static Point makeScaledPoint(int x, int y) { Point rv; rv.x = PS2INCH(x); rv.y = PS2INCH(y); return rv; }
static Point makeScaledTransPoint(int x, int y, float dx, float dy) { Point rv; rv.x = PS2INCH(x) + dx; rv.y = PS2INCH(y) + dy; return rv; }
static Point makeScaledPoint(double x, double y) { Point rv; rv.x = PS2INCH(x); rv.y = PS2INCH(y); return rv; }
pointf cvt2ptf(point p) { pointf rv; rv.x = PS2INCH(p.x); rv.y = PS2INCH(p.y); return rv; }
static void attachPos (Agraph_t* g) { node_t* np; double* ps = N_NEW(2*agnnodes(g), double); for (np = agfstnode(g); np; np = agnxtnode(g, np)) { ND_pos(np) = ps; ps[0] = PS2INCH(ND_coord(np).x); ps[1] = PS2INCH(ND_coord(np).y); ps += 2; } }
/* setYInvert: * Set parameters used to flip coordinate system (y=0 at top). * Values do not need to be unset, since if Y_invert is set, it's * set for * all graphs during current run, so each will * reinitialize the values for its bbox. */ static void setYInvert(graph_t * g) { if (Y_invert) { Y_off = GD_bb(g).UR.y + GD_bb(g).LL.y; YF_off = PS2INCH(Y_off); } }
/* _write_plain: */ void write_plain(GVJ_t * job, graph_t * g, FILE * f, boolean extend) { int i, j, splinePoints; char *tport, *hport; node_t *n; edge_t *e; bezier bz; pointf pt; char *lbl; char* fillcolor; #ifdef WITH_CGRAPH putstr = g->clos->disc.io->putstr; #endif // setup_graph(job, g); setYInvert(g); pt = GD_bb(g).UR; printdouble(f, "graph ", job->zoom); printdouble(f, " ", PS2INCH(pt.x)); printdouble(f, " ", PS2INCH(pt.y)); agputc('\n', f); for (n = agfstnode(g); n; n = agnxtnode(g, n)) { if (IS_CLUST_NODE(n)) continue; printstring(f, "node ", agcanonStr(agnameof(n))); printpoint(f, ND_coord(n)); if (ND_label(n)->html) /* if html, get original text */ #ifndef WITH_CGRAPH lbl = agcanonStr (agxget(n, N_label->index)); #else lbl = agcanonStr (agxget(n, N_label)); #endif else lbl = canon(agraphof(n),ND_label(n)->text); printdouble(f, " ", ND_width(n)); printdouble(f, " ", ND_height(n)); printstring(f, " ", lbl); printstring(f, " ", late_nnstring(n, N_style, "solid")); printstring(f, " ", ND_shape(n)->name); printstring(f, " ", late_nnstring(n, N_color, DEFAULT_COLOR)); fillcolor = late_nnstring(n, N_fillcolor, ""); if (fillcolor[0] == '\0') fillcolor = late_nnstring(n, N_color, DEFAULT_FILL); printstring(f, " ", fillcolor); agputc('\n', f); }
/* makeInfo: * For each node in the graph, create a Info data structure */ static int makeInfo(Agraph_t * graph) { Agnode_t *node; int i; Info_t *ip; expand_t pmargin; int (*polyf)(Poly *, Agnode_t *, float, float); nsites = agnnodes(graph); geominit(); nodeInfo = N_GNEW(nsites, Info_t); node = agfstnode(graph); ip = nodeInfo; pmargin = sepFactor (graph); if (pmargin.doAdd) { polyf = makeAddPoly; /* we need inches for makeAddPoly */ pmargin.x = PS2INCH(pmargin.x); pmargin.y = PS2INCH(pmargin.y); } else polyf = makePoly; for (i = 0; i < nsites; i++) { ip->site.coord.x = ND_pos(node)[0]; ip->site.coord.y = ND_pos(node)[1]; if (polyf(&ip->poly, node, pmargin.x, pmargin.y)) { free (nodeInfo); nodeInfo = NULL; return 1; } ip->site.sitenbr = i; ip->site.refcnt = 1; ip->node = node; ip->verts = NULL; node = agnxtnode(graph, node); ip++; } return 0; }
static void rec_attach_bb(graph_t * g, Agsym_t* bbsym) { int c; char buf[BUFSIZ]; pointf pt; sprintf(buf, "%.5g,%.5g,%.5g,%.5g", GD_bb(g).LL.x, YDIR(GD_bb(g).LL.y), GD_bb(g).UR.x, YDIR(GD_bb(g).UR.y)); agxset(g, bbsym, buf); if (GD_label(g) && GD_label(g)->text[0]) { pt = GD_label(g)->pos; sprintf(buf, "%.5g,%.5g", pt.x, YDIR(pt.y)); agset(g, "lp", buf); pt = GD_label(g)->dimen; sprintf(buf, "%.2f", PS2INCH(pt.x)); agset (g, "lwidth", buf); sprintf(buf, "%.2f", PS2INCH(pt.y)); agset (g, "lheight", buf); } for (c = 1; c <= GD_n_cluster(g); c++) rec_attach_bb(GD_clust(g)[c], bbsym); }
