Beispiel #1
0
/*
 * If this is a process in a branded zone, then we want it to use the brand
 * syscall entry points instead of the standard Solaris entry points.  This
 * routine must be called when a new lwp is created within a branded zone
 * or when an existing lwp moves into a branded zone via a zone_enter()
 * operation.
 */
void
lwp_attach_brand_hdlrs(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);

	ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));

	ASSERT(removectx(t, NULL, brand_interpositioning_disable,
	    brand_interpositioning_enable, NULL, NULL,
	    brand_interpositioning_disable, NULL) == 0);
	installctx(t, NULL, brand_interpositioning_disable,
	    brand_interpositioning_enable, NULL, NULL,
	    brand_interpositioning_disable, NULL);

	if (t == curthread) {
		kpreempt_disable();
		brand_interpositioning_enable();
		kpreempt_enable();
	}
}
Beispiel #2
0
/*
 * If this is a process in a branded zone, then we want it to disable the
 * brand syscall entry points.  This routine must be called when the last
 * lwp in a process is exiting in proc_exit().
 */
void
lwp_detach_brand_hdlrs(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);

	ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
	if (t == curthread)
		kpreempt_disable();

	/* Remove the original context handlers */
	VERIFY(removectx(t, NULL, brand_interpositioning_disable,
	    brand_interpositioning_enable, NULL, NULL,
	    brand_interpositioning_disable, NULL) != 0);

	if (t == curthread) {
		/* Cleanup our MSR and IDT entries. */
		brand_interpositioning_disable();
		kpreempt_enable();
	}
}
Beispiel #3
0
/*
 * Return value:
 *   1 - exitlwps() failed, call (or continue) lwp_exit()
 *   0 - restarting init.  Return through system call path
 */
int
proc_exit(int why, int what)
{
	kthread_t *t = curthread;
	klwp_t *lwp = ttolwp(t);
	proc_t *p = ttoproc(t);
	zone_t *z = p->p_zone;
	timeout_id_t tmp_id;
	int rv;
	proc_t *q;
	task_t *tk;
	vnode_t *exec_vp, *execdir_vp, *cdir, *rdir;
	sigqueue_t *sqp;
	lwpdir_t *lwpdir;
	uint_t lwpdir_sz;
	tidhash_t *tidhash;
	uint_t tidhash_sz;
	ret_tidhash_t *ret_tidhash;
	refstr_t *cwd;
	hrtime_t hrutime, hrstime;
	int evaporate;

	/*
	 * Stop and discard the process's lwps except for the current one,
	 * unless some other lwp beat us to it.  If exitlwps() fails then
	 * return and the calling lwp will call (or continue in) lwp_exit().
	 */
	proc_is_exiting(p);
	if (exitlwps(0) != 0)
		return (1);

	mutex_enter(&p->p_lock);
	if (p->p_ttime > 0) {
		/*
		 * Account any remaining ticks charged to this process
		 * on its way out.
		 */
		(void) task_cpu_time_incr(p->p_task, p->p_ttime);
		p->p_ttime = 0;
	}
	mutex_exit(&p->p_lock);

	DTRACE_PROC(lwp__exit);
	DTRACE_PROC1(exit, int, why);

	/*
	 * Will perform any brand specific proc exit processing, since this
	 * is always the last lwp, will also perform lwp_exit and free brand
	 * data
	 */
	if (PROC_IS_BRANDED(p)) {
		lwp_detach_brand_hdlrs(lwp);
		brand_clearbrand(p, B_FALSE);
	}

	/*
	 * Don't let init exit unless zone_start_init() failed its exec, or
	 * we are shutting down the zone or the machine.
	 *
	 * Since we are single threaded, we don't need to lock the
	 * following accesses to zone_proc_initpid.
	 */
	if (p->p_pid == z->zone_proc_initpid) {
		if (z->zone_boot_err == 0 &&
		    zone_status_get(z) < ZONE_IS_SHUTTING_DOWN &&
		    zone_status_get(global_zone) < ZONE_IS_SHUTTING_DOWN &&
		    z->zone_restart_init == B_TRUE &&
		    restart_init(what, why) == 0)
			return (0);
		/*
		 * Since we didn't or couldn't restart init, we clear
		 * the zone's init state and proceed with exit
		 * processing.
		 */
		z->zone_proc_initpid = -1;
	}

	lwp_pcb_exit();

