nsresult
U2FSoftTokenManager::GetOrCreateWrappingKey(const UniquePK11SlotInfo& aSlot,
                                            const nsNSSShutDownPreventionLock& locker)
{
  MOZ_ASSERT(aSlot);
  if (NS_WARN_IF(!aSlot)) {
    return NS_ERROR_INVALID_ARG;
  }

  // Search for an existing wrapping key. If we find it,
  // store it for later and mark ourselves initialized.
  mWrappingKey = GetSymKeyByNickname(aSlot, mSecretNickname, locker);
  if (mWrappingKey) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Debug, ("U2F Soft Token Key found."));
    mInitialized = true;
    return NS_OK;
  }

  MOZ_LOG(gNSSTokenLog, LogLevel::Info,
          ("No keys found. Generating new U2F Soft Token wrapping key."));

  // We did not find an existing wrapping key, so we generate one in the
  // persistent database (e.g, Token).
  mWrappingKey = UniquePK11SymKey(
    PK11_TokenKeyGenWithFlags(aSlot.get(), CKM_AES_KEY_GEN,
                              /* default params */ nullptr,
                              kWrappingKeyByteLen,
                              /* empty keyid */ nullptr,
                              /* flags */ CKF_WRAP | CKF_UNWRAP,
                              /* attributes */ PK11_ATTR_TOKEN |
                              PK11_ATTR_PRIVATE,
                              /* wincx */ nullptr));

  if (NS_WARN_IF(!mWrappingKey)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to store wrapping key, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  SECStatus srv = PK11_SetSymKeyNickname(mWrappingKey.get(),
                                         mSecretNickname.get());
  if (NS_WARN_IF(srv != SECSuccess)) {
    MOZ_LOG(gNSSTokenLog, LogLevel::Warning,
            ("Failed to set nickname, NSS error #%d", PORT_GetError()));
    return NS_ERROR_FAILURE;
  }

  MOZ_LOG(gNSSTokenLog, LogLevel::Debug,
          ("Key stored, nickname set to %s.", mSecretNickname.get()));

  AbstractThread::MainThread()->Dispatch(NS_NewRunnableFunction(
                                           [] () {
                                             MOZ_ASSERT(NS_IsMainThread());
                                             Preferences::SetUint(PREF_U2F_NSSTOKEN_COUNTER, 0);
                                           }));

  return NS_OK;
}
Beispiel #2
0
/*
 * CreatePk11PinStore
 */
int
CreatePk11PinStore(Pk11PinStore **out, const char *tokenName, const char *pin)
{
    int err = PIN_SUCCESS;
    Pk11PinStore *store;

    do {

        store = (Pk11PinStore*)malloc(sizeof(Pk11PinStore));
        if (store == 0) { err = PIN_NOMEMORY; break; }

        /* Low-level init */
        store->key = 0;
        store->params = 0;
        store->crypt = 0;

        /* Use the tokenName to find a PKCS11 slot */
        store->slot = PK11_FindSlotByName((char *)tokenName);
        if (store->slot == 0) { err = PIN_NOSUCHTOKEN; break; }

        /* Check the password/PIN.  This allows access to the token */
        {
            SECStatus rv = PK11_CheckUserPassword(store->slot, (char *)pin);

            if (rv == SECSuccess)
                ;
            else if (rv == SECWouldBlock)
            {
                /* NSS returns a blocking error when the pin is wrong */
                err = PIN_INCORRECTPW;
                break;
            }
            else
            {
                err = PIN_SYSTEMERROR;
                break;
            }
        }

        /* Find the mechanism that this token can do */
        {
            const mech_item *tp;

            store->mech = 0;
            for(tp = table;tp < &table[MECH_TABLE_SIZE];tp++)
            {
                if (PK11_DoesMechanism(store->slot, tp->type))
                {
                    store->mech = (mech_item *)tp;
                    break;
                }
            }
            /* Default to a mechanism (probably on the internal token */
            if (store->mech == 0) {
                store->mech = &dflt_mech;
            }
        }

        /* Generate a key and parameters to do the encryption */
#if NSS_VMAJOR >= 3 && (NSS_VMINOR <= 9 || (NSS_VMINOR <= 10 && NSS_VPATCH == 0))
        store->key = PK11_KeyGen(store->slot, store->mech->type,
                       0, 0, 0);
#else
        store->key = PK11_TokenKeyGenWithFlags(store->slot, store->mech->type,
                     NULL, 0, NULL, CKF_ENCRYPT|CKF_DECRYPT, PR_FALSE, NULL);
#endif
        if (store->key == 0)
        {
            /* PR_SetError(xxx); */
            err = PIN_SYSTEMERROR;
            break;
        }

        store->params = PK11_GenerateNewParam(store->mech->type, store->key);
        if (store->params == 0)
        {
            err = PIN_SYSTEMERROR;
            break;
        }

        /* Compute the size of the encrypted data including necessary padding */
        {
            int blocksize = PK11_GetBlockSize(store->mech->type, 0);

            store->length = strlen(pin)+1;

