Beispiel #1
0
static PyObject *
new_function(PyObject* unused, PyObject* args)
{
	PyObject* code;
	PyObject* globals;
	PyObject* name = Py_None;
	PyObject* defaults = Py_None;
	PyFunctionObject* newfunc;

	if (!PyArg_ParseTuple(args, "O!O!|SO!:function",
			      &PyCode_Type, &code,
			      &PyDict_Type, &globals,
			      &name,
			      &PyTuple_Type, &defaults))
		return NULL;

	newfunc = (PyFunctionObject *)PyFunction_New(code, globals);
	if (newfunc == NULL)
		return NULL;

	if (name != Py_None) {
		Py_XINCREF(name);
		Py_XDECREF(newfunc->func_name);
		newfunc->func_name = name;
	}
	if (defaults != Py_None) {
		Py_XINCREF(defaults);
		Py_XDECREF(newfunc->func_defaults);
		newfunc->func_defaults  = defaults;
	}

	return (PyObject *)newfunc;
}
Beispiel #2
0
	/* move the resulting non-virtual Python object back into 'v' */
	vinfo_move(po, v, newobj);
	return true;
}

#if 0	/* not needed currently */
static PyObject* direct_compute_function(vinfo_t* v, char* data)
{
	PyObject* fcode;
	PyObject* fglobals;
	PyObject* fdefaults;
	PyObject* result = NULL;

	fcode     = direct_xobj_vinfo(vinfo_getitem(v, iFUNC_CODE),     data);
	fglobals  = direct_xobj_vinfo(vinfo_getitem(v, iFUNC_GLOBALS),  data);
	fdefaults = direct_xobj_vinfo(vinfo_getitem(v, iFUNC_DEFAULTS), data);

	if (!PyErr_Occurred() && fcode != NULL && fglobals != NULL) {
		result = PyFunction_New(fcode, fglobals);
		if (result != NULL && fdefaults != NULL) {
			if (PyFunction_SetDefaults(result, fdefaults) != 0) {
				Py_DECREF(result);
				result = NULL;
			}
		}
	}
	Py_XDECREF(fdefaults);
	Py_XDECREF(fglobals);
	Py_XDECREF(fcode);
	return result;
}
Beispiel #3
0
static PyObject *
func_new(PyTypeObject* type, PyObject* args, PyObject* kw)
{
    PyCodeObject *code;
    PyObject *globals;
    PyObject *name = Py_None;
    PyObject *defaults = Py_None;
    PyObject *closure = Py_None;
    PyFunctionObject *newfunc;
    Py_ssize_t nfree, nclosure;
    static char *kwlist[] = {"code", "globals", "name",
                             "argdefs", "closure", 0};

    if (!PyArg_ParseTupleAndKeywords(args, kw, "O!O!|OOO:function",
                          kwlist,
                          &PyCode_Type, &code,
                          &PyDict_Type, &globals,
                          &name, &defaults, &closure))
        return NULL;
    if (name != Py_None && !PyUnicode_Check(name)) {
        PyErr_SetString(PyExc_TypeError,
                        "arg 3 (name) must be None or string");
        return NULL;
    }
    if (defaults != Py_None && !PyTuple_Check(defaults)) {
        PyErr_SetString(PyExc_TypeError,
                        "arg 4 (defaults) must be None or tuple");
        return NULL;
    }
    nfree = PyTuple_GET_SIZE(code->co_freevars);
    if (!PyTuple_Check(closure)) {
        if (nfree && closure == Py_None) {
            PyErr_SetString(PyExc_TypeError,
                            "arg 5 (closure) must be tuple");
            return NULL;
        }
        else if (closure != Py_None) {
            PyErr_SetString(PyExc_TypeError,
                "arg 5 (closure) must be None or tuple");
            return NULL;
        }
    }