	/*
	 * Allocate a sigqueue now, before we grab locks.
	 * It will be given to sigcld(), below.
	 * Special case:  If we will be making the process disappear
	 * without a trace because it is either:
	 *	* an exiting SSYS process, or
	 *	* a posix_spawn() vfork child who requests it,
	 * we don't bother to allocate a useless sigqueue.
	 */
	evaporate = (p->p_flag & SSYS) || ((p->p_flag & SVFORK) &&
	    why == CLD_EXITED && what == _EVAPORATE);
	if (!evaporate)
		sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);

	/*
	 * revoke any doors created by the process.
	 */
	if (p->p_door_list)
		door_exit();

	/*
	 * Release schedctl data structures.
	 */
	if (p->p_pagep)
		schedctl_proc_cleanup();

	/*
	 * make sure all pending kaio has completed.
	 */
	if (p->p_aio)
		aio_cleanup_exit();

	/*
	 * discard the lwpchan cache.
	 */
	if (p->p_lcp != NULL)
		lwpchan_destroy_cache(0);

	/*
	 * Clean up any DTrace helper actions or probes for the process.
	 */
	if (p->p_dtrace_helpers != NULL) {
		ASSERT(dtrace_helpers_cleanup != NULL);
		(*dtrace_helpers_cleanup)();
	}

	/* untimeout the realtime timers */
	if (p->p_itimer != NULL)
		timer_exit();

	if ((tmp_id = p->p_alarmid) != 0) {
		p->p_alarmid = 0;
		(void) untimeout(tmp_id);
	}

	/*
	 * Remove any fpollinfo_t's for this (last) thread from our file
	 * descriptors so closeall() can ASSERT() that they're all gone.
	 */
	pollcleanup();

	if (p->p_rprof_cyclic != CYCLIC_NONE) {
		mutex_enter(&cpu_lock);
		cyclic_remove(p->p_rprof_cyclic);
		mutex_exit(&cpu_lock);
	}

	mutex_enter(&p->p_lock);

	/*
	 * Clean up any DTrace probes associated with this process.
	 */
	if (p->p_dtrace_probes) {
		ASSERT(dtrace_fasttrap_exit_ptr != NULL);
		dtrace_fasttrap_exit_ptr(p);
	}

	while ((tmp_id = p->p_itimerid) != 0) {
		p->p_itimerid = 0;
		mutex_exit(&p->p_lock);
		(void) untimeout(tmp_id);
		mutex_enter(&p->p_lock);
	}

	lwp_cleanup();

	/*
	 * We are about to exit; prevent our resource associations from
	 * being changed.
	 */
	pool_barrier_enter();

	/*
	 * Block the process against /proc now that we have really
	 * acquired p->p_lock (to manipulate p_tlist at least).
	 */
	prbarrier(p);

	sigfillset(&p->p_ignore);
	sigemptyset(&p->p_siginfo);
	sigemptyset(&p->p_sig);
	sigemptyset(&p->p_extsig);
	sigemptyset(&t->t_sig);
	sigemptyset(&t->t_extsig);
	sigemptyset(&p->p_sigmask);
	sigdelq(p, t, 0);
	lwp->lwp_cursig = 0;
	lwp->lwp_extsig = 0;
	p->p_flag &= ~(SKILLED | SEXTKILLED);
	if (lwp->lwp_curinfo) {
		siginfofree(lwp->lwp_curinfo);
		lwp->lwp_curinfo = NULL;
	}

	t->t_proc_flag |= TP_LWPEXIT;
	ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
	prlwpexit(t);		/* notify /proc */
	lwp_hash_out(p, t->t_tid);
	prexit(p);

	p->p_lwpcnt = 0;
	p->p_tlist = NULL;
	sigqfree(p);
	term_mstate(t);
	p->p_mterm = gethrtime();

	exec_vp = p->p_exec;
	execdir_vp = p->p_execdir;
	p->p_exec = NULLVP;
	p->p_execdir = NULLVP;
	mutex_exit(&p->p_lock);

	pr_free_watched_pages(p);

	closeall(P_FINFO(p));

	/* Free the controlling tty.  (freectty() always assumes curproc.) */
	ASSERT(p == curproc);
	(void) freectty(B_TRUE);