void epsf_init(node_t* n) { char *str,*contents; char line[BUFSIZ]; FILE *fp; struct stat statbuf; int i, saw_bb; int lx,ly,ux,uy; epsf_t *desc; str = agget(n,"shapefile"); if (str && str[0] && (fp = fopen(str,"r"))) { /* try to find size */ saw_bb = FALSE; while (fgets(line, sizeof(line), fp)) { if (sscanf(line,"%%%%BoundingBox: %d %d %d %d",&lx,&ly,&ux,&uy) == 4) { saw_bb = TRUE; break; } } if (saw_bb) { n->u.width = PS2INCH(ux - lx); n->u.height = PS2INCH(uy - ly); fstat(fileno(fp),&statbuf); i = N_EPSF_files++; n->u.shape_info = desc = NEW(epsf_t); desc->macro_id = i; desc->offset.x = -lx - (ux - lx)/2; desc->offset.y = -ly - (uy - ly)/2; contents = EPSF_contents[i] = malloc(statbuf.st_size); fseek(fp,0,SEEK_SET); fread(contents,statbuf.st_size,1,fp); fclose(fp); } } }
/* _write_plain: */ void write_plain(GVJ_t * job, graph_t * g, FILE * f, bool extend) { int i, j, splinePoints; char *tport, *hport; node_t *n; edge_t *e; bezier bz; point pt; char *lbl; // setup_graph(job, g); setYInvert(g); pt = GD_bb(g).UR; fprintf(f, "graph %.3f %.3f %.3f\n", job->zoom, PS2INCH(pt.x), PS2INCH(pt.y)); for (n = agfstnode(g); n; n = agnxtnode(g, n)) { if (IS_CLUST_NODE(n)) continue; fprintf(f, "node %s ", agcanonical(n->name)); printptf(f, ND_coord_i(n)); if (ND_label(n)->html) /* if html, get original text */ lbl = agxget(n, N_label->index); else lbl = ND_label(n)->text; if (lbl) lbl = agcanonical(lbl); else lbl = "\"\""; fprintf(f, " %.3f %.3f %s %s %s %s %s\n", ND_width(n), ND_height(n), lbl, late_nnstring(n, N_style, "solid"), ND_shape(n)->name, late_nnstring(n, N_color, DEFAULT_COLOR), late_nnstring(n, N_fillcolor, DEFAULT_FILL)); } for (n = agfstnode(g); n; n = agnxtnode(g, n)) { for (e = agfstout(g, n); e; e = agnxtout(g, e)) { if (extend && e->attr) { tport = e->attr[TAILX]; hport = e->attr[HEADX]; } else tport = hport = ""; if (ED_spl(e)) { splinePoints = 0; for (i = 0; i < ED_spl(e)->size; i++) { bz = ED_spl(e)->list[i]; splinePoints += bz.size; } fprintf(f, "edge "); writenodeandport(f, e->tail, tport); fprintf(f, " "); writenodeandport(f, e->head, hport); fprintf(f, " %d", splinePoints); for (i = 0; i < ED_spl(e)->size; i++) { bz = ED_spl(e)->list[i]; for (j = 0; j < bz.size; j++) printptf(f, bz.list[j]); } } if (ED_label(e)) { fprintf(f, " %s", agcanonical(ED_label(e)->text)); printptf(f, ED_label(e)->p); } fprintf(f, " %s %s\n", late_nnstring(e, E_style, "solid"), late_nnstring(e, E_color, DEFAULT_COLOR)); } } fprintf(f, "stop\n"); }
void sfdp_layout(graph_t * g) { int doAdjust; adjust_data am; int hops = -1; sfdp_init_graph(g); doAdjust = (Ndim == 2); if (agnnodes(g)) { Agraph_t **ccs; Agraph_t *sg; int ncc; int i; expand_t sep; pointf pad; spring_electrical_control ctrl = spring_electrical_control_new(); tuneControl (g, ctrl); #if (HAVE_GTS || HAVE_TRIANGLE) graphAdjustMode(g, &am, "prism0"); #else graphAdjustMode(g, &am, 0); #endif if ((am.mode == AM_PRISM) && doAdjust) { doAdjust = 0; /* overlap removal done in sfpd */ ctrl->overlap = am.value; ctrl->initial_scaling = am.scaling; sep = sepFactor(g); if (sep.doAdd) { pad.x = PS2INCH(sep.x); pad.y = PS2INCH(sep.y); } else { pad.x = PS2INCH(DFLT_MARGIN); pad.y = PS2INCH(DFLT_MARGIN); } } else { /* Turn off overlap removal in sfdp if prism not used */ ctrl->overlap = -1; } ccs = ccomps(g, &ncc, 0); if (ncc == 1) { sfdpLayout(g, ctrl, hops, pad); if (doAdjust) removeOverlapWith(g, &am); spline_edges(g); } else { pack_info pinfo; getPackInfo(g, l_node, CL_OFFSET, &pinfo); pinfo.doSplines = 1; for (i = 0; i < ncc; i++) { sg = ccs[i]; nodeInduce(sg); sfdpLayout(sg, ctrl, hops, pad); if (doAdjust) removeOverlapWith(sg, &am); setEdgeType(sg, ET_LINE); spline_edges(sg); } packSubgraphs(ncc, ccs, g, &pinfo); } for (i = 0; i < ncc; i++) { agdelete(g, ccs[i]); } free(ccs); spring_electrical_control_delete(ctrl); } dotneato_postprocess(g); }
static void printptf(FILE * f, point pt) { fprintf(f, " %.3f %.3f", PS2INCH(pt.x), PS2INCH(YDIR(pt.y))); }
