Beispiel #1
0
void ResizeImageTransformer<Dtype>::SampleTransformParams(const vector<int>& in_shape) {
  ImageTransformer<Dtype>::SampleTransformParams(in_shape);
  CHECK_GE(in_shape.size(), 2);
  CHECK_LE(in_shape.size(), 4);
  int in_width = in_shape[in_shape.size() - 1];
  int in_height = in_shape[in_shape.size() - 2];

  if (param_.width_size()) {
    SampleFixedIndependent();
  } else if (param_.size_size()) {
    SampleFixedTied();
  } else if (param_.width_perc_size()) {
    SamplePercIndependent(in_width, in_height);
  } else if (param_.size_perc_size()) {
    SamplePercTied(in_width, in_height);
  } else {
    CHECK(0) << "Invalid resize param";
  }
  PrintParams();
}
Beispiel #2
0
//---------------------------------------------------------
bool MPI_Solver :: MPI_ConseqSolve( int argc, char **argv )
{
// read all cnf in current dir and start then in conseq mode
	std::string dir = std::string(".");
	int cnf_count = 0;
	std::vector<std::string> files;
	std::vector<std::string> cnf_files;
	std::fstream out_file;
	int current_obj_val = -1;
	unsigned long long process_sat_count= 0;
	double cnf_time_from_node;
	//PBSolver_cut pbs_cut;
	std::stringstream solve_sstream;
	double start_sec;
	double final_sec;
	Solver *S;
	std::vector<std::vector<bool>> interrupted_problems_var_values_from_process, sat_assignments_from_process;

	// MPI start
	//MPI_Request request;
	int corecount = 10, rank = 0;
	/*MPI_Init( &argc, &argv );
	MPI_Comm_size( MPI_COMM_WORLD, &corecount );
	MPI_Comm_rank( MPI_COMM_WORLD, &rank );*/

	files     = std::vector<std::string>( );
	cnf_files = std::vector<std::string>( );
	// get all files in current dir
	getdir( dir, files );

	for ( unsigned i = 0; i < files.size( ); i++ ) {
		if ( files[i].find( ".cnf" ) != std::string::npos ) {
			cnf_count++;
			cnf_files.push_back( files[i] );
			if ( rank == 0 ) 
				std::cout << std::endl << "founded cnf " << files[i].c_str( );
		}
	}

	if ( cnf_count > corecount ) {
		if ( rank == 0 ) {
			std::cout << std::endl << "Warning. Count of cnf-file > corecount";
			std::cout << std::endl << "Only first " << corecount << " cnf will be processed";
			std::cout << std::endl << "cnf_count changed to corecount";
		}
		cnf_count = corecount;
	}
	else if ( cnf_count == 0 ) {
		if ( rank == 0 ) std::cout << std::endl << "Error. No cnf-files in dir";
		return false;
	}

	if ( rank > cnf_count - 1 ) 
		std::cout << std::endl << "core # " << rank << " with no job";
	else {// do job
		std::stringstream sstream;
		sstream << "answer_" << rank + 1;
		std::string out_file_name = sstream.str( );
		sstream.str( "" );
		sstream.clear();
		
		start_sec = MPI_Wtime( ); // get init time
		input_cnf_name = &cnf_files[rank][0]; // set current name of file
		std::cout << std::endl << "input_cnf_name is " << input_cnf_name;
		unsigned int zero_mask[FULL_MASK_LEN];
		for ( int i = 0; i < FULL_MASK_LEN; i++ )
			zero_mask[i] = 0;
		if ( !ReadIntCNF( ) ) { // Read original CNF 
			std::cout << "\n Error in ReadIntCNF" << std::endl; return 1;
		}
		std::cout << std::endl << "end of ReadIntCNF";
		if ( rank == 0 ) 
			PrintParams( );
		if ( !IsPB ) {
			int current_task_index = 0;
			std::cout << std::endl << std::endl << "Standart mode of SAT solving";
			if ( !SolverRun( S, process_sat_count, cnf_time_from_node, current_task_index, 
				             interrupted_problems_var_values_from_process, sat_assignments_from_process ) ) 
			{
				std::cout << std::endl << "Error in SolverRun"; 
				return false;
			}
			if ( process_sat_count ) {
				if ( !AnalyzeSATset( cnf_time_from_node ) ) {
					// is't needed to deallocate memory - MPI_Abort will do it	
					std::cout << "\n Error in Analyzer" << std::endl;
					MPI_Abort( MPI_COMM_WORLD, 0 );
					return false;
				}
			}
		}
		
		final_sec = MPI_Wtime( ) - start_sec;
		
		sstream << input_cnf_name << " " << final_sec << " sec" << std::endl;
		out_file.open( out_file_name.c_str( ), std::ios_base :: out ); // open and clear out file
		out_file << sstream.rdbuf( );
		out_file << solve_sstream.rdbuf( );
		std::cout << std::endl << "*** sstream " << sstream.str( );
		std::cout << std::endl << "*** solve_sstream " << solve_sstream.str( );
		out_file.close( ); 		
	}