#if defined(__sparc)
	if (p->p_utraps != NULL)
		utrap_free(p);
#endif
	if (p->p_semacct)			/* IPC semaphore exit */
		semexit(p);
	rv = wstat(why, what);

	acct(rv & 0xff);
	exacct_commit_proc(p, rv);

	/*
	 * Release any resources associated with C2 auditing
	 */
	if (AU_AUDITING()) {
		/*
		 * audit exit system call
		 */
		audit_exit(why, what);
	}

	/*
	 * Free address space.
	 */
	relvm();

	if (exec_vp) {
		/*
		 * Close this executable which has been opened when the process
		 * was created by getproc().
		 */
		(void) VOP_CLOSE(exec_vp, FREAD, 1, (offset_t)0, CRED(), NULL);
		VN_RELE(exec_vp);
	}
	if (execdir_vp)
		VN_RELE(execdir_vp);

	/*
	 * Release held contracts.
	 */
	contract_exit(p);

	/*
	 * Depart our encapsulating process contract.
	 */
	if ((p->p_flag & SSYS) == 0) {
		ASSERT(p->p_ct_process);
		contract_process_exit(p->p_ct_process, p, rv);
	}

	/*
	 * Remove pool association, and block if requested by pool_do_bind.
	 */
	mutex_enter(&p->p_lock);
	ASSERT(p->p_pool->pool_ref > 0);
	atomic_add_32(&p->p_pool->pool_ref, -1);
	p->p_pool = pool_default;
	/*
	 * Now that our address space has been freed and all other threads
	 * in this process have exited, set the PEXITED pool flag.  This
	 * tells the pools subsystems to ignore this process if it was
	 * requested to rebind this process to a new pool.
	 */
	p->p_poolflag |= PEXITED;
	pool_barrier_exit();
	mutex_exit(&p->p_lock);

	mutex_enter(&pidlock);

	/*
	 * Delete this process from the newstate list of its parent. We
	 * will put it in the right place in the sigcld in the end.
	 */
	delete_ns(p->p_parent, p);

	/*
	 * Reassign the orphans to the next of kin.
	 * Don't rearrange init's orphanage.
	 */
	if ((q = p->p_orphan) != NULL && p != proc_init) {

		proc_t *nokp = p->p_nextofkin;

		for (;;) {
			q->p_nextofkin = nokp;
			if (q->p_nextorph == NULL)
				break;
			q = q->p_nextorph;
		}
		q->p_nextorph = nokp->p_orphan;
		nokp->p_orphan = p->p_orphan;
		p->p_orphan = NULL;
	}

	/*
	 * Reassign the children to init.
	 * Don't try to assign init's children to init.
	 */
	if ((q = p->p_child) != NULL && p != proc_init) {
		struct proc	*np;
		struct proc	*initp = proc_init;
		boolean_t	setzonetop = B_FALSE;

		if (!INGLOBALZONE(curproc))
			setzonetop = B_TRUE;

		pgdetach(p);

		do {
			np = q->p_sibling;
			/*
			 * Delete it from its current parent new state
			 * list and add it to init new state list
			 */
			delete_ns(q->p_parent, q);

			q->p_ppid = 1;
			q->p_pidflag &= ~(CLDNOSIGCHLD | CLDWAITPID);
			if (setzonetop) {
				mutex_enter(&q->p_lock);
				q->p_flag |= SZONETOP;
				mutex_exit(&q->p_lock);
			}
			q->p_parent = initp;

			/*
			 * Since q will be the first child,
			 * it will not have a previous sibling.
			 */
			q->p_psibling = NULL;
			if (initp->p_child) {
				initp->p_child->p_psibling = q;
			}
			q->p_sibling = initp->p_child;
			initp->p_child = q;
			if (q->p_proc_flag & P_PR_PTRACE) {
				mutex_enter(&q->p_lock);
				sigtoproc(q, NULL, SIGKILL);
				mutex_exit(&q->p_lock);
			}
			/*
			 * sigcld() will add the child to parents
			 * newstate list.
			 */
			if (q->p_stat == SZOMB)
				sigcld(q, NULL);
		} while ((q = np) != NULL);

		p->p_child = NULL;
		ASSERT(p->p_child_ns == NULL);
	}

	TRACE_1(TR_FAC_PROC, TR_PROC_EXIT, "proc_exit: %p", p);

	mutex_enter(&p->p_lock);
	CL_EXIT(curthread); /* tell the scheduler that curthread is exiting */