void attach_attrs_and_arrows(graph_t* g, int* sp, int* ep) { int e_arrows; /* graph has edges with end arrows */ int s_arrows; /* graph has edges with start arrows */ int i, j, sides; char buf[BUFSIZ]; /* Used only for small strings */ unsigned char xbuffer[BUFSIZ]; /* Initial buffer for xb */ agxbuf xb; node_t *n; edge_t *e; point pt; e_arrows = s_arrows = 0; setYInvert(g); agxbinit(&xb, BUFSIZ, xbuffer); safe_dcl(g, g->proto->n, "pos", "", agnodeattr); safe_dcl(g, g->proto->n, "rects", "", agnodeattr); N_width = safe_dcl(g, g->proto->n, "width", "", agnodeattr); N_height = safe_dcl(g, g->proto->n, "height", "", agnodeattr); safe_dcl(g, g->proto->e, "pos", "", agedgeattr); if (GD_has_labels(g) & EDGE_LABEL) safe_dcl(g, g->proto->e, "lp", "", agedgeattr); if (GD_has_labels(g) & HEAD_LABEL) safe_dcl(g, g->proto->e, "head_lp", "", agedgeattr); if (GD_has_labels(g) & TAIL_LABEL) safe_dcl(g, g->proto->e, "tail_lp", "", agedgeattr); if (GD_label(g)) { safe_dcl(g, g, "lp", "", agraphattr); if (GD_label(g)->text[0]) { pt = GD_label(g)->p; sprintf(buf, "%d,%d", pt.x, YDIR(pt.y)); agset(g, "lp", buf); } } safe_dcl(g, g, "bb", "", agraphattr); for (n = agfstnode(g); n; n = agnxtnode(g, n)) { sprintf(buf, "%d,%d", ND_coord_i(n).x, YDIR(ND_coord_i(n).y)); agset(n, "pos", buf); sprintf(buf, "%.2f", PS2INCH(ND_ht_i(n))); agxset(n, N_height->index, buf); sprintf(buf, "%.2f", PS2INCH(ND_lw_i(n) + ND_rw_i(n))); agxset(n, N_width->index, buf); if (strcmp(ND_shape(n)->name, "record") == 0) { set_record_rects(n, ND_shape_info(n), &xb); agxbpop(&xb); /* get rid of last space */ agset(n, "rects", agxbuse(&xb)); } else { polygon_t *poly; int i; if (N_vertices && isPolygon(n)) { poly = (polygon_t *) ND_shape_info(n); sides = poly->sides; if (sides < 3) { char *p = agget(n, "samplepoints"); if (p) sides = atoi(p); else sides = 8; if (sides < 3) sides = 8; } for (i = 0; i < sides; i++) { if (i > 0) agxbputc(&xb, ' '); if (poly->sides >= 3) sprintf(buf, "%.3f %.3f", PS2INCH(poly->vertices[i].x), YFDIR(PS2INCH(poly->vertices[i].y))); else sprintf(buf, "%.3f %.3f", ND_width(n) / 2.0 * cos(i / (double) sides * PI * 2.0), YFDIR(ND_height(n) / 2.0 * sin(i / (double) sides * PI * 2.0))); agxbput(&xb, buf); } agxset(n, N_vertices->index, agxbuse(&xb)); } } if (State >= GVSPLINES) { for (e = agfstout(g, n); e; e = agnxtout(g, e)) { if (ED_edge_type(e) == IGNORED) continue; if (ED_spl(e) == NULL) continue; /* reported in postproc */ for (i = 0; i < ED_spl(e)->size; i++) { if (i > 0) agxbputc(&xb, ';'); if (ED_spl(e)->list[i].sflag) { s_arrows = 1; sprintf(buf, "s,%d,%d ", ED_spl(e)->list[i].sp.x, YDIR(ED_spl(e)->list[i].sp.y)); agxbput(&xb, buf); } if (ED_spl(e)->list[i].eflag) { e_arrows = 1; sprintf(buf, "e,%d,%d ", ED_spl(e)->list[i].ep.x, YDIR(ED_spl(e)->list[i].ep.y)); agxbput(&xb, buf); } for (j = 0; j < ED_spl(e)->list[i].size; j++) { if (j > 0) agxbputc(&xb, ' '); pt = ED_spl(e)->list[i].list[j]; sprintf(buf, "%d,%d", pt.x, YDIR(pt.y)); agxbput(&xb, buf); } } agset(e, "pos", agxbuse(&xb)); if (ED_label(e)) { pt = ED_label(e)->p; sprintf(buf, "%d,%d", pt.x, YDIR(pt.y)); agset(e, "lp", buf); } if (ED_head_label(e)) { pt = ED_head_label(e)->p; sprintf(buf, "%d,%d", pt.x, YDIR(pt.y)); agset(e, "head_lp", buf); } if (ED_tail_label(e)) { pt = ED_tail_label(e)->p; sprintf(buf, "%d,%d", pt.x, YDIR(pt.y)); agset(e, "tail_lp", buf); } } } } rec_attach_bb(g); agxbfree(&xb); if (HAS_CLUST_EDGE(g)) undoClusterEdges(g); *sp = s_arrows; *ep = e_arrows; }
/* scAdjust: * Scale the layout. * equal > 0 => scale uniformly in x and y to remove overlaps * equal = 0 => scale separately in x and y to remove overlaps * equal < 0 => scale down uniformly in x and y to remove excess space * The last assumes there are no overlaps at present. * Based on Marriott, Stuckey, Tam and He, * "Removing Node Overlapping in Graph Layout Using Constrained Optimization", * Constraints,8(2):143--172, 2003. */ int scAdjust(graph_t * g, int equal) { int nnodes = agnnodes(g); info *nlist = N_GNEW(nnodes, info); info *p = nlist; node_t *n; pointf s; int i; expand_t margin; pointf *aarr; int m; margin = sepFactor (g); if (margin.doAdd) { /* we