	MPI_Finalize( ); // MPI end

	std::cout << std::endl << "End of ControlConseqProcessSolve";
	return true;
}
Beispiel #3
0
int main(int argc, char* argv[]){

// Start timing!
	boost::timer::cpu_timer myTimer;
	
	cout << endl;
	cout << "BEGIN" << endl;
	
// BEGIN: setup	

	FIELDCONTAINER field;
	DATA params;
	GRIDINFO grid;
	LAPLACIANSTENCIL stencil;
	
	

	// Read in parameter files & populate "params"
	GetParams(argc,argv,&params);
	CheckParams(&params);
	
	if( params.flag == 0){
	
		// Use info to setup "grid" and "field" struct
		SetupGrid(&grid, &params);
		SetupField(&params, &field);
		SetupLaplacianStencil(&params, &stencil);
		
		// Print params to screen & logfile
		ofstream logout;
		logout.open(params.OutDir + params.RunID + "_log.dat");
		PrintParams(cout, &params, &stencil, 0);	
		PrintParams(logout, &params, &stencil, 0);	
		logout.close();
		
// END: setup	

// BEGIN: solving

		// Setup initial conditions
		InitialConditions(&params, &grid, &field);
		// Solve field equation
		SolveKG3D(&params, &grid, &field, &stencil);
		// Delete arrays
		field.CleanField(&field);
	
// END: solving

// BEGIN: feedback

		myTimer.stop();
		params.TotalRunTime = myTimer.elapsed().wall / 1e6;
		logout.open(params.OutDir + params.RunID + "_log.dat",std::ofstream::app);
		PrintParams(cout, &params, &stencil, 1);	
		PrintParams(logout, &params, &stencil, 1);	
		logout.close();
		
// END: feedback
		
	} // END if( params.flag == 0){}

	
}// end main()
Beispiel #4
0
bool MPI_Solver :: ControlProcessSolve( std::vector<int> extern_var_choose_order, 
									    std::vector<std::vector<bool>> &interrupted_problems_var_values,
										std::vector<satisfying_assignment> &satisfying_assignments )
{
	interrupted_problems_var_values.clear();
	std::vector<bool> cur_interrupted_problems_var_values;
	satisfying_assignment cur_satisfying_assignment;
	std::cout << std::endl << "ControlProcessSolve is running" << std::endl;
	std::cout << "solving_iteration_count " << solving_iteration_count << std::endl;
	
	if ( solving_iteration_count == 0 ) {
		if ( !ReadIntCNF() ) { // Read original CNF
			std::cerr << "Error in ReadIntCNF" << std::endl; 
			MPI_Abort( MPI_COMM_WORLD, 0 );
		}
		if ( !MakeVarChoose() ) { 
			std::cerr << "Error in MakeVarChoose" << std::endl; 
			MPI_Abort( MPI_COMM_WORLD, 0 );
		}
	}

	if ( extern_var_choose_order.size() > 0 )
		var_choose_order = extern_var_choose_order;

	std::cout << "var_choose_order " << std::endl;
	for ( auto &x : var_choose_order )
		std::cout << x << " ";
	std::cout << std::endl;
	
	// log(a)/log(b) = log(_a)b
	unsigned max_possible_tasks_count = (unsigned)(pow( 2, ceil( log(corecount - 1)/log(2) ))) * (unsigned)(pow(2,koef_val) );
	std::cout << "max_possible_tasks_count " << max_possible_tasks_count << std::endl;
	std::cout << "current part_mask_var_count " << part_mask_var_count << std::endl; 
	part_mask_var_count = (unsigned)(log(max_possible_tasks_count)/log(2));
	if ( part_mask_var_count > var_choose_order.size() )
		part_mask_var_count = var_choose_order.size();
	
