word
pl_dde_poke(term_t handle, term_t item, term_t data, term_t timeout)
{ int hdl;
  char *datastr;
  HDDEDATA Hvalue;
  HSZ Hitem;
  long tmo;

  if ( !get_conv_handle(handle, &hdl) ||
       !get_hsz(item, &Hitem) )
    fail;
  if ( !PL_get_chars(data, &datastr, CVT_ALL) )
    return PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_text, data);
  if ( !PL_get_long(timeout, &tmo) )
    return PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_integer, timeout);

  if ( tmo <= 0 )
    tmo = TIMEOUT_VERY_LONG;

  Hvalue = DdeClientTransaction(datastr, strlen(datastr)+1,
				conv_handle[hdl], Hitem, CF_TEXT,
				XTYP_POKE, (DWORD)tmo, NULL);

  if ( !Hvalue )
    return dde_warning("poke");

  succeed;
}
word
pl_dde_request(term_t handle, term_t item,
	       term_t value, term_t timeout)
{ int hdl;
  int rval;
  int ddeErr;
  HSZ Hitem;
  DWORD result, valuelen;
  HDDEDATA Hvalue;
  long tmo;

  if ( !get_conv_handle(handle, &hdl) ||
       !get_hsz(item, &Hitem) )
    fail;
  if ( !PL_get_long(timeout, &tmo) )
    return PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_integer, timeout);

  if ( tmo <= 0 )
    tmo = TIMEOUT_VERY_LONG;

  Hvalue = DdeClientTransaction(NULL, 0, conv_handle[hdl], Hitem, CF_TEXT,
				XTYP_REQUEST, (DWORD)tmo, &result);
  ddeErr = DdeGetLastError(ddeInst);
  DdeFreeStringHandle(ddeInst, Hitem);

  if ( Hvalue)
  { char * valuebuf;
    char * valuedata;
    valuedata = DdeAccessData(Hvalue, &valuelen);
    valuebuf = (char *)malloc((size_t)valuelen+1);
    strncpy(valuebuf, valuedata, valuelen+1);
    DdeUnaccessData(Hvalue);
    valuebuf[valuelen] = EOS;
    rval = PL_unify_string_chars(value, valuebuf);
    free(valuebuf);
    return rval;
  } else
  { const char * errmsg = dde_error_message(ddeErr);

    return PL_unify_term(value,
			 PL_FUNCTOR, FUNCTOR_error1, /* error(Message) */
			 PL_CHARS,   errmsg);
  }
}
Beispiel #3
0
static PyObject *bip_sum(term_t t) {
  PyObject *seq;
  PyObject *result = NULL;
  PyObject *temp, *item, *iter;

  if (!PL_get_arg(1, t, t))
    return NULL;
  seq = term_to_python(t, true);
  iter = PyObject_GetIter(seq);
  if (iter == NULL)
    return NULL;

  if (result == NULL) {
#if PY_MAJOR_VERSION < 3
    result = PyInt_FromLong(0);
#else
    result = PyLong_FromLong(0);
#endif
    if (result == NULL) {
      Py_DECREF(iter);
      return NULL;
    }
  } else {
#if PY_MAJOR_VERSION < 3
    /* reject string values for 'start' parameter */
    if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
      PyErr_SetString(PyExc_TypeError,
                      "sum() can't sum strings [use ''.join(seq) instead]");
      Py_DECREF(iter);
      return NULL;
    }
    Py_INCREF(result);
#endif
  }

#ifndef SLOW_SUM
/* Fast addition by keeping temporary sums in C instead of new Python objects.
Assumes all inputs are the same type.  If the assumption fails, default
to the more general routine.
*/
#if PY_MAJOR_VERSION < 3
  if (PyInt_CheckExact(result)) {
    long i_result = PyInt_AS_LONG(result);
#else
  if (PyLong_CheckExact(result)) {
    long i_result = PyLong_AS_LONG(result);
#endif
    Py_DECREF(result);
    result = NULL;
    while (result == NULL) {
      item = PyIter_Next(iter);
      if (item == NULL) {
        Py_DECREF(iter);
        if (PyErr_Occurred())
          return NULL;
#if PY_MAJOR_VERSION < 3
        return PyInt_FromLong(i_result);
#else
        return PyLong_FromLong(i_result);
#endif
      }
#if PY_MAJOR_VERSION < 3
      if (PyInt_CheckExact(item)) {
        long b = PyInt_AS_LONG(item);
#else
      if (PyLong_CheckExact(item)) {
        long b = PyLong_AS_LONG(item);
#endif
        long x = i_result + b;
        if ((x ^ i_result) >= 0 || (x ^ b) >= 0) {
          i_result = x;
          Py_DECREF(item);
          continue;
        }
      }
/* Either overflowed or is not an int. Restore real objects and process normally
 */
#if PY_MAJOR_VERSION < 3
      result = PyInt_FromLong(i_result);
#else
      result = PyLong_FromLong(i_result);
#endif
      temp = PyNumber_Add(result, item);
      Py_DECREF(result);
      Py_DECREF(item);
      result = temp;
      if (result == NULL) {
        Py_DECREF(iter);
        return NULL;
      }
    }
  }