use inches below */ margin.x = PS2INCH(margin.x); margin.y = PS2INCH(margin.y); } for (n = agfstnode(g); n; n = agnxtnode(g, n)) { double w2, h2; if (margin.doAdd) { w2 = (ND_width(n) / 2.0) + margin.x; h2 = (ND_height(n) / 2.0) + margin.y; } else { w2 = margin.x * ND_width(n) / 2.0; h2 = margin.y * ND_height(n) / 2.0; } p->pos.x = ND_pos(n)[0]; p->pos.y = ND_pos(n)[1]; p->bb.LL.x = p->pos.x - w2; p->bb.LL.y = p->pos.y - h2; p->bb.UR.x = p->pos.x + w2; p->bb.UR.y = p->pos.y + h2; p->wd2 = w2; p->ht2 = h2; p->np = n; p++; } if (equal < 0) { s.x = s.y = compress(nlist, nnodes); if (s.x == 0) { /* overlaps exist */ free(nlist); return 0; } fprintf(stderr, "compress %g \n", s.x); } else { aarr = mkOverlapSet(nlist, nnodes, &m); if (m == 0) { /* no overlaps */ free(aarr); free(nlist); return 0; } if (equal) { s.x = s.y = computeScale(aarr, m); } else { s = computeScaleXY(aarr, m); } free(aarr); } p = nlist; for (i = 0; i < nnodes; i++) { ND_pos(p->np)[0] = s.x * p->pos.x; ND_pos(p->np)[1] = s.y * p->pos.y; p++; } free(nlist); return 1; }
void printptf(std::string *str, point pt) { char tmpbuf[1000]; sprintf(tmpbuf," %.3f %.3f",PS2INCH(pt.x),PS2INCH(pt.y)); str->append(tmpbuf); }
int makeAddPoly(Poly * pp, Agnode_t * n, float xmargin, float ymargin) { int i; int sides; Point *verts; polygon_t *poly; boxf b; if (ND_clust(n)) { Point b; sides = 4; b.x = ND_width(n) / 2.0 + xmargin; b.y = ND_height(n) / 2.0 + ymargin; pp->kind = BOX; verts = N_GNEW(sides, Point); PUTPT(verts[0], b.x, b.y); PUTPT(verts[1], -b.x, b.y); PUTPT(verts[2], -b.x, -b.y); PUTPT(verts[3], b.x, -b.y); } else switch (shapeOf(n)) { case SH_POLY: poly = (polygon_t *) ND_shape_info(n); sides = poly->sides; if (streq(ND_shape(n)->name, "box")) pp->kind = BOX; else if (streq(ND_shape(n)->name, "polygon") && isBox(poly->vertices, sides)) pp->kind = BOX; else if ((poly->sides < 3) && poly->regular) pp->kind = CIRCLE; else pp->kind = 0; if (sides >= 3) { /* real polygon */ verts = N_GNEW(sides, Point); if (pp->kind == BOX) { /* To do an additive margin, we rely on knowing that * the vertices are CCW starting from the UR */ verts[0].x = PS2INCH(poly->vertices[0].x) + xmargin; verts[0].y = PS2INCH(poly->vertices[0].y) + ymargin; verts[1].x = PS2INCH(poly->vertices[1].x) - xmargin; verts[1].y = PS2INCH(poly->vertices[1].y) + ymargin; verts[2].x = PS2INCH(poly->vertices[2].x) - xmargin; verts[2].y = PS2INCH(poly->vertices[2].y) - ymargin; verts[3].x = PS2INCH(poly->vertices[3].x) + xmargin; verts[3].y = PS2INCH(poly->vertices[3].y) - ymargin; } else { for (i = 0; i < sides; i++) { double h = LEN(poly->vertices[i].x,poly->vertices[i].y); verts[i].x = poly->vertices[i].x * (1.0 + xmargin/h); verts[i].y = poly->vertices[i].y * (1.0 + ymargin/h); verts[i].x = PS2INCH(verts[i].x); verts[i].y = PS2INCH(verts[i].y); } } } else verts = genRound(n, &sides, xmargin, ymargin); break; case SH_RECORD: sides = 4; verts = N_GNEW(sides, Point); b = ((field_t *) ND_shape_info(n))->b; verts[0] = makeScaledTransPoint(b.LL.x, b.LL.y, -xmargin, -ymargin); verts[1] = makeScaledTransPoint(b.UR.x, b.LL.y, xmargin, -ymargin); verts[2] = makeScaledTransPoint(b.UR.x, b.UR.y, xmargin, ymargin); verts[3] = makeScaledTransPoint(b.LL.x, b.UR.y, -xmargin, ymargin); pp->kind = BOX; break; case SH_POINT: pp->kind = CIRCLE; verts = genRound(n, &sides, xmargin, ymargin); break; default: agerr(AGERR, "makeAddPoly: unknown shape type %s\n", ND_shape(n)->name); return 1; } pp->verts = verts; pp->nverts = sides; bbox(verts, sides, &pp->origin, &pp->corner); if (sides > maxcnt) maxcnt = sides; return 0; }