	// change batch size to treshold value if needed
	if ( var_choose_order.size() - part_mask_var_count > RECOMMEND_BATCH_VAR_COUNT ) {
		part_mask_var_count = var_choose_order.size() - RECOMMEND_BATCH_VAR_COUNT;
		std::cout << "part_mask_var_count changed to " << part_mask_var_count << std::endl;
	}
	if ( part_mask_var_count > MAX_PART_MASK_VAR_COUNT )
		part_mask_var_count = MAX_PART_MASK_VAR_COUNT;
	if ( var_choose_order.size() - part_mask_var_count > MAX_BATCH_VAR_COUNT ) {
		std::cerr << "Error. var_choose_order.size() - part_mask_var_count > MAX_BATCH_VAR_COUNT" << std::endl;
		std::cerr << var_choose_order.size() - part_mask_var_count << " < " << MAX_BATCH_VAR_COUNT << std::endl;
		MPI_Abort( MPI_COMM_WORLD, 0 );
	}
	std::cout << "part_mask_var_count " << part_mask_var_count << std::endl;

	// get default count of tasks = power of part_mask_var_count
	unsigned part_var_power = ( 1 << part_mask_var_count );
	std::cout << "part_var_power " << part_var_power << std::endl;
	// TODO add extended tasks counting
	all_tasks_count = part_var_power;
	std::cout << "all_tasks_count " << all_tasks_count << std::endl;
	
	if ( (int)all_tasks_count < corecount-1 ) {
		std::cerr << "Error. all_tasks_count < corecount-1" << std::endl; 
		std::cerr << all_tasks_count << " < " << corecount-1 << std::endl;
		MPI_Abort( MPI_COMM_WORLD, 0 );
	}
	
	if ( solving_iteration_count == 0 )
		PrintParams( );
	
	if ( skip_tasks >= all_tasks_count ) {
		std::cerr << "skip_tasks >= all_tasks_count " << std::endl;
		std::cerr << skip_tasks << " >= " << all_tasks_count << std::endl;
		MPI_Abort( MPI_COMM_WORLD, 0 );
	}
	
	values_arr.resize( all_tasks_count );
	for ( unsigned i = 0; i < values_arr.size(); ++i )
		values_arr[i].resize( FULL_MASK_LEN );
	
	if ( !MakeStandardMasks( part_var_power ) ) {
		std::cerr << "Error in MakeStandartMasks" << std::endl; 
		MPI_Abort( MPI_COMM_WORLD, 0 );
	}
	std::cout << "Correct end of MakeStandartMasks" << std::endl;
	
	unsigned solved_tasks_count = 0;
	// write init info
	WriteSolvingTimeInfo( solving_times, solved_tasks_count );
	int *var_choose_order_int = new int[MAX_CORE_LEN];
	for( unsigned i=0; i < MAX_CORE_LEN; ++i ) {
		if ( i < var_choose_order.size() )
			var_choose_order_int[i] = var_choose_order[i];
		else 
			var_choose_order_int[i] = -1;
	}
	
	std::cout << "before sending configuration info" << std::endl;
	// send core_len once to every compute process
	for ( int i=0; i < corecount-1; ++i ) {
		MPI_Send( &core_len,                1, MPI_INT,                 i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( &all_tasks_count,         1, MPI_UNSIGNED,            i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( &solving_iteration_count, 1, MPI_INT,                 i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( &max_solving_time,        1, MPI_DOUBLE,              i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( &start_activity,          1, MPI_DOUBLE,              i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( var_choose_order_int,     MAX_CORE_LEN, MPI_INT, i + 1, 0, MPI_COMM_WORLD );
	}
	delete[] var_choose_order_int;
	
	int next_task_index = 0;
	
	//unsigned start_tasks_count = min( corecount - 1, (int)all_tasks_count );
	unsigned start_tasks_count = ((corecount - 1) < (int)all_tasks_count) ? (unsigned)(corecount - 1) : all_tasks_count;
	int char_arr_len;
	char *char_arr;
	unsigned elem_index;
	
	std::cout << "start_tasks_count " << start_tasks_count << std::endl;
	// send to all cores (except # 0) tasks from 1st range
	for ( int i = 0; i < (int)start_tasks_count; ++i ) {
		// send new index of task for reading tasks from file
		MPI_Send( &next_task_index, 1, MPI_INT, i + 1, 0, MPI_COMM_WORLD );

		if ( ( verbosity > 1 ) && ( i == 0 ) )
			std::cout << "sended next_task_index " << next_task_index << std::endl;
		
