /* We don't listen for async notifies */
    pqsignal(SIGUSR2, SIG_IGN);
    pqsignal(SIGFPE, FloatExceptionHandler);
    pqsignal(SIGCHLD, SIG_DFL);

    /* Early initialization */
    BaseInit();

    /*
     * Create a per-backend PGPROC struct in shared memory, except in the
     * EXEC_BACKEND case where this was done in SubPostmasterMain. We must do
     * this before we can use LWLocks (and in the EXEC_BACKEND case we already
     * had to do some stuff with LWLocks).
     */
#ifndef EXEC_BACKEND
    InitProcess();
#endif

    /*
     * If an exception is encountered, processing resumes here.
     *
     * See notes in postgres.c about the design of this coding.
     */
    if (sigsetjmp(local_sigjmp_buf, 1) != 0)
    {
        /* Prevents interrupts while cleaning up */
        HOLD_INTERRUPTS();

        /* Report the error to the server log */
        EmitErrorReport();

        /*
         * We can now go away.	Note that because we called InitProcess, a
         * callback was registered to do ProcKill, which will clean up
         * necessary state.
         */
        proc_exit(0);
    }

    /* We can now handle ereport(ERROR) */
    PG_exception_stack = &local_sigjmp_buf;

    PG_SETMASK(&UnBlockSig);

    /*
     * Force zero_damaged_pages OFF in the autovac process, even if it is set
     * in postgresql.conf.	We don't really want such a dangerous option being
     * applied non-interactively.
     */
    SetConfigOption("zero_damaged_pages", "false", PGC_SUSET, PGC_S_OVERRIDE);

    /* Get a list of databases */
    dblist = autovac_get_database_list();

    /*
     * Determine the oldest datfrozenxid/relfrozenxid that we will allow
     * to pass without forcing a vacuum.  (This limit can be tightened for
     * particular tables, but not loosened.)
     */
    recentXid = ReadNewTransactionId();
    xidForceLimit = recentXid - autovacuum_freeze_max_age;
    /* ensure it's a "normal" XID, else TransactionIdPrecedes misbehaves */
    if (xidForceLimit < FirstNormalTransactionId)
        xidForceLimit -= FirstNormalTransactionId;

    /*
     * Choose a database to connect to.  We pick the database that was least
     * recently auto-vacuumed, or one that needs vacuuming to prevent Xid
     * wraparound-related data loss.  If any db at risk of wraparound is
     * found, we pick the one with oldest datfrozenxid,
     * independently of autovacuum times.
     *
     * Note that a database with no stats entry is not considered, except for
     * Xid wraparound purposes.  The theory is that if no one has ever
     * connected to it since the stats were last initialized, it doesn't need
     * vacuuming.
     *
     * XXX This could be improved if we had more info about whether it needs
     * vacuuming before connecting to it.  Perhaps look through the pgstats
     * data for the database's tables?  One idea is to keep track of the
     * number of new and dead tuples per database in pgstats.  However it
     * isn't clear how to construct a metric that measures that and not cause
     * starvation for less busy databases.
     */
    db = NULL;
    for_xid_wrap = false;
    foreach(cell, dblist)
    {
        autovac_dbase *tmp = lfirst(cell);

        /* Find pgstat entry if any */
        tmp->entry = pgstat_fetch_stat_dbentry(tmp->oid);

        /* Check to see if this one is at risk of wraparound */
        if (TransactionIdPrecedes(tmp->frozenxid, xidForceLimit))
        {
            if (db == NULL ||
                    TransactionIdPrecedes(tmp->frozenxid, db->frozenxid))
                db = tmp;
            for_xid_wrap = true;
            continue;
        }
        else if (for_xid_wrap)
            continue;			/* ignore not-at-risk DBs */

        /*
         * Otherwise, skip a database with no pgstat entry; it means it
         * hasn't seen any activity.
         */
        if (!tmp->entry)
            continue;