/* finalCC: * Set graph bounding box given list of connected * components, each with its bounding box set. * If c_cnt > 1, then pts != NULL and gives translations for components. * Add margin about whole graph unless isRoot is true. * Reposition nodes based on final position of * node's connected component. * Also, entire layout is translated to origin. */ static void finalCC(graph_t * g, int c_cnt, graph_t ** cc, point * pts, graph_t * rg, layout_info* infop) { attrsym_t * G_width = infop->G_width; attrsym_t * G_height = infop->G_height; graph_t *cg; box b, bb; boxf bbf; point pt; int margin; graph_t **cp = cc; point *pp = pts; int isRoot = (rg == infop->rootg); int isEmpty = 0; /* compute graph bounding box in points */ if (c_cnt) { cg = *cp++; BF2B(GD_bb(cg), bb); if (c_cnt > 1) { pt = *pp++; bb.LL.x += pt.x; bb.LL.y += pt.y; bb.UR.x += pt.x; bb.UR.y += pt.y; while ((cg = *cp++)) { BF2B(GD_bb(cg), b); pt = *pp++; b.LL.x += pt.x; b.LL.y += pt.y; b.UR.x += pt.x; b.UR.y += pt.y; bb.LL.x = MIN(bb.LL.x, b.LL.x); bb.LL.y = MIN(bb.LL.y, b.LL.y); bb.UR.x = MAX(bb.UR.x, b.UR.x); bb.UR.y = MAX(bb.UR.y, b.UR.y); } } } else { /* empty graph */ bb.LL.x = 0; bb.LL.y = 0; bb.UR.x = late_int(rg, G_width, POINTS(DEFAULT_NODEWIDTH), 3); bb.UR.y = late_int(rg, G_height, POINTS(DEFAULT_NODEHEIGHT), 3); isEmpty = 1; } if (GD_label(rg)) { point p; int d; isEmpty = 0; PF2P(GD_label(rg)->dimen, p); d = p.x - (bb.UR.x - bb.LL.x); if (d > 0) { /* height of label added below */ d /= 2; bb.LL.x -= d; bb.UR.x += d; } } if (isRoot || isEmpty) margin = 0; else margin = late_int (g, G_margin, CL_OFFSET, 0); pt.x = -bb.LL.x + margin; pt.y = -bb.LL.y + margin + GD_border(rg)[BOTTOM_IX].y; bb.LL.x = 0; bb.LL.y = 0; bb.UR.x += pt.x + margin; bb.UR.y += pt.y + margin + GD_border(rg)[TOP_IX].y; /* translate nodes */ if (c_cnt) { cp = cc; pp = pts; while ((cg = *cp++)) { point p; node_t *n; pointf del; if (pp) { p = *pp++; p.x += pt.x; p.y += pt.y; } else { p = pt; } del.x = PS2INCH(p.x); del.y = PS2INCH(p.y); for (n = agfstnode(cg); n; n = agnxtnode(cg, n)) { ND_pos(n)[0] += del.x; ND_pos(n)[1] += del.y; } } } bbf.LL.x = PS2INCH(bb.LL.x); bbf.LL.y = PS2INCH(bb.LL.y); bbf.UR.x = PS2INCH(bb.UR.x); bbf.UR.y = PS2INCH(bb.UR.y); BB(g) = bbf; }
/* _write_plain: */ void write_plain(GVJ_t * job, graph_t * g, FILE * f, boolean extend) { int i, j, splinePoints; char *tport, *hport; node_t *n; edge_t *e; bezier bz; pointf pt; char *lbl; char* fillcolor; putstr = g->clos->disc.io->putstr; // setup_graph(job, g); setYInvert(g); pt = GD_bb(g).UR; printdouble(f, "graph ", job->zoom); printdouble(f, " ", PS2INCH(pt.x)); printdouble(f, " ", PS2INCH(pt.y)); agputc('\n', f); for (n = agfstnode(g); n; n = agnxtnode(g, n)) { if (IS_CLUST_NODE(n)) continue; printstring(f, "node ", agcanonStr(agnameof(n))); printpoint(f, ND_coord(n)); if (ND_label(n)->html) /* if html, get original text */ lbl = agcanonStr (agxget(n, N_label)); else lbl = canon(agraphof(n),ND_label(n)->text); printdouble(f, " ", ND_width(n)); printdouble(f, " ", ND_height(n)); printstring(f, " ", lbl); printstring(f, " ", late_nnstring(n, N_style, "solid")); printstring(f, " ", ND_shape(n)->name); printstring(f, " ", late_nnstring(n, N_color, DEFAULT_COLOR)); fillcolor = late_nnstring(n, N_fillcolor, ""); if (fillcolor[0] == '\0') fillcolor = late_nnstring(n, N_color, DEFAULT_FILL); printstring(f, " ", fillcolor); agputc('\n', f); } for (n = agfstnode(g); n; n = agnxtnode(g, n)) { for (e = agfstout(g, n); e; e = agnxtout(g, e)) { if (extend) { //assuming these two attrs have already been created by cgraph if (!(tport = agget(e,"tailport"))) tport = ""; if (!(hport = agget(e,"headport"))) hport = ""; } else tport = hport = ""; if (ED_spl(e)) { splinePoints = 0; for (i = 0; i < ED_spl(e)->size; i++) { bz = ED_spl(e)->list[i]; splinePoints += bz.size; } printstring(f, NULL, "edge"); writenodeandport(f, agtail(e), tport); writenodeandport(f, aghead(e), hport); printint(f, " ", splinePoints); for (i = 0; i < ED_spl(e)->size; i++) { bz = ED_spl(e)->list[i]; for (j = 0; j < bz.size; j++) printpoint(f, bz.list[j]); } } if (ED_label(e)) { printstring(f, " ", canon(agraphof(agtail(e)),ED_label(e)->text)); printpoint(f, ED_label(e)->pos); } printstring(f, " ", late_nnstring(e, E_style, "solid")); printstring(f, " ", late_nnstring(e, E_color, DEFAULT_COLOR)); agputc('\n', f); } } agputs("stop\n", f); }