	/*
	 * Have our task accummulate our resource usage data before they
	 * become contaminated by p_cacct etc., and before we renounce
	 * membership of the task.
	 *
	 * We do this regardless of whether or not task accounting is active.
	 * This is to avoid having nonsense data reported for this task if
	 * task accounting is subsequently enabled. The overhead is minimal;
	 * by this point, this process has accounted for the usage of all its
	 * LWPs. We nonetheless do the work here, and under the protection of
	 * pidlock, so that the movement of the process's usage to the task
	 * happens at the same time as the removal of the process from the
	 * task, from the point of view of exacct_snapshot_task_usage().
	 */
	exacct_update_task_mstate(p);

	hrutime = mstate_aggr_state(p, LMS_USER);
	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
	p->p_utime = (clock_t)NSEC_TO_TICK(hrutime) + p->p_cutime;
	p->p_stime = (clock_t)NSEC_TO_TICK(hrstime) + p->p_cstime;

	p->p_acct[LMS_USER]	+= p->p_cacct[LMS_USER];
	p->p_acct[LMS_SYSTEM]	+= p->p_cacct[LMS_SYSTEM];
	p->p_acct[LMS_TRAP]	+= p->p_cacct[LMS_TRAP];
	p->p_acct[LMS_TFAULT]	+= p->p_cacct[LMS_TFAULT];
	p->p_acct[LMS_DFAULT]	+= p->p_cacct[LMS_DFAULT];
	p->p_acct[LMS_KFAULT]	+= p->p_cacct[LMS_KFAULT];
	p->p_acct[LMS_USER_LOCK] += p->p_cacct[LMS_USER_LOCK];
	p->p_acct[LMS_SLEEP]	+= p->p_cacct[LMS_SLEEP];
	p->p_acct[LMS_WAIT_CPU]	+= p->p_cacct[LMS_WAIT_CPU];
	p->p_acct[LMS_STOPPED]	+= p->p_cacct[LMS_STOPPED];

	p->p_ru.minflt	+= p->p_cru.minflt;
	p->p_ru.majflt	+= p->p_cru.majflt;
	p->p_ru.nswap	+= p->p_cru.nswap;
	p->p_ru.inblock	+= p->p_cru.inblock;
	p->p_ru.oublock	+= p->p_cru.oublock;
	p->p_ru.msgsnd	+= p->p_cru.msgsnd;
	p->p_ru.msgrcv	+= p->p_cru.msgrcv;
	p->p_ru.nsignals += p->p_cru.nsignals;
	p->p_ru.nvcsw	+= p->p_cru.nvcsw;
	p->p_ru.nivcsw	+= p->p_cru.nivcsw;
	p->p_ru.sysc	+= p->p_cru.sysc;
	p->p_ru.ioch	+= p->p_cru.ioch;

	p->p_stat = SZOMB;
	p->p_proc_flag &= ~P_PR_PTRACE;
	p->p_wdata = what;
	p->p_wcode = (char)why;

	cdir = PTOU(p)->u_cdir;
	rdir = PTOU(p)->u_rdir;
	cwd = PTOU(p)->u_cwd;

	ASSERT(cdir != NULL || p->p_parent == &p0);

	/*
	 * Release resource controls, as they are no longer enforceable.
	 */
	rctl_set_free(p->p_rctls);

	/*
	 * Decrement tk_nlwps counter for our task.max-lwps resource control.
	 * An extended accounting record, if that facility is active, is
	 * scheduled to be written.  We cannot give up task and project
	 * membership at this point because that would allow zombies to escape
	 * from the max-processes resource controls.  Zombies stay in their
	 * current task and project until the process table slot is released
	 * in freeproc().
	 */
	tk = p->p_task;

	mutex_enter(&p->p_zone->zone_nlwps_lock);
	tk->tk_nlwps--;
	tk->tk_proj->kpj_nlwps--;
	p->p_zone->zone_nlwps--;
	mutex_exit(&p->p_zone->zone_nlwps_lock);