        /*
         * Remember the db with oldest autovac time.  (If we are here,
         * both tmp->entry and db->entry must be non-null.)
         */
        if (db == NULL ||
                tmp->entry->last_autovac_time < db->entry->last_autovac_time)
            db = tmp;
    }
Beispiel #24
0
/*
 * Main entry point for bgwriter process
 *
 * This is invoked from AuxiliaryProcessMain, which has already created the
 * basic execution environment, but not enabled signals yet.
 */
void
BackgroundWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext bgwriter_context;
	bool		prev_hibernate;

	/*
	 * Properly accept or ignore signals the postmaster might send us.
	 *
	 * bgwriter doesn't participate in ProcSignal signalling, but a SIGUSR1
	 * handler is still needed for latch wakeups.
	 */
	pqsignal(SIGHUP, BgSigHupHandler);	/* set flag to read config file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, ReqShutdownHandler);		/* shutdown */
	pqsignal(SIGQUIT, bg_quickdie);		/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, bgwriter_sigusr1_handler);
	pqsignal(SIGUSR2, SIG_IGN);

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Create a resource owner to keep track of our resources (currently only
	 * buffer pins).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Background Writer");

	/*
	 * We just started, assume there has been either a shutdown or
	 * end-of-recovery snapshot.
	 */
	last_snapshot_ts = GetCurrentTimestamp();

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	bgwriter_context = AllocSetContextCreate(TopMemoryContext,
											 "Background Writer",
											 ALLOCSET_DEFAULT_MINSIZE,
											 ALLOCSET_DEFAULT_INITSIZE,
											 ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(bgwriter_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().  We don't have very many resources to worry
		 * about in bgwriter, but we do have LWLocks, buffers, and temp files.
		 */
		LWLockReleaseAll();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_SMgr();
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(bgwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(bgwriter_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();

		/* Report wait end here, when there is no further possibility of wait */
		pgstat_report_wait_end();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Reset hibernation state after any error.
	 */
	prev_hibernate = false;

	/*
	 * Loop forever
	 */
	for (;;)
	{
		bool		can_hibernate;
		int			rc;

		/* Clear any already-pending wakeups */
		ResetLatch(MyLatch);

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (shutdown_requested)
		{
			/*
			 * From here on, elog(ERROR) should end with exit(1), not send
			 * control back to the sigsetjmp block above
			 */
			ExitOnAnyError = true;
			/* Normal exit from the bgwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Do one cycle of dirty-buffer writing.
		 */
		can_hibernate = BgBufferSync();

		/*
		 * Send off activity statistics to the stats collector
		 */
		pgstat_send_bgwriter();

		if (FirstCallSinceLastCheckpoint())
		{
			/*
			 * After any checkpoint, close all smgr files.  This is so we
			 * won't hang onto smgr references to deleted files indefinitely.
			 */
			smgrcloseall();
		}

		/*
		 * Log a new xl_running_xacts every now and then so replication can
		 * get into a consistent state faster (think of suboverflowed
		 * snapshots) and clean up resources (locks, KnownXids*) more
		 * frequently. The costs of this are relatively low, so doing it 4
		 * times (LOG_SNAPSHOT_INTERVAL_MS) a minute seems fine.
		 *
		 * We assume the interval for writing xl_running_xacts is
		 * significantly bigger than BgWriterDelay, so we don't complicate the
		 * overall timeout handling but just assume we're going to get called
		 * often enough even if hibernation mode is active. It's not that
		 * important that log_snap_interval_ms is met strictly. To make sure
		 * we're not waking the disk up unnecessarily on an idle system we
		 * check whether there has been any WAL inserted since the last time
		 * we've logged a running xacts.
		 *
		 * We do this logging in the bgwriter as its the only process that is
		 * run regularly and returns to its mainloop all the time. E.g.
		 * Checkpointer, when active, is barely ever in its mainloop and thus
		 * makes it hard to log regularly.
		 */
		if (XLogStandbyInfoActive() && !RecoveryInProgress())
		{
			TimestampTz timeout = 0;
			TimestampTz now = GetCurrentTimestamp();

			timeout = TimestampTzPlusMilliseconds(last_snapshot_ts,
												  LOG_SNAPSHOT_INTERVAL_MS);