void attach_attrs_and_arrows(graph_t* g, int* sp, int* ep) { int e_arrows; /* graph has edges with end arrows */ int s_arrows; /* graph has edges with start arrows */ int i, j, sides; char buf[BUFSIZ]; /* Used only for small strings */ unsigned char xbuffer[BUFSIZ]; /* Initial buffer for xb */ agxbuf xb; node_t *n; edge_t *e; pointf ptf; int dim3 = (GD_odim(g) >= 3); Agsym_t* bbsym; gv_fixLocale (1); e_arrows = s_arrows = 0; setYInvert(g); agxbinit(&xb, BUFSIZ, xbuffer); safe_dcl(g, AGNODE, "pos", ""); safe_dcl(g, AGNODE, "rects", ""); N_width = safe_dcl(g, AGNODE, "width", ""); N_height = safe_dcl(g, AGNODE, "height", ""); safe_dcl(g, AGEDGE, "pos", ""); if (GD_has_labels(g) & NODE_XLABEL) safe_dcl(g, AGNODE, "xlp", ""); if (GD_has_labels(g) & EDGE_LABEL) safe_dcl(g, AGEDGE, "lp", ""); if (GD_has_labels(g) & EDGE_XLABEL) safe_dcl(g, AGEDGE, "xlp", ""); if (GD_has_labels(g) & HEAD_LABEL) safe_dcl(g, AGEDGE, "head_lp", ""); if (GD_has_labels(g) & TAIL_LABEL) safe_dcl(g, AGEDGE, "tail_lp", ""); if (GD_label(g)) { safe_dcl(g, AGRAPH, "lp", ""); safe_dcl(g, AGRAPH, "lwidth", ""); safe_dcl(g, AGRAPH, "lheight", ""); if (GD_label(g)->text[0]) { ptf = GD_label(g)->pos; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agset(g, "lp", buf); ptf = GD_label(g)->dimen; sprintf(buf, "%.2f", PS2INCH(ptf.x)); agset(g, "lwidth", buf); sprintf(buf, "%.2f", PS2INCH(ptf.y)); agset(g, "lheight", buf); } } bbsym = safe_dcl(g, AGRAPH, "bb", ""); for (n = agfstnode(g); n; n = agnxtnode(g, n)) { if (dim3) { int k; sprintf(buf, "%.5g,%.5g,%.5g", ND_coord(n).x, YDIR(ND_coord(n).y), POINTS_PER_INCH*(ND_pos(n)[2])); agxbput (&xb, buf); for (k = 3; k < GD_odim(g); k++) { sprintf(buf, ",%.5g", POINTS_PER_INCH*(ND_pos(n)[k])); agxbput (&xb, buf); } agset(n, "pos", agxbuse(&xb)); } else { sprintf(buf, "%.5g,%.5g", ND_coord(n).x, YDIR(ND_coord(n).y)); agset(n, "pos", buf); } sprintf(buf, "%.5g", PS2INCH(ND_ht(n))); agxset(n, N_height, buf); sprintf(buf, "%.5g", PS2INCH(ND_lw(n) + ND_rw(n))); agxset(n, N_width, buf); if (ND_xlabel(n) && ND_xlabel(n)->set) { ptf = ND_xlabel(n)->pos; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agset(n, "xlp", buf); } if (strcmp(ND_shape(n)->name, "record") == 0) { set_record_rects(n, ND_shape_info(n), &xb); agxbpop(&xb); /* get rid of last space */ agset(n, "rects", agxbuse(&xb)); } else { polygon_t *poly; int i; if (N_vertices && isPolygon(n)) { poly = (polygon_t *) ND_shape_info(n); sides = poly->sides; if (sides < 3) { char *p = agget(n, "samplepoints"); if (p) sides = atoi(p); else sides = 8; if (sides < 3) sides = 8; } for (i = 0; i < sides; i++) { if (i > 0) agxbputc(&xb, ' '); if (poly->sides >= 3) sprintf(buf, "%.5g %.5g", PS2INCH(poly->vertices[i].x), YFDIR(PS2INCH(poly->vertices[i].y))); else sprintf(buf, "%.5g %.5g", ND_width(n) / 2.0 * cos(i / (double) sides * M_PI * 2.0), YFDIR(ND_height(n) / 2.0 * sin(i / (double) sides * M_PI * 2.0))); agxbput(&xb, buf); } agxset(n, N_vertices, agxbuse(&xb)); } } if (State >= GVSPLINES) { for (e = agfstout(g, n); e; e = agnxtout(g, e)) { if (ED_edge_type(e) == IGNORED) continue; if (ED_spl(e) == NULL) continue; /* reported in postproc */ for (i = 0; i < ED_spl(e)->size; i++) { if (i > 0) agxbputc(&xb, ';'); if (ED_spl(e)->list[i].sflag) { s_arrows = 1; sprintf(buf, "s,%.5g,%.5g ", ED_spl(e)->list[i].sp.x, YDIR(ED_spl(e)->list[i].sp.y)); agxbput(&xb, buf); } if (ED_spl(e)->list[i].eflag) { e_arrows = 1; sprintf(buf, "e,%.5g,%.5g ", ED_spl(e)->list[i].ep.x, YDIR(ED_spl(e)->list[i].ep.y)); agxbput(&xb, buf); } for (j = 0; j < ED_spl(e)->list[i].size; j++) { if (j > 0) agxbputc(&xb, ' '); ptf = ED_spl(e)->list[i].list[j]; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agxbput(&xb, buf); } } agset(e, "pos", agxbuse(&xb)); if (ED_label(e)) { ptf = ED_label(e)->pos; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agset(e, "lp", buf); } if (ED_xlabel(e) && ED_xlabel(e)->set) { ptf = ED_xlabel(e)->pos; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agset(e, "xlp", buf); } if (ED_head_label(e)) { ptf = ED_head_label(e)->pos; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agset(e, "head_lp", buf); } if (ED_tail_label(e)) { ptf = ED_tail_label(e)->pos; sprintf(buf, "%.5g,%.5g", ptf.x, YDIR(ptf.y)); agset(e, "tail_lp", buf); } } } } rec_attach_bb(g, bbsym); agxbfree(&xb); if (HAS_CLUST_EDGE(g)) undoClusterEdges(g); *sp = s_arrows; *ep = e_arrows; gv_fixLocale (0); }