    /* check that the closure is well-formed */
    nclosure = closure == Py_None ? 0 : PyTuple_GET_SIZE(closure);
    if (nfree != nclosure)
        return PyErr_Format(PyExc_ValueError,
                            "%U requires closure of length %zd, not %zd",
                            code->co_name, nfree, nclosure);
    if (nclosure) {
        Py_ssize_t i;
        for (i = 0; i < nclosure; i++) {
            PyObject *o = PyTuple_GET_ITEM(closure, i);
            if (!PyCell_Check(o)) {
                return PyErr_Format(PyExc_TypeError,
                    "arg 5 (closure) expected cell, found %s",
                                    o->ob_type->tp_name);
            }
        }
    }

    newfunc = (PyFunctionObject *)PyFunction_New((PyObject *)code,
                                                 globals);
    if (newfunc == NULL)
        return NULL;

    if (name != Py_None) {
        Py_INCREF(name);
        Py_SETREF(newfunc->func_name, name);
    }
    if (defaults != Py_None) {
        Py_INCREF(defaults);
        newfunc->func_defaults  = defaults;
    }
    if (closure != Py_None) {
        Py_INCREF(closure);
        newfunc->func_closure = closure;
    }

    return (PyObject *)newfunc;
}
static PyObject* copyrec(PyObject* o)
{
  PyTypeObject* t;
  PyObject* n;
  PyObject* key;
  KeyObject* fkey;

  if (o == Py_None || o->ob_type == &PyInt_Type || o->ob_type == &PyString_Type)
    {
      Py_INCREF(o);
      return o;
    }
  if (ss_next_in_block < 0)
    {
      struct key_block* b = (struct key_block*) malloc(sizeof(struct key_block));
      if (!b) { PyErr_NoMemory(); goto fail1; }
      b->next = ss_block;
      ss_block = b;
      ss_next_in_block = KEYS_BY_BLOCK - 1;
    }
  fkey = ss_block->keys + ss_next_in_block;
  fkey->ob_refcnt = 1;
  fkey->ob_type = &keytype;
  fkey->o = o;
  key = (PyObject*) fkey;
  n = PyDict_GetItem(ss_memo, key);
  if (n)
    {
      Py_INCREF(n);
      return n;
    }
  ss_next_in_block--;
  Py_INCREF(o);    /* reference stored in 'fkey->o' */
  t = o->ob_type;
  if (t == &PyTuple_Type)
    {
      int i, count = PyTuple_GET_SIZE(o);
      n = PyTuple_New(count);
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      for (i=0; i<count; i++)
        PyTuple_SET_ITEM(n, i, copyrec(PyTuple_GET_ITEM(o, i)));
      return n;
    }
  if (t == &PyList_Type)
    {
      int i, count = PyList_GET_SIZE(o);
      n = PyList_New(count);
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      for (i=0; i<count; i++)
        PyList_SET_ITEM(n, i, copyrec(PyList_GET_ITEM(o, i)));
      return n;
    }
  if (t == &PyDict_Type)
    {
      int i = 0;
      PyObject* dictkey;
      PyObject* dictvalue;
      n = PyDict_New();
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      while (PyDict_Next(o, &i, &dictkey, &dictvalue))
        if (PyDict_SetItem(n, copyrec(dictkey), copyrec(dictvalue)))
          goto fail;
      return n;
    }
  if (t == &PyInstance_Type)
    {
      int i = 0;
      PyObject* dictkey;
      PyObject* dictvalue;
      PyObject* dsrc;
      PyObject* ddest;
      PyObject* inst_build = PyObject_GetAttr(o, str_inst_build);
      if (inst_build == NULL)
        {
          PyErr_Clear();
          goto unmodified;
        }
      n = PyObject_CallObject(inst_build, NULL);
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      dsrc  = ((PyInstanceObject*) o)->in_dict;
      ddest = ((PyInstanceObject*) n)->in_dict;
      while (PyDict_Next(dsrc, &i, &dictkey, &dictvalue))
        if (PyDict_SetItem(ddest, copyrec(dictkey), copyrec(dictvalue)))
          goto fail;
      return n;
    }
  if (t == &PyFunction_Type)
    {
      int i, count;
      PyObject* tsrc = PyFunction_GET_DEFAULTS(o);
      PyObject* tdest;
      if (!tsrc) goto unmodified;
      count = PyTuple_GET_SIZE(tsrc);
      if (count == 0) goto unmodified;
      n = PyFunction_New(PyFunction_GET_CODE(o), PyFunction_GET_GLOBALS(o));
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      tdest = PyTuple_New(count);
      if (!tdest) goto fail;
      for (i=0; i<count; i++)
        PyTuple_SET_ITEM(tdest, i, copyrec(PyTuple_GET_ITEM(tsrc, i)));
      i = PyFunction_SetDefaults(n, tdest);
      Py_DECREF(tdest);
      if (i) goto fail;
      return n;
    }
  if (t == &PyMethod_Type)
    {
      PyObject* x;
      n = PyMethod_New(PyMethod_GET_FUNCTION(o),
                       PyMethod_GET_SELF(o),
                       PyMethod_GET_CLASS(o));
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      x = copyrec(PyMethod_GET_FUNCTION(n));
      Py_DECREF(PyMethod_GET_FUNCTION(n));
      PyMethod_GET_FUNCTION(n) = x;
      x = copyrec(PyMethod_GET_SELF(n));
      Py_DECREF(PyMethod_GET_SELF(n));
      PyMethod_GET_SELF(n) = x;
      return n;
    }
  if (t == GeneratorType)
    {
      n = genbuild(o);
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      if (gencopy(n, o)) goto fail;
      return n;
    }
  if (t == &PySeqIter_Type)
    {
      n = seqiterbuild(o);
      if (!n || PyDict_SetItem(ss_memo, key, n)) goto fail;
      if (seqitercopy(n, o)) goto fail;
      return n;
    }
  ss_next_in_block++;
  return o;     /* reference no longer stored in 'fkey->o' */