			/*
			 * only log if enough time has passed and some xlog record has
			 * been inserted.
			 */
			if (now >= timeout &&
				last_snapshot_lsn != GetXLogInsertRecPtr())
			{
				last_snapshot_lsn = LogStandbySnapshot();
				last_snapshot_ts = now;
			}
		}

		/*
		 * Sleep until we are signaled or BgWriterDelay has elapsed.
		 *
		 * Note: the feedback control loop in BgBufferSync() expects that we
		 * will call it every BgWriterDelay msec.  While it's not critical for
		 * correctness that that be exact, the feedback loop might misbehave
		 * if we stray too far from that.  Hence, avoid loading this process
		 * down with latch events that are likely to happen frequently during
		 * normal operation.
		 */
		rc = WaitLatch(MyLatch,
					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
					   BgWriterDelay /* ms */ );

		/*
		 * If no latch event and BgBufferSync says nothing's happening, extend
		 * the sleep in "hibernation" mode, where we sleep for much longer
		 * than bgwriter_delay says.  Fewer wakeups save electricity.  When a
		 * backend starts using buffers again, it will wake us up by setting
		 * our latch.  Because the extra sleep will persist only as long as no
		 * buffer allocations happen, this should not distort the behavior of
		 * BgBufferSync's control loop too badly; essentially, it will think
		 * that the system-wide idle interval didn't exist.
		 *
		 * There is a race condition here, in that a backend might allocate a
		 * buffer between the time BgBufferSync saw the alloc count as zero
		 * and the time we call StrategyNotifyBgWriter.  While it's not
		 * critical that we not hibernate anyway, we try to reduce the odds of
		 * that by only hibernating when BgBufferSync says nothing's happening
		 * for two consecutive cycles.  Also, we mitigate any possible
		 * consequences of a missed wakeup by not hibernating forever.
		 */
		if (rc == WL_TIMEOUT && can_hibernate && prev_hibernate)
		{
			/* Ask for notification at next buffer allocation */
			StrategyNotifyBgWriter(MyProc->pgprocno);
			/* Sleep ... */
			rc = WaitLatch(MyLatch,
						   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
						   BgWriterDelay * HIBERNATE_FACTOR);
			/* Reset the notification request in case we timed out */
			StrategyNotifyBgWriter(-1);
		}

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			exit(1);

		prev_hibernate = can_hibernate;
	}
}
void
FileRepSubProcess_Main()
{
	const char *statmsg;

	MemoryContext fileRepSubProcessMemoryContext;

	sigjmp_buf	local_sigjmp_buf;

	MyProcPid = getpid();

	MyStartTime = time(NULL);

	/*
	 * Create a PGPROC so we can use LWLocks in FileRep sub-processes.  The
	 * routine also register clean up at process exit
	 */
	InitAuxiliaryProcess();

	InitBufferPoolBackend();

	FileRepSubProcess_ConfigureSignals();

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Prevents interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		LWLockReleaseAll();

		if (FileRepPrimary_IsResyncManagerOrWorker())
		{
			LockReleaseAll(DEFAULT_LOCKMETHOD, false);
		}

		if (FileRepIsBackendSubProcess(fileRepProcessType))
		{
			AbortBufferIO();
			UnlockBuffers();

			/* buffer pins are released here: */
			ResourceOwnerRelease(CurrentResourceOwner,
								 RESOURCE_RELEASE_BEFORE_LOCKS,
								 false, true);
		}

		/*
		 * We can now go away.	Note that because we'll call InitProcess, a
		 * callback will be registered to do ProcKill, which will clean up
		 * necessary state.
		 */
		proc_exit(0);
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	PG_SETMASK(&UnBlockSig);

	/*
	 * Identify myself via ps
	 */

	statmsg = FileRepProcessTypeToString[fileRepProcessType];

	init_ps_display(statmsg, "", "", "");