  if (PyFloat_CheckExact(result)) {
    double f_result = PyFloat_AS_DOUBLE(result);
    Py_DECREF(result);
    result = NULL;
    while (result == NULL) {
      item = PyIter_Next(iter);
      if (item == NULL) {
        Py_DECREF(iter);
        if (PyErr_Occurred())
          return NULL;
        return PyFloat_FromDouble(f_result);
      }
      if (PyFloat_CheckExact(item)) {
        PyFPE_START_PROTECT("add", Py_DECREF(item); Py_DECREF(iter); return 0)
            f_result += PyFloat_AS_DOUBLE(item);
        PyFPE_END_PROTECT(f_result) Py_DECREF(item);
        continue;
      }
#if PY_MAJOR_VERSION < 3
      if (PyInt_CheckExact(item)) {
        PyFPE_START_PROTECT("add", Py_DECREF(item); Py_DECREF(iter); return 0)
            f_result += (double)PyInt_AS_LONG(item);
        PyFPE_END_PROTECT(f_result) Py_DECREF(item);
        continue;
      }
#else
      if (PyLong_CheckExact(item)) {
        PyFPE_START_PROTECT("add", Py_DECREF(item); Py_DECREF(iter); return 0)
            f_result += PyLong_AsDouble(item);
        PyFPE_END_PROTECT(f_result) Py_DECREF(item);
        continue;
      }
#endif
      result = PyFloat_FromDouble(f_result);
      temp = PyNumber_Add(result, item);
      Py_DECREF(result);
      Py_DECREF(item);
      result = temp;
      if (result == NULL) {
        Py_DECREF(iter);
        return NULL;
      }
    }
#endif
  }

  for (;;) {
    item = PyIter_Next(iter);
    if (item == NULL) {
      /* error, or end-of-sequence */
      if (PyErr_Occurred()) {
        Py_DECREF(result);
        result = NULL;
      }
      break;
    }
    /* It's tempting to use PyNumber_InPlaceAdd instead of
    PyNumber_Add here, to avoid quadratic running time
    when doing 'sum(list_of_lists, [])'.  However, this
    would produce a change in behaviour: a snippet like

    empty = []
    sum([[x] for x in range(10)], empty)

    would change the value of empty. */
    temp = PyNumber_Add(result, item);
    Py_DECREF(result);
    Py_DECREF(item);
    result = temp;
    if (result == NULL)
      break;
  }
  Py_DECREF(iter);
  return result;
}

//@}

static long get_int(term_t arg, bool eval) {
  long low;

  if (!PL_get_long(arg, &low)) {
    PyObject *low = term_to_python(arg, eval);
    if (PyLong_Check(low)) {
      return PyLong_AsLong(low);
#if PY_MAJOR_VERSION < 3
    } else if (PyInt_Check(low)) {
      return PyInt_AsLong(low);
#endif
    } else {
      return 0;
    }
  }
  return low;
}

/* Return number of items in range/xrange (lo, hi, step).  step > 0
* required.  Return a value < 0 if & only if the true value is too
* large to fit in a signed long.
*/
static long get_len_of_range(long lo, long hi, long step) {
  /* -------------------------------------------------------------
  If lo >= hi, the range is empty.
  Else if n values are in the range, the last one is
  lo + (n-1)*step, which must be <= hi-1.  Rearranging,
  n <= (hi - lo - 1)/step + 1, so taking the floor of the RHS gives
  the proper value.  Since lo < hi in this case, hi-lo-1 >= 0, so
  the RHS is non-negative and so truncation is the same as the
  floor.  Letting M be the largest positive long, the worst case
  for the RHS numerator is hi=M, lo=-M-1, and then
  hi-lo-1 = M-(-M-1)-1 = 2*M.  Therefore unsigned long has enough
  precision to compute the RHS exactly.
  ---------------------------------------------------------------*/
  long n = 0;
  if (lo < hi) {
    unsigned long uhi = (unsigned long)hi;
    unsigned long ulo = (unsigned long)lo;
    unsigned long diff = uhi - ulo - 1;
    n = (long)(diff / (unsigned long)step + 1);
  }
  return n;
}