static void printpoint(FILE * f, pointf p) { printdouble(f, " ", PS2INCH(p.x)); printdouble(f, " ", PS2INCH(YDIR(p.y))); }
/* cAdjust: * Use optimization to remove overlaps. * Modifications; * - do y;x then x;y and use the better one * - for all overlaps (or if overlap with leftmost nodes), add a constraint; * constraint could move both x and y away, or the smallest, or some * mixture. * - follow by a scale down using actual shapes * We use an optimization based on Marriott, Stuckey, Tam and He, * "Removing Node Overlapping in Graph Layout Using Constrained Optimization", * Constraints,8(2):143--172, 2003. * We solve 2 constraint problem, one in X, one in Y. In each dimension, * we require relative positions to remain the same. That is, if two nodes * have the same x originally, they have the same x at the end, and if one * node is to the left of another, it remains to the left. In addition, if * two nodes could overlap by moving their X coordinates, we insert a constraint * to keep the two nodes sufficiently apart. Similarly, for Y. * * mode = AM_ORTHOXY => first X, then Y * mode = AM_ORTHOYX => first Y, then X * mode = AM_ORTHO => first X, then Y * mode = AM_ORTHO_YX => first Y, then X * In the last 2 cases, relax the constraints as follows: during the X pass, * if two nodes actually intersect and a smaller move in the Y direction * will remove the overlap, we don't force the nodes apart in the X direction, * but leave it for the Y pass to remove any remaining overlaps. Without this, * the X pass will remove all overlaps, and the Y pass only compresses in the * Y direction, causing a skewing of the aspect ratio. * * mode = AM_ORTHOXY => first X, then Y * mode = AM_ORTHOYX => first Y, then X * mode = AM_ORTHO => first X, then Y * mode = AM_ORTHO_YX => first Y, then X */ int cAdjust(graph_t * g, int mode) { expand_t margin; int ret, i, nnodes = agnnodes(g); nitem *nlist = N_GNEW(nnodes, nitem); nitem *p = nlist; node_t *n; margin = sepFactor (g); for (n = agfstnode(g); n; n = agnxtnode(g, n)) { initItem(n, p, margin); p++; } if (overlaps(nlist, nnodes)) { point pt; switch ((adjust_mode)mode) { case AM_ORTHOXY: constrainX(g, nlist, nnodes, intersectY, 1); constrainY(g, nlist, nnodes, intersectX, 1); break; case AM_ORTHOYX: constrainY(g, nlist, nnodes, intersectX, 1); constrainX(g, nlist, nnodes, intersectY, 1); break; case AM_ORTHO : constrainX(g, nlist, nnodes, intersectY0, 1); constrainY(g, nlist, nnodes, intersectX, 1); case AM_ORTHO_YX : constrainY(g, nlist, nnodes, intersectX0, 1); constrainX(g, nlist, nnodes, intersectY, 1); case AM_PORTHOXY: constrainX(g, nlist, nnodes, intersectY, 0); constrainY(g, nlist, nnodes, intersectX, 0); break; case AM_PORTHOYX: constrainY(g, nlist, nnodes, intersectX, 0); constrainX(g, nlist, nnodes, intersectY, 0); break; case AM_PORTHO_YX : constrainY(g, nlist, nnodes, intersectX0, 0); constrainX(g, nlist, nnodes, intersectY, 0); break; case AM_PORTHO : default : constrainX(g, nlist, nnodes, intersectY0, 0); constrainY(g, nlist, nnodes, intersectX, 0); break; } p = nlist; for (i = 0; i < nnodes; i++) { n = p->np; pt = p->pos; ND_pos(n)[0] = PS2INCH(pt.x) / SCALE; ND_pos(n)[1] = PS2INCH(pt.y) / SCALE; p++; } ret = 1; } else ret = 0; free(nlist); return ret; }