	/* Create the memory context where cross-transaction state is stored */
	fileRepSubProcessMemoryContext = AllocSetContextCreate(TopMemoryContext,
														   "filerep subprocess memory context",
														   ALLOCSET_DEFAULT_MINSIZE,
														   ALLOCSET_DEFAULT_INITSIZE,
														   ALLOCSET_DEFAULT_MAXSIZE);

	MemoryContextSwitchTo(fileRepSubProcessMemoryContext);

	stateChangeRequestCounter++;

	FileRepSubProcess_ProcessSignals();

	switch (fileRepProcessType)
	{
		case FileRepProcessTypePrimarySender:
			FileRepPrimary_StartSender();
			break;

		case FileRepProcessTypeMirrorReceiver:
			FileRepMirror_StartReceiver();
			break;

		case FileRepProcessTypeMirrorConsumer:
		case FileRepProcessTypeMirrorConsumerWriter:
		case FileRepProcessTypeMirrorConsumerAppendOnly1:
			FileRepMirror_StartConsumer();
			break;

		case FileRepProcessTypeMirrorSenderAck:
			FileRepAckMirror_StartSender();
			break;

		case FileRepProcessTypePrimaryReceiverAck:
			FileRepAckPrimary_StartReceiver();
			break;

		case FileRepProcessTypePrimaryConsumerAck:
			FileRepAckPrimary_StartConsumer();
			break;

		case FileRepProcessTypePrimaryRecovery:
			FileRepSubProcess_InitProcess();

			/*
			 * At this point, database is starting up and xlog is not yet
			 * replayed.  Initializing relcache now is dangerous, a sequential
			 * scan of catalog tables may end up with incorrect hint bits.
			 * E.g. a committed transaction's dirty heap pages made it to disk
			 * but pg_clog update was still in memory and we crashed.  If a
			 * tuple inserted by this transaction is read during relcache
			 * initialization, status of the tuple's xmin will be incorrectly
			 * determined as "not commited" from pg_clog. And
			 * HEAP_XMIN_INVALID hint bit will be set, rendering the tuple
			 * perpetually invisible.  Relcache initialization must be
			 * deferred to only after all of xlog has been replayed.
			 */
			FileRepPrimary_StartRecovery();

			ResourceOwnerRelease(CurrentResourceOwner,
								 RESOURCE_RELEASE_BEFORE_LOCKS,
								 false, true);
			break;

		case FileRepProcessTypeResyncManager:
			FileRepSubProcess_InitProcess();
			FileRepPrimary_StartResyncManager();

			ResourceOwnerRelease(CurrentResourceOwner,
								 RESOURCE_RELEASE_BEFORE_LOCKS,
								 false, true);
			break;

		case FileRepProcessTypeResyncWorker1:
		case FileRepProcessTypeResyncWorker2:
		case FileRepProcessTypeResyncWorker3:
		case FileRepProcessTypeResyncWorker4:
			FileRepSubProcess_InitProcess();
			FileRepPrimary_StartResyncWorker();

			ResourceOwnerRelease(CurrentResourceOwner,
								 RESOURCE_RELEASE_BEFORE_LOCKS,
								 false, true);
			break;

		default:
			elog(PANIC, "unrecognized process type: %s(%d)",
				 statmsg, fileRepProcessType);
			break;
	}

	switch (FileRepSubProcess_GetState())
	{
		case FileRepStateShutdown:
		case FileRepStateReady:
			proc_exit(0);
			break;

		default:
			proc_exit(2);
			break;
	}
}
Beispiel #26
0
/* Main entry point for walreceiver process */
void
WalReceiverMain(void)
{
	char		conninfo[MAXCONNINFO];
	XLogRecPtr	startpoint;

	/* use volatile pointer to prevent code rearrangement */
	volatile WalRcvData *walrcv = WalRcv;

	am_walreceiver = true;

	/*
	 * WalRcv should be set up already (if we are a backend, we inherit this
	 * by fork() or EXEC_BACKEND mechanism from the postmaster).
	 */
	Assert(walrcv != NULL);