	/*
	 * Clear the lwp directory and the lwpid hash table
	 * now that /proc can't bother us any more.
	 * We free the memory below, after dropping p->p_lock.
	 */
	lwpdir = p->p_lwpdir;
	lwpdir_sz = p->p_lwpdir_sz;
	tidhash = p->p_tidhash;
	tidhash_sz = p->p_tidhash_sz;
	ret_tidhash = p->p_ret_tidhash;
	p->p_lwpdir = NULL;
	p->p_lwpfree = NULL;
	p->p_lwpdir_sz = 0;
	p->p_tidhash = NULL;
	p->p_tidhash_sz = 0;
	p->p_ret_tidhash = NULL;

	/*
	 * If the process has context ops installed, call the exit routine
	 * on behalf of this last remaining thread. Normally exitpctx() is
	 * called during thread_exit() or lwp_exit(), but because this is the
	 * last thread in the process, we must call it here. By the time
	 * thread_exit() is called (below), the association with the relevant
	 * process has been lost.
	 *
	 * We also free the context here.
	 */
	if (p->p_pctx) {
		kpreempt_disable();
		exitpctx(p);
		kpreempt_enable();

		freepctx(p, 0);
	}

	/*
	 * curthread's proc pointer is changed to point to the 'sched'
	 * process for the corresponding zone, except in the case when
	 * the exiting process is in fact a zsched instance, in which
	 * case the proc pointer is set to p0.  We do so, so that the
	 * process still points at the right zone when we call the VN_RELE()
	 * below.
	 *
	 * This is because curthread's original proc pointer can be freed as
	 * soon as the child sends a SIGCLD to its parent.  We use zsched so
	 * that for user processes, even in the final moments of death, the
	 * process is still associated with its zone.
	 */
	if (p != t->t_procp->p_zone->zone_zsched)
		t->t_procp = t->t_procp->p_zone->zone_zsched;
	else
		t->t_procp = &p0;

	mutex_exit(&p->p_lock);
	if (!evaporate) {
		p->p_pidflag &= ~CLDPEND;
		sigcld(p, sqp);
	} else {
		/*
		 * Do what sigcld() would do if the disposition
		 * of the SIGCHLD signal were set to be ignored.
		 */
		cv_broadcast(&p->p_srwchan_cv);
		freeproc(p);
	}
	mutex_exit(&pidlock);

	/*
	 * We don't release u_cdir and u_rdir until SZOMB is set.
	 * This protects us against dofusers().
	 */
	if (cdir)
		VN_RELE(cdir);
	if (rdir)
		VN_RELE(rdir);
	if (cwd)
		refstr_rele(cwd);

	/*
	 * task_rele() may ultimately cause the zone to go away (or
	 * may cause the last user process in a zone to go away, which
	 * signals zsched to go away).  So prior to this call, we must
	 * no longer point at zsched.
	 */
	t->t_procp = &p0;

	kmem_free(lwpdir, lwpdir_sz * sizeof (lwpdir_t));
	kmem_free(tidhash, tidhash_sz * sizeof (tidhash_t));
	while (ret_tidhash != NULL) {
		ret_tidhash_t *next = ret_tidhash->rth_next;
		kmem_free(ret_tidhash->rth_tidhash,
		    ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t));
		kmem_free(ret_tidhash, sizeof (*ret_tidhash));
		ret_tidhash = next;
	}

	thread_exit();
	/* NOTREACHED */
}
Beispiel #4
0
/*
 * Add any lwp-associated context handlers to the lwp at the beginning
 * of the lwp's useful life.
 *
 * All paths which create lwp's invoke lwp_create(); lwp_create()
 * invokes lwp_stk_init() which initializes the stack, sets up
 * lwp_regs, and invokes this routine.
 *
 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
 * ends up in thread_free() which invokes freectx(t, 0) before
 * invoking lwp_stk_fini().  When the lwp is recycled from death
 * row, lwp_stk_fini() is invoked, then thread_free(), and thus
 * freectx(t, 0) as before.
 *
 * In the case of exec, the surviving lwp is thoroughly scrubbed
 * clean; exec invokes freectx(t, 1) to destroy associated contexts.
 * On the way back to the new image, it invokes setregs() which
 * in turn invokes this routine.
 */
void
lwp_installctx(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);
	int thisthread = t == curthread;
#ifdef _SYSCALL32_IMPL
	void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
	    lwp_segregs_restore : lwp_segregs_restore32;
#else
	void (*restop)(klwp_t *) = lwp_segregs_restore;
#endif