            /* Compute padded size - 0 means stream cipher */
            if (blocksize != 0)
            {
                store->length += blocksize - (store->length % blocksize);
            }

            store->crypt = (unsigned char *)malloc(store->length);
            if (!store->crypt) { err = PIN_NOMEMORY; break; }
        }

        /* Encrypt */
        {
            unsigned char *plain;
            PK11Context *ctx;
            SECStatus rv;
            int outLen;

            plain = (unsigned char *)malloc(store->length);
            if (!plain) { err = PIN_NOMEMORY; break; }

            /* Pad with 0 bytes */
            memset(plain, 0, store->length);
            strcpy((char *)plain, pin);

            ctx = PK11_CreateContextBySymKey(store->mech->type, CKA_ENCRYPT,
                    store->key, store->params);
            if (!ctx) { err = PIN_SYSTEMERROR; break; }

            do {
                rv = PK11_CipherOp(ctx, store->crypt, &outLen, store->length,
                       plain, store->length);
                if (rv) break;

                rv = PK11_Finalize(ctx);
            } while(0);

            PK11_DestroyContext(ctx, PR_TRUE);
            memset(plain, 0, store->length);
            free(plain);

            if (rv) err = PIN_SYSTEMERROR;
        }
    } while(0);

    if (err)
    {
        DestroyPk11PinStore(store);
        store = 0;
    }

    *out = store;
    return err;
}
/*
 * SVRCORE_CreatePk11PinStore
 */
SVRCOREError
SVRCORE_CreatePk11PinStore(
  SVRCOREPk11PinStore **out,
  const char *tokenName, const char *pin)
{
  SVRCOREError err;
  SVRCOREPk11PinStore *store;

  do {
    err = SVRCORE_Success;

    store = (SVRCOREPk11PinStore*)malloc(sizeof *store);
    if (store == 0) { err = SVRCORE_NoMemory_Error; break; }

    /* Low-level init */
    store->slot = 0;
    store->key = 0;
    store->params = 0;
    store->crypt = 0;

    /* Use the tokenName to find a PKCS11 slot */
    store->slot = PK11_FindSlotByName((char *)tokenName);
    if (store->slot == 0) { err = SVRCORE_NoSuchToken_Error; break; }

    /* Check the password/PIN.  This allows access to the token */
    {
      SECStatus rv = PK11_CheckUserPassword(store->slot, (char *)pin);

      if (rv == SECSuccess)
        ;
      else if (rv == SECWouldBlock)
      {
        err = SVRCORE_IncorrectPassword_Error;
        break;
      }
      else
      {
        err = SVRCORE_System_Error;
        break;
      }
    }

    /* Find the mechanism that this token can do */
    {
      const mech_item *tp;

      store->mech = 0;
      for(tp = table;tp < &table[MECH_TABLE_SIZE];tp++)
      {
        if (PK11_DoesMechanism(store->slot, tp->type))
        {
          store->mech = tp;
          break;
        }
      }
      /* Default to a mechanism (probably on the internal token */
      if (store->mech == 0)
        store->mech = &dflt_mech;
    }

    /* Generate a key and parameters to do the encryption */
    store->key = PK11_TokenKeyGenWithFlags(store->slot, store->mech->type,
                 0, 0, 0, CKF_ENCRYPT|CKF_DECRYPT,
                 0, 0);
    if (store->key == 0)
    {
      /* PR_SetError(xxx); */
      err = SVRCORE_System_Error;
      break;
    }

    store->params = PK11_GenerateNewParam(store->mech->type, store->key);
    if (store->params == 0)
    {
      err = SVRCORE_System_Error;
      break;
    }

    /* Compute the size of the encrypted data including necessary padding */
    {
      int blocksize = PK11_GetBlockSize(store->mech->type, 0);

      store->length = strlen(pin)+1;

      /* Compute padded size - 0 means stream cipher */
      if (blocksize != 0)
      {
        store->length += blocksize - (store->length % blocksize);
      }

      store->crypt = (unsigned char *)malloc(store->length);
      if (!store->crypt) { err = SVRCORE_NoMemory_Error; break; }
    }

    /* Encrypt */
    {
      unsigned char *plain;
      PK11Context *ctx;
      SECStatus rv;
      int outLen;

      plain = (unsigned char *)malloc(store->length);
      if (!plain) { err = SVRCORE_NoMemory_Error; break; }

      /* Pad with 0 bytes */
      memset(plain, 0, store->length);
      strcpy((char *)plain, pin);

      ctx = PK11_CreateContextBySymKey(store->mech->type, CKA_ENCRYPT,
              store->key, store->params);
      if (!ctx) { err = SVRCORE_System_Error; break; }

      do {
        rv = PK11_CipherOp(ctx, store->crypt, &outLen, store->length,
               plain, store->length);
        if (rv) break;

        rv = PK11_Finalize(ctx);
      } while(0);

      PK11_DestroyContext(ctx, PR_TRUE);
      memset(plain, 0, store->length);
      free(plain);

      if (rv) err = SVRCORE_System_Error;
    }
  } while(0);

  if (err)
  {
    SVRCORE_DestroyPk11PinStore(store);
    store = 0;
  }

  *out = store;
  return err;
}