	/*
	 * Mark walreceiver as running in shared memory.
	 *
	 * Do this as early as possible, so that if we fail later on, we'll set
	 * state to STOPPED. If we die before this, the startup process will keep
	 * waiting for us to start up, until it times out.
	 */
	SpinLockAcquire(&walrcv->mutex);
	Assert(walrcv->pid == 0);
	switch (walrcv->walRcvState)
	{
		case WALRCV_STOPPING:
			/* If we've already been requested to stop, don't start up. */
			walrcv->walRcvState = WALRCV_STOPPED;
			/* fall through */

		case WALRCV_STOPPED:
			SpinLockRelease(&walrcv->mutex);
			proc_exit(1);
			break;

		case WALRCV_STARTING:
			/* The usual case */
			break;

		case WALRCV_RUNNING:
			/* Shouldn't happen */
			elog(PANIC, "walreceiver still running according to shared memory state");
	}
	/* Advertise our PID so that the startup process can kill us */
	walrcv->pid = MyProcPid;
	walrcv->walRcvState = WALRCV_RUNNING;

	/* Fetch information required to start streaming */
	strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
	startpoint = walrcv->receivedUpto;
	SpinLockRelease(&walrcv->mutex);

	/* Arrange to clean up at walreceiver exit */
	on_shmem_exit(WalRcvDie, 0);

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(walreceiver probably never has
	 * any child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/* Properly accept or ignore signals the postmaster might send us */
	pqsignal(SIGHUP, WalRcvSigHupHandler);		/* set flag to read config
												 * file */
	pqsignal(SIGINT, SIG_IGN);
	pqsignal(SIGTERM, WalRcvShutdownHandler);	/* request shutdown */
	pqsignal(SIGQUIT, WalRcvQuickDieHandler);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN);
	pqsignal(SIGUSR2, SIG_IGN);

	/* Reset some signals that are accepted by postmaster but not here */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/* Load the libpq-specific functions */
	load_file("libpqwalreceiver", false);
	if (walrcv_connect == NULL || walrcv_receive == NULL ||
		walrcv_disconnect == NULL)
		elog(ERROR, "libpqwalreceiver didn't initialize correctly");

	/*
	 * Create a resource owner to keep track of our resources (not clear that
	 * we need this, but may as well have one).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Receiver");

	/* Unblock signals (they were blocked when the postmaster forked us) */
	PG_SETMASK(&UnBlockSig);

	/* Establish the connection to the primary for XLOG streaming */
	EnableWalRcvImmediateExit();
	walrcv_connect(conninfo, startpoint);
	DisableWalRcvImmediateExit();

	/* Loop until end-of-streaming or error */
	for (;;)
	{
		unsigned char type;
		char	   *buf;
		int			len;

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (!PostmasterIsAlive(true))
			exit(1);

		/*
		 * Exit walreceiver if we're not in recovery. This should not happen,
		 * but cross-check the status here.
		 */
		if (!RecoveryInProgress())
			ereport(FATAL,
					(errmsg("cannot continue WAL streaming, recovery has already ended")));

		/* Process any requests or signals received recently */
		ProcessWalRcvInterrupts();

		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}

		/* Wait a while for data to arrive */
		if (walrcv_receive(NAPTIME_PER_CYCLE, &type, &buf, &len))
		{
			/* Accept the received data, and process it */
			XLogWalRcvProcessMsg(type, buf, len);

			/* Receive any more data we can without sleeping */
			while (walrcv_receive(0, &type, &buf, &len))
				XLogWalRcvProcessMsg(type, buf, len);

			/*
			 * If we've written some records, flush them to disk and let the
			 * startup process know about them.
			 */
			XLogWalRcvFlush();
		}
	}
}
Beispiel #27
0
Datei: fts.c Projekt: LJoNe/gpdb
/*
 * FtsProbeMain
 */
NON_EXEC_STATIC void
ftsMain(int argc, char *argv[])
{
	sigjmp_buf	local_sigjmp_buf;
	char	   *fullpath;