int makePoly(Poly * pp, Agnode_t * n, float xmargin, float ymargin) { int i; int sides; Point *verts; polygon_t *poly; boxf b; if (ND_clust(n)) { Point b; sides = 4; b.x = ND_width(n) / 2.0; b.y = ND_height(n) / 2.0; pp->kind = BOX; verts = N_GNEW(sides, Point); PUTPT(verts[0], b.x, b.y); PUTPT(verts[1], -b.x, b.y); PUTPT(verts[2], -b.x, -b.y); PUTPT(verts[3], b.x, -b.y); } else switch (shapeOf(n)) { case SH_POLY: poly = (polygon_t *) ND_shape_info(n); sides = poly->sides; if (sides >= 3) { /* real polygon */ verts = N_GNEW(sides, Point); for (i = 0; i < sides; i++) { verts[i].x = PS2INCH(poly->vertices[i].x); verts[i].y = PS2INCH(poly->vertices[i].y); } } else verts = genRound(n, &sides, 0, 0); if (streq(ND_shape(n)->name, "box")) pp->kind = BOX; else if (streq(ND_shape(n)->name, "polygon") && isBox(verts, sides)) pp->kind = BOX; else if ((poly->sides < 3) && poly->regular) pp->kind = CIRCLE; else pp->kind = 0; break; case SH_RECORD: sides = 4; verts = N_GNEW(sides, Point); b = ((field_t *) ND_shape_info(n))->b; verts[0] = makeScaledPoint(b.LL.x, b.LL.y); verts[1] = makeScaledPoint(b.UR.x, b.LL.y); verts[2] = makeScaledPoint(b.UR.x, b.UR.y); verts[3] = makeScaledPoint(b.LL.x, b.UR.y); pp->kind = BOX; break; case SH_POINT: pp->kind = CIRCLE; verts = genRound(n, &sides, 0, 0); break; default: agerr(AGERR, "makePoly: unknown shape type %s\n", ND_shape(n)->name); return 1; } #ifdef OLD if (margin != 0.0) inflatePts(verts, sides, margin); #else if ((xmargin != 1.0) || (ymargin != 1.0)) inflatePts(verts, sides, xmargin, ymargin); #endif pp->verts = verts; pp->nverts = sides; bbox(verts, sides, &pp->origin, &pp->corner); if (sides > maxcnt) maxcnt = sides; return 0; }
void attach_attrs(graph_t* g) { int i,j,sides; char buf[BUFSIZ],*p; node_t *n; edge_t *e; point pt; safe_dcl(g,g->proto->n,"pos","",agnodeattr); safe_dcl(g,g->proto->n,"rects","",agnodeattr); N_width = safe_dcl(g,g->proto->n,"width","",agnodeattr); N_height = safe_dcl(g,g->proto->n,"height","",agnodeattr); safe_dcl(g,g->proto->e,"pos","",agedgeattr); if (g->u.has_edge_labels) safe_dcl(g,g->proto->e,"lp","",agedgeattr); if (g->u.label) { safe_dcl(g,g,"lp","",agraphattr); pt = g->u.label->p; sprintf(buf,"%d,%d",pt.x,pt.y); agset(g,"lp",buf); } safe_dcl(g,g,"bb","",agraphattr); for (n = agfstnode(g); n; n = agnxtnode(g,n)) { sprintf(buf,"%d,%d",n->u.coord.x,n->u.coord.y); agset(n,"pos",buf); sprintf(buf,"%.2f",PS2INCH(n->u.ht)); agxset(n,N_height->index,buf); sprintf(buf,"%.2f",PS2INCH(n->u.lw + n->u.rw)); agxset(n,N_width->index,buf); if (strcmp (n->u.shape->name, "record") == 0) { buf[0] = '\000', rectbufp = &buf[0]; set_record_rects (n, (field_t *)(n->u.shape_info)); if (rectbufp > &buf[0]) /* get rid of last space */ *(--rectbufp) = '\000'; agset(n,"rects",buf); } else { extern void poly_init(node_t *); polygon_t *poly; int i; if (N_vertices && (n->u.shape->initfn == poly_init)) { poly = (polygon_t*) n->u.shape_info; p = buf; sides = poly->sides; if (sides < 3) { char *p = agget(n,"samplepoints"); if (p) sides = atoi(p); else sides = 8; if (sides < 3) sides = 8; } for (i = 0; i < sides; i++) { if (i > 0) {*p++ = ' ';} if (poly->sides >= 3) sprintf(p,"%.3lf %.3lf", poly->vertices[i].x,poly->vertices[i].y); else sprintf(p,"%.3lf %.3lf", n->u.width/2.0 * cos(i/(double)sides * PI * 2.0), n->u.height/2.0 * sin(i/(double)sides * PI * 2.0)); while (*p) p++; } agxset(n,N_vertices->index,buf); } } for (e = agfstout(g,n); e; e = agnxtout(g,e)) { p = buf; if (e->u.spl == NULL) {fprintf(stderr,"lost spline of %s %s\n",e->tail->name,e->head->name); continue;} for (i = 0; i < e->u.spl->size; i++) { if (i > 0) *p++ = ';'; if (e->u.spl->list[i].sflag) { sprintf (p, "s,%d,%d ",e->u.spl->list[i].sp.x,e->u.spl->list[i].sp.y); while (*p) p++; } if (e->u.spl->list[i].eflag) { sprintf (p, "e,%d,%d ",e->u.spl->list[i].ep.x,e->u.spl->list[i].ep.y); while (*p) p++; } for (j = 0; j < e->u.spl->list[i].size; j++) { if (j > 0) *p++ = ' '; pt = e->u.spl->list[i].list[j]; sprintf(p,"%d,%d",pt.x,pt.y); while (*p) p++; } *p = '\0'; } agset(e,"pos",buf); if (e->u.label) { pt = e->u.label->p; sprintf(buf,"%d,%d",pt.x,pt.y); agset(e,"lp",buf); } } } rec_attach_bb(g); }