		copy( values_arr[i].begin(), values_arr[i].end(), mask_value );
		MPI_Send( full_mask,  FULL_MASK_LEN, MPI_UNSIGNED, i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( part_mask,  FULL_MASK_LEN, MPI_UNSIGNED, i + 1, 0, MPI_COMM_WORLD );
		MPI_Send( mask_value, FULL_MASK_LEN, MPI_UNSIGNED, i + 1, 0, MPI_COMM_WORLD );
		next_task_index++;
	}
	std::cout << "after sending start_tasks_count" << std::endl;
	
	total_solving_times[0] = 1 << 30; // start min len
	for ( unsigned i = 1; i < total_solving_times.size(); ++i )
		total_solving_times[i] = 0;
	process_sat_count = 0;
	MPI_Status status, current_status;
	
	while ( solved_tasks_count < all_tasks_count ) {
		// recieve from core message about solved task 		
		MPI_Recv( &process_sat_count, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );
		if ( verbosity > 0 )
			std::cout << "recieved process_sat_count " << process_sat_count << std::endl;
		current_status = status;
		MPI_Recv( solving_times, SOLVING_TIME_LEN, MPI_DOUBLE, current_status.MPI_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );
		if ( verbosity > 0 )
			std::cout << "recieved solving_times " << std::endl;
		
		// get interrupted tasks if such exist
		MPI_Probe( current_status.MPI_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );;
		MPI_Get_count( &status, MPI_CHAR, &char_arr_len );
		if ( ( char_arr_len > 1 ) && ( char_arr_len % var_choose_order.size() != 0 ) ) {
			std::cerr << "char_arr_len % var_choose_order.size() != 0" << std::endl;
			MPI_Abort( MPI_COMM_WORLD, 0 );
		}
		if ( char_arr_len > 0 ) {
			char_arr = new char[char_arr_len];
			MPI_Recv( char_arr, char_arr_len, MPI_CHAR, current_status.MPI_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );
			if ( char_arr_len > 1 ) {
				//std::cout << "recieved char_arr_len " << char_arr_len << std::endl;
				cur_interrupted_problems_var_values.resize( var_choose_order.size() );
				elem_index=0;
				for ( int j=0; j < var_choose_order.size(); j++ ) {
					cur_interrupted_problems_var_values[elem_index++] = (char_arr[j] == '1' ? true : false);
					if ( (j+1) % var_choose_order.size() == 0 ) {
						interrupted_problems_var_values.push_back( cur_interrupted_problems_var_values );
						elem_index=0;
					}
				}
			}
			delete[] char_arr;
		}
		
		// get satisfying assignments if such exist
		MPI_Probe( current_status.MPI_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );;
		MPI_Get_count( &status, MPI_CHAR, &char_arr_len );
		if ( ( char_arr_len > 1 ) && ( char_arr_len % var_count != 0 ) ) {
			std::cerr << "char_arr_len % var_count != 0" << std::endl;
			std::cerr << char_arr_len << " % " << var_count << " != 0 " << std::endl;
			MPI_Abort( MPI_COMM_WORLD, 0 );
		}
		if ( char_arr_len > 0 ) {
			cur_satisfying_assignment.solving_time = solving_times[3]; // sat solving time
			char_arr = new char[char_arr_len];
			MPI_Recv( char_arr, char_arr_len, MPI_CHAR, current_status.MPI_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status );
			if ( char_arr_len > 1 ) { // read several assignments from one array
				std::cout << "recieved char_arr_len " << char_arr_len << std::endl;
				elem_index=0;
				cur_satisfying_assignment.str.resize( var_count );
				for ( int j=0; j < char_arr_len; j++ ) {
					cur_satisfying_assignment.str[elem_index++] = char_arr[j];
					if ( (j+1) % var_count == 0 ) {
						satisfying_assignments.push_back( cur_satisfying_assignment );
						elem_index=0;
					}
				}
			}
			delete[] char_arr;
		}
		
		if ( char_arr_len > 1 )
			std::cout << "interrupted_problems_var_values.size() " << interrupted_problems_var_values.size() << std::endl;