	IsUnderPostmaster = true;
	am_ftsprobe = true;

	/* Stay away from PMChildSlot */
	MyPMChildSlot = -1;

	/* reset MyProcPid */
	MyProcPid = getpid();
	
	/* Lose the postmaster's on-exit routines */
	on_exit_reset();

	/* Identify myself via ps */
	init_ps_display("ftsprobe process", "", "", "");

	SetProcessingMode(InitProcessing);

	/*
	 * reread postgresql.conf if requested
	 */
	pqsignal(SIGHUP, sigHupHandler);

	/*
	 * Presently, SIGINT will lead to autovacuum shutdown, because that's how
	 * we handle ereport(ERROR).  It could be improved however.
	 */
	pqsignal(SIGINT, ReqFtsFullScan);		/* request full-scan */
	pqsignal(SIGTERM, die);
	pqsignal(SIGQUIT, quickdie); /* we don't do any ftsprobe specific cleanup, just use the standard. */
	pqsignal(SIGALRM, handle_sig_alarm);

	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, procsignal_sigusr1_handler);
	/* We don't listen for async notifies */
	pqsignal(SIGUSR2, RequestShutdown);
	pqsignal(SIGFPE, FloatExceptionHandler);
	pqsignal(SIGCHLD, SIG_DFL);

	/*
	 * Copied from bgwriter
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "FTS Probe");

	/* Early initialization */
	BaseInit();

	/* See InitPostgres()... */
	InitProcess();	
	InitBufferPoolBackend();
	InitXLOGAccess();

	SetProcessingMode(NormalProcessing);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * See notes in postgres.c about the design of this coding.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Prevents interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * We can now go away.	Note that because we'll call InitProcess, a
		 * callback will be registered to do ProcKill, which will clean up
		 * necessary state.
		 */
		proc_exit(0);
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	PG_SETMASK(&UnBlockSig);

	/*
	 * Add my PGPROC struct to the ProcArray.
	 *
	 * Once I have done this, I am visible to other backends!
	 */
	InitProcessPhase2();

	/*
	 * Initialize my entry in the shared-invalidation manager's array of
	 * per-backend data.
	 *
	 * Sets up MyBackendId, a unique backend identifier.
	 */
	MyBackendId = InvalidBackendId;

	SharedInvalBackendInit(false);

	if (MyBackendId > MaxBackends || MyBackendId <= 0)
		elog(FATAL, "bad backend id: %d", MyBackendId);

	/*
	 * bufmgr needs another initialization call too
	 */
	InitBufferPoolBackend();

	/* heap access requires the rel-cache */
	RelationCacheInitialize();
	InitCatalogCache();

	/*
	 * It's now possible to do real access to the system catalogs.
	 *
	 * Load relcache entries for the system catalogs.  This must create at
	 * least the minimum set of "nailed-in" cache entries.
	 */
	RelationCacheInitializePhase2();

	/*
	 * In order to access the catalog, we need a database, and a
	 * tablespace; our access to the heap is going to be slightly
	 * limited, so we'll just use some defaults.
	 */
	if (!FindMyDatabase(probeDatabase, &MyDatabaseId, &MyDatabaseTableSpace))
		ereport(FATAL,
				(errcode(ERRCODE_UNDEFINED_DATABASE),
				 errmsg("database \"%s\" does not exit", probeDatabase)));

	/* Now we can mark our PGPROC entry with the database ID */
	/* (We assume this is an atomic store so no lock is needed) */
	MyProc->databaseId = MyDatabaseId;

	fullpath = GetDatabasePath(MyDatabaseId, MyDatabaseTableSpace);

	SetDatabasePath(fullpath);

	RelationCacheInitializePhase3();

	/* shmem: publish probe pid */
	ftsProbeInfo->fts_probePid = MyProcPid;

	/* main loop */
	FtsLoop();