 unmodified:
  PyDict_SetItem(ss_memo, key, o);
  Py_INCREF(o);
  return o;

 fail1:
  n = NULL;
 fail:
  Py_INCREF(o);
  Py_XDECREF(n);
  return o;
}
Beispiel #5
0
static PyObject *
eval_frame(PyFrameObject *f)
{
	LOG("> eval_frame\n"); {
	PyObject **stack_pointer; /* Next free slot in value stack */
	register unsigned char *next_instr;
	register int opcode=0;	/* Current opcode */
	register int oparg=0;	/* Current opcode argument, if any */
	register enum why_code why; /* Reason for block stack unwind */
	register int err;	/* Error status -- nonzero if error */
	register PyObject *x;	/* Result object -- NULL if error */
	register PyObject *t, *u, *v;	/* Temporary objects popped off stack */
	register PyObject *w;
	register PyObject **fastlocals, **freevars;
	PyObject *retval = NULL;	/* Return value */
	PyThreadState *tstate = PyThreadState_GET();
	PyCodeObject *co;

	unsigned char *first_instr;
	PyObject *names;
	PyObject *consts;

/* Tuple access macros */

#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))

/* Code access macros */

#define INSTR_OFFSET()	(next_instr - first_instr)
#define NEXTOP()	(*next_instr++)
#define NEXTARG()	(next_instr += 2, (next_instr[-1]<<8) + next_instr[-2])
#define JUMPTO(x)	(next_instr = first_instr + (x))
#define JUMPBY(x)	(next_instr += (x))

/* OpCode prediction macros
	Some opcodes tend to come in pairs thus making it possible to predict
	the second code when the first is run.  For example, COMPARE_OP is often
	followed by JUMP_IF_FALSE or JUMP_IF_TRUE.  And, those opcodes are often
	followed by a POP_TOP.

	Verifying the prediction costs a single high-speed test of register
	variable against a constant.  If the pairing was good, then the
	processor has a high likelihood of making its own successful branch
	prediction which results in a nearly zero overhead transition to the
	next opcode.

	A successful prediction saves a trip through the eval-loop including
	its two unpredictable branches, the HASARG test and the switch-case.
*/

#define PREDICT(op)		if (*next_instr == op) goto PRED_##op
#define PREDICTED(op)		PRED_##op: next_instr++
#define PREDICTED_WITH_ARG(op)	PRED_##op: oparg = (next_instr[2]<<8) + \
				next_instr[1]; next_instr += 3