		/*char_send_array = new char[interrupted_problems_var_values_from_process.size() * var_choose_order.size()];
		char_send_array_index = 0;
		for ( auto &x : interrupted_problems_var_values_from_process )
			for ( auto &y : x )
				char_send_array[char_send_array_index++] = (y == true ? '1' : '0');
		MPI_Send( char_send_array, char_send_array_index, MPI_CHAR, 0, 0, MPI_COMM_WORLD );
		delete[] char_send_array;*/
		solved_tasks_count++;
		
		if ( verbosity > 0 )
			std::cout << "solved_tasks_count " << solved_tasks_count << std::endl;
		
		if ( process_sat_count ) {
			sat_count += process_sat_count;
			std::cout << "sat_count " << sat_count << std::endl;
			if ( finding_first_sat_time == 0 ) // first time only
				finding_first_sat_time = MPI_Wtime() - total_start_time;
		}
		
		WriteSolvingTimeInfo( solving_times, solved_tasks_count );
		
		if ( sat_count && !IsSolveAll )
			break; // exit if SAT set found
		
		if ( next_task_index < (int)all_tasks_count ) {
			// send new index of task
			MPI_Send( &next_task_index, 1, MPI_INT, current_status.MPI_SOURCE, 0, MPI_COMM_WORLD );
			// send to free core new task in format of minisat input masks
			copy( values_arr[next_task_index].begin(), values_arr[next_task_index].end(), mask_value );
			MPI_Send( mask_value, FULL_MASK_LEN, MPI_UNSIGNED, current_status.MPI_SOURCE, 0, MPI_COMM_WORLD );
			next_task_index++;
		}
	} // while ( solved_tasks_count < all_tasks_count )

	solving_iteration_count++;
	
	return true;
}
Beispiel #5
0
void FNeuralNetLMBase::TrainLM(const string &validationfile,
                               const string &outbase,
                               bool nce_ppl) {
  // =============
  // Prepare for the training
  // Equivalent to ReadLM
  word_vocab_.ReadVocabFromTxt(word_vocab_filename_);
  if (word_vocab_.empty()) {
    cerr << "empty word vocabulary!" << endl;
    exit(EXIT_FAILURE);
  }
  factor_vocab_.ReadVocabFromTxt(factor_vocab_filename_);
  if (factor_vocab_.empty()) {
    cerr << "empty factor vocabulary!" << endl;
    exit(EXIT_FAILURE);
  }
  ReadDecompFromTxt(decomp_filename_);

  PrintParams();
  CheckParams();
  AllocateModel();
  InitializeNeuralNet();
  // ==== END ====

  // Read the data
  FNNLMDataReader train_data(train_filenames_, &word_vocab_, &factor_vocab_,
                             shuffle_datafiles_, shuffle_sentences_);
  vector<string> validation_filenames = { validationfile };
  FNNLMDataReader validation_data(validation_filenames, &word_vocab_, &factor_vocab_, false, false);

  // Set NCE sampling.
  if (nce_) {
    // TODO: flatten noise_distribution_?
    vector<int> word_count(word_vocab_.size(), 0);
    int num_word_tokens = 0;
    const size_t eos_widx = word_vocab().eos_idx();
    vector<int> factor_count(factor_vocab_.size(), 0);
    int num_factor_tokens = 0;
    const size_t eos_fidx = factor_vocab().eos_idx();

    vector<pair<size_t, vector<size_t>>> sentence;

    train_data.StartEpoch();
    while(train_data.GetSentence(sentence)) {
      for (vector<pair<size_t, vector<size_t>>>::const_iterator it = sentence.begin(); it != sentence.end(); ++it) {
        word_count[it->first]++;
        num_word_tokens++;
        if (weight_factor_output_ > 0) {
          for (size_t p = 0; p < it->second.size(); p++) {
            factor_count[it->second[p]]++;
            num_factor_tokens++;
          }
        }
      }
      word_count[eos_widx]++;
      num_word_tokens++;
      if (weight_factor_output_ > 0) {
        factor_count[eos_fidx]++;
        num_factor_tokens++;
      }
    }

    word_noise_distribution_ = Distribution(word_count.begin(), word_count.end());
    word_noise_pdf_ = word_noise_distribution_.param().probabilities();
    if (weight_factor_output_ > 0) {
      factor_noise_distribution_ = Distribution(factor_count.begin(), factor_count.end());
      factor_noise_pdf_ = factor_noise_distribution_.param().probabilities();
    }
    NCECheckSampling();
    log_num_negative_samples_ = log(num_negative_samples_);
  }

  BatchSGDTrain(train_data, validation_data, outbase, nce_ppl);

  cout << "================================================================================" << endl;
  cout << "Log-likelihood (base e) on validation is: " \
      << EvalLM(validation_data, false) << endl;
}