	/* One iteration done, go away */
	proc_exit(0);
}
Beispiel #28
0
/*
 * 
 * FileRepAckPrimary_StartReceiver
 */
void 
FileRepAckPrimary_StartReceiver(void)
{	
	int				status = STATUS_OK;
	struct timeval	currentTime;
	pg_time_t		beginTime = 0;
	pg_time_t		endTime = 0;	
	int				retval = 0;
	
	FileRep_InsertConfigLogEntry("start receiver ack");

	{
		char	tmpBuf[FILEREP_MAX_LOG_DESCRIPTION_LEN];
		
		snprintf(tmpBuf, sizeof(tmpBuf), "primary address(port) '%s(%d)' mirror address(port) '%s(%d)' ",
				 fileRepPrimaryHostAddress, 
				 fileRepPrimaryPort,
				 fileRepMirrorHostAddress, 
				 fileRepMirrorPort);
		
		FileRep_InsertConfigLogEntry(tmpBuf);
	}
		
	FileRepAckPrimary_ShmemReInit();
	
	Insist(fileRepRole == FileRepPrimaryRole);
	
	if (filerep_inject_listener_fault)
	{
		status = STATUS_ERROR;
		ereport(WARNING,
				(errmsg("mirror failure, "
						"injected fault by guc filerep_inject_listener_fault, "
						"failover requested"), 
				 FileRep_errcontext()));												
		
		FileRep_SetSegmentState(SegmentStateFault, FaultTypeMirror);
		FileRepSubProcess_SetState(FileRepStateFault);
		FileRepSubProcess_ProcessSignals();
		return;
	}
	
	status = FileRepConnServer_StartListener(
								 fileRepPrimaryHostAddress,
								 fileRepPrimaryPort);
	
	gettimeofday(&currentTime, NULL);
	beginTime = (pg_time_t) currentTime.tv_sec;
	
	while (1) {
		
		if (status != STATUS_OK) 
		{
			FileRep_SetSegmentState(SegmentStateFault, FaultTypeMirror);
			FileRepSubProcess_SetState(FileRepStateFault);
		}
		
		while (FileRepSubProcess_GetState() == FileRepStateFault) {
			
			FileRepSubProcess_ProcessSignals();
			pg_usleep(50000L); /* 50 ms */	
		}
		
		if (FileRepSubProcess_GetState() == FileRepStateShutdown) {
			
			break;
		}

		PG_SETMASK(&BlockSig);
		retval = FileRepConnServer_Select();	
		PG_SETMASK(&UnBlockSig);
		
		gettimeofday(&currentTime, NULL);
		endTime = (pg_time_t) currentTime.tv_sec;

		if ((endTime - beginTime) > gp_segment_connect_timeout) 
		{
			ereport(WARNING, 
					(errmsg("mirror failure, "
							"no connection was established from client from mirror, "
							"primary address(port) '%s(%d)' mirror address(port) '%s(%d)' timeout reached '%d' "
							"failover requested",
							fileRepPrimaryHostAddress, 
							fileRepPrimaryPort,
							fileRepMirrorHostAddress, 
							fileRepMirrorPort,
							gp_segment_connect_timeout),
					 errSendAlert(true),
					 FileRep_errcontext()));
			
			status = STATUS_ERROR;
			continue;
		}

		/* 
		 * check and process any signals received 
		 * The routine returns TRUE if the received signal requests
		 * process shutdown.
		 */
		if (FileRepSubProcess_ProcessSignals()) {
			continue;
		}
		
		if (retval < 0) {
			status = STATUS_ERROR;
			continue;
		}
		
		if (retval == 0) {
			continue;
		}
		
		Assert(retval > 0);
		
		status = FileRepConnServer_CreateConnection();
		
		if (status != STATUS_OK) {
			continue;
		}				
		
		status = FileRepConnServer_ReceiveStartupPacket();
		if (status != STATUS_OK) {
			continue;
		} 
		
		fileRepShmemArray[0]->state = FileRepStateInitialization;
		
		status = FileRepAckPrimary_RunReceiver();
		
	} // while(1)
			
	FileRepConnServer_CloseConnection();
	
	return;
}