	/*
	 * Install the basic lwp context handlers on each lwp.
	 *
	 * On the amd64 kernel, the context handlers are responsible for
	 * virtualizing %ds, %es, %fs, and %gs to the lwp.  The register
	 * values are only ever changed via sys_rtt when the
	 * pcb->pcb_rupdate == 1.  Only sys_rtt gets to clear the bit.
	 *
	 * On the i386 kernel, the context handlers are responsible for
	 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
	 */
	ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
	    NULL, NULL, NULL, NULL) == 0);
	if (thisthread)
		kpreempt_disable();
	installctx(t, lwp, lwp_segregs_save, restop,
	    NULL, NULL, NULL, NULL);
	if (thisthread) {
		/*
		 * Since we're the right thread, set the values in the GDT
		 */
		restop(lwp);
		kpreempt_enable();
	}

	/*
	 * If we have sysenter/sysexit instructions enabled, we need
	 * to ensure that the hardware mechanism is kept up-to-date with the
	 * lwp's kernel stack pointer across context switches.
	 *
	 * sep_save zeros the sysenter stack pointer msr; sep_restore sets
	 * it to the lwp's kernel stack pointer (kstktop).
	 */
	if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
#if defined(__amd64)
		caddr_t kstktop = (caddr_t)lwp->lwp_regs;
#elif defined(__i386)
		caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) +
		    SA(sizeof (struct regs) + MINFRAME);
#endif
		ASSERT(removectx(t, kstktop,
		    sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);

		if (thisthread)
			kpreempt_disable();
		installctx(t, kstktop,
		    sep_save, sep_restore, NULL, NULL, NULL, NULL);
		if (thisthread) {
			/*
			 * We're the right thread, so set the stack pointer
			 * for the first sysenter instruction to use
			 */
			sep_restore(kstktop);
			kpreempt_enable();
		}
	}

	if (PROC_IS_BRANDED(ttoproc(t)))
		lwp_attach_brand_hdlrs(lwp);
}
Beispiel #5
0
/*
 * Wait system call.
 * Search for a terminated (zombie) child,
 * finally lay it to rest, and collect its status.
 * Look also for stopped children,
 * and pass back status from them.
 */
int
waitid(idtype_t idtype, id_t id, k_siginfo_t *ip, int options)
{
	int found;
	proc_t *cp, *pp;
	int proc_gone;
	int waitflag = !(options & WNOWAIT);

	/*
	 * Obsolete flag, defined here only for binary compatibility
	 * with old statically linked executables.  Delete this when
	 * we no longer care about these old and broken applications.
	 */
#define	_WNOCHLD	0400
	options &= ~_WNOCHLD;

	if (options == 0 || (options & ~WOPTMASK))
		return (EINVAL);

	switch (idtype) {
	case P_PID:
	case P_PGID:
		if (id < 0 || id >= maxpid)
			return (EINVAL);
		/* FALLTHROUGH */
	case P_ALL:
		break;
	default:
		return (EINVAL);
	}

	pp = ttoproc(curthread);

	/*
	 * Anytime you are looking for a process, you take pidlock to prevent
	 * things from changing as you look.
	 */
	mutex_enter(&pidlock);

	/*
	 * if we are only looking for exited processes and child_ns list
	 * is empty no reason to look at all children.
	 */
	if (idtype == P_ALL &&
	    (options & ~WNOWAIT) == (WNOHANG | WEXITED) &&
	    pp->p_child_ns == NULL) {
		if (pp->p_child) {
			mutex_exit(&pidlock);
			bzero(ip, sizeof (k_siginfo_t));
			return (0);
		}
		mutex_exit(&pidlock);
		return (ECHILD);
	}

	while (pp->p_child != NULL) {

		proc_gone = 0;

		for (cp = pp->p_child_ns; cp != NULL; cp = cp->p_sibling_ns) {
			if (idtype != P_PID && (cp->p_pidflag & CLDWAITPID))
				continue;
			if (idtype == P_PID && id != cp->p_pid)
				continue;
			if (idtype == P_PGID && id != cp->p_pgrp)
				continue;
			if (PROC_IS_BRANDED(pp)) {
				if (BROP(pp)->b_wait_filter != NULL &&
				    BROP(pp)->b_wait_filter(pp, cp) == B_FALSE)
					continue;
			}