/* Stack manipulation macros */

#define STACK_LEVEL()	(stack_pointer - f->f_valuestack)
#define EMPTY()		(STACK_LEVEL() == 0)
#define TOP()		(stack_pointer[-1])
#define SECOND()	(stack_pointer[-2])
#define THIRD() 	(stack_pointer[-3])
#define FOURTH()	(stack_pointer[-4])
#define SET_TOP(v)	(stack_pointer[-1] = (v))
#define SET_SECOND(v)	(stack_pointer[-2] = (v))
#define SET_THIRD(v)	(stack_pointer[-3] = (v))
#define SET_FOURTH(v)	(stack_pointer[-4] = (v))
#define BASIC_STACKADJ(n)	(stack_pointer += n)
#define BASIC_PUSH(v)	(*stack_pointer++ = (v))
#define BASIC_POP()	(*--stack_pointer)

#define PUSH(v)		BASIC_PUSH(v)
#define POP()		BASIC_POP()
#define STACKADJ(n)	BASIC_STACKADJ(n)

/* Local variable macros */

#define GETLOCAL(i)	(fastlocals[i])

/* The SETLOCAL() macro must not DECREF the local variable in-place and
   then store the new value; it must copy the old value to a temporary
   value, then store the new value, and then DECREF the temporary value.
   This is because it is possible that during the DECREF the frame is
   accessed by other code (e.g. a __del__ method or gc.collect()) and the
   variable would be pointing to already-freed memory. */
#define SETLOCAL(i, value)	do { PyObject *tmp = GETLOCAL(i); \
				     GETLOCAL(i) = value; \
                                     Py_XDECREF(tmp); } while (0)

/* Start of code */

	if (f == NULL)
		return NULL;

	/* push frame */
	if (++tstate->recursion_depth > recursion_limit) {
		--tstate->recursion_depth;
		/* ERROR */
		tstate->frame = f->f_back;
		return NULL;
	}

	tstate->frame = f;

	/* tracing elided */

	co = f->f_code;
	names = co->co_names;
	consts = co->co_consts;
	fastlocals = f->f_localsplus;
	freevars = f->f_localsplus + f->f_nlocals;

	_PyCode_GETCODEPTR(co, &first_instr);

	/* An explanation is in order for the next line.

	   f->f_lasti now refers to the index of the last instruction
	   executed.  You might think this was obvious from the name, but
	   this wasn't always true before 2.3!  PyFrame_New now sets
	   f->f_lasti to -1 (i.e. the index *before* the first instruction)
	   and YIELD_VALUE doesn't fiddle with f_lasti any more.  So this
	   does work.  Promise. */
	next_instr = first_instr + f->f_lasti + 1;
	stack_pointer = f->f_stacktop;

	f->f_stacktop = NULL;	/* remains NULL unless yield suspends frame */

	why = WHY_NOT;
	err = 0;
	x = Py_None;	/* Not a reference, just anything non-NULL */
	w = NULL;

	for (;;) {

		/* Do periodic things.  Doing this every time through
		   the loop would add too much overhead, so we do it
		   only every Nth instruction.  We also do it if
		   ``things_to_do'' is set, i.e. when an asynchronous
		   event needs attention (e.g. a signal handler or
		   async I/O handler); see Py_AddPendingCall() and
		   Py_MakePendingCalls() above. */

		if (--_Py_Ticker < 0) {
			/* @@@ check for SETUP_FINALLY elided */

			_Py_Ticker = _Py_CheckInterval;
			tstate->tick_counter++;
			if (things_to_do) {
				if (Py_MakePendingCalls() < 0) {
					why = WHY_EXCEPTION;
					goto on_error;
				}
			}
		}

	fast_next_opcode:
		f->f_lasti = INSTR_OFFSET();

		/* Extract opcode and argument */

		opcode = NEXTOP();
		if (HAS_ARG(opcode))
			oparg = NEXTARG();

		/* Main switch on opcode */

		switch (opcode) {

		/* BEWARE!
		   It is essential that any operation that fails sets either
		   x to NULL, err to nonzero, or why to anything but WHY_NOT,
		   and that no operation that succeeds does this! */