			switch (cp->p_wcode) {

			case CLD_TRAPPED:
			case CLD_STOPPED:
			case CLD_CONTINUED:
				cmn_err(CE_PANIC,
				    "waitid: wrong state %d on the p_newstate"
				    " list", cp->p_wcode);
				break;

			case CLD_EXITED:
			case CLD_DUMPED:
			case CLD_KILLED:
				if (!(options & WEXITED)) {
					/*
					 * Count how many are already gone
					 * for good.
					 */
					proc_gone++;
					break;
				}
				if (!waitflag) {
					winfo(cp, ip, 0);
				} else {
					winfo(cp, ip, 1);
					freeproc(cp);
				}
				mutex_exit(&pidlock);
				if (waitflag) {		/* accept SIGCLD */
					sigcld_delete(ip);
					sigcld_repost();
				}
				return (0);
			}

			if (idtype == P_PID)
				break;
		}

		/*
		 * Wow! None of the threads on the p_sibling_ns list were
		 * interesting threads. Check all the kids!
		 */
		found = 0;
		for (cp = pp->p_child; cp != NULL; cp = cp->p_sibling) {
			if (idtype == P_PID && id != cp->p_pid)
				continue;
			if (idtype == P_PGID && id != cp->p_pgrp)
				continue;
			if (PROC_IS_BRANDED(pp)) {
				if (BROP(pp)->b_wait_filter != NULL &&
				    BROP(pp)->b_wait_filter(pp, cp) == B_FALSE)
					continue;
			}

			switch (cp->p_wcode) {
			case CLD_TRAPPED:
				if (!(options & WTRAPPED))
					break;
				winfo(cp, ip, waitflag);
				mutex_exit(&pidlock);
				if (waitflag) {		/* accept SIGCLD */
					sigcld_delete(ip);
					sigcld_repost();
				}
				return (0);

			case CLD_STOPPED:
				if (!(options & WSTOPPED))
					break;
				/* Is it still stopped? */
				mutex_enter(&cp->p_lock);
				if (!jobstopped(cp)) {
					mutex_exit(&cp->p_lock);
					break;
				}
				mutex_exit(&cp->p_lock);
				winfo(cp, ip, waitflag);
				mutex_exit(&pidlock);
				if (waitflag) {		/* accept SIGCLD */
					sigcld_delete(ip);
					sigcld_repost();
				}
				return (0);

			case CLD_CONTINUED:
				if (!(options & WCONTINUED))
					break;
				winfo(cp, ip, waitflag);
				mutex_exit(&pidlock);
				if (waitflag) {		/* accept SIGCLD */
					sigcld_delete(ip);
					sigcld_repost();
				}
				return (0);

			case CLD_EXITED:
			case CLD_DUMPED:
			case CLD_KILLED:
				if (idtype != P_PID &&
				    (cp->p_pidflag & CLDWAITPID))
					continue;
				/*
				 * Don't complain if a process was found in
				 * the first loop but we broke out of the loop
				 * because of the arguments passed to us.
				 */
				if (proc_gone == 0) {
					cmn_err(CE_PANIC,
					    "waitid: wrong state on the"
					    " p_child list");
				} else {
					break;
				}
			}

			found++;

			if (idtype == P_PID)
				break;
		}

		/*
		 * If we found no interesting processes at all,
		 * break out and return ECHILD.
		 */
		if (found + proc_gone == 0)
			break;

		if (options & WNOHANG) {
			mutex_exit(&pidlock);
			bzero(ip, sizeof (k_siginfo_t));
			/*
			 * We should set ip->si_signo = SIGCLD,
			 * but there is an SVVS test that expects
			 * ip->si_signo to be zero in this case.
			 */
			return (0);
		}

		/*
		 * If we found no processes of interest that could
		 * change state while we wait, we don't wait at all.
		 * Get out with ECHILD according to SVID.
		 */
		if (found == proc_gone)
			break;

		if (!cv_wait_sig_swap(&pp->p_cv, &pidlock)) {
			mutex_exit(&pidlock);
			return (EINTR);
		}
	}
	mutex_exit(&pidlock);
	return (ECHILD);
}