		/* case STOP_CODE: this is an error! */

		case LOAD_FAST:
			x = GETLOCAL(oparg);
			if (x != NULL) {
				Py_INCREF(x);
				PUSH(x);
				goto fast_next_opcode;
			}
			/* ERROR? */
			break;

                case STORE_FAST:
                        v = POP();
                        SETLOCAL(oparg, v);
                        continue;

		case LOAD_CONST:
			x = GETITEM(consts, oparg);
			Py_INCREF(x);
			PUSH(x);
			goto fast_next_opcode;

		PREDICTED(POP_TOP);
		case POP_TOP:
			v = POP();
			Py_DECREF(v);
			goto fast_next_opcode;

		case UNARY_NOT:
			v = TOP();
			err = PyObject_IsTrue(v);
			Py_DECREF(v);
			if (err == 0) {
				Py_INCREF(Py_True);
				SET_TOP(Py_True);
				continue;
			}
			else if (err > 0) {
				Py_INCREF(Py_False);
				SET_TOP(Py_False);
				err = 0;
				continue;
			}
			STACKADJ(-1);
			break;

		case BINARY_MODULO:
			w = POP();
			v = TOP();
			x = PyNumber_Remainder(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) continue;
			break;
			
		case BINARY_ADD:
			w = POP();
			v = TOP();
			if (PyInt_CheckExact(v) && PyInt_CheckExact(w)) {
				/* INLINE: int + int */
				register long a, b, i;
				a = PyInt_AS_LONG(v);
				b = PyInt_AS_LONG(w);
				i = a + b;
				if ((i^a) < 0 && (i^b) < 0)
					goto slow_add;
				x = PyInt_FromLong(i);
			}
			else {
			  slow_add:
				Py_FatalError("slow add not supported.");
			}
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) continue;
			break;

                case STORE_SLICE+0:
                case STORE_SLICE+1:
                case STORE_SLICE+2:
                case STORE_SLICE+3:
                        if ((opcode-STORE_SLICE) & 2)
                                w = POP();
                        else
                                w = NULL;
                        if ((opcode-STORE_SLICE) & 1)
                                v = POP();
                        else
                                v = NULL;
                        u = POP();
                        t = POP();
                        err = assign_slice(u, v, w, t); /* u[v:w] = t */
                        Py_DECREF(t);
                        Py_DECREF(u);
                        Py_XDECREF(v);
                        Py_XDECREF(w);
                        if (err == 0) continue;
                        break;

                case STORE_SUBSCR:
                        w = POP();
                        v = POP();
                        u = POP();
                        /* v[w] = u */
                        err = PyObject_SetItem(v, w, u);
                        Py_DECREF(u);
                        Py_DECREF(v);
                        Py_DECREF(w);
                        if (err == 0) continue;
                        break;

                case BINARY_SUBSCR:
                        w = POP();
                        v = TOP();
                        if (PyList_CheckExact(v) && PyInt_CheckExact(w)) {
                                /* INLINE: list[int] */
                                long i = PyInt_AsLong(w);
                                if (i < 0)
                                        i += PyList_GET_SIZE(v);
                                if (i < 0 ||
                                    i >= PyList_GET_SIZE(v)) {
                                        /* ERROR */
                                        printf("list index out of range\n");
                                        x = NULL;
                                }
                                else {
                                        x = PyList_GET_ITEM(v, i);
                                        Py_INCREF(x);
                                }
                        }
                        else
                                x = PyObject_GetItem(v, w);
                        Py_DECREF(v);
                        Py_DECREF(w);
                        SET_TOP(x);
                        if (x != NULL) continue;
                        break;

		case BINARY_AND:
			w = POP();
			v = TOP();
			x = PyNumber_And(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) continue;
			break;

		case PRINT_ITEM:
			v = POP();

			PyObject_Print(v);
			Py_DECREF(v);
			break;

		case PRINT_NEWLINE:
			printf("\n");
			break;

		case RETURN_VALUE:
			retval = POP();
			why = WHY_RETURN;
			break;

		case POP_BLOCK:
			{
				PyTryBlock *b = PyFrame_BlockPop(f);
				while (STACK_LEVEL() > b->b_level) {
					v = POP();
					Py_DECREF(v);
				}
			}
			break;

		case STORE_NAME:
			w = GETITEM(names, oparg);
			v = POP();
			if ((x = f->f_locals) == NULL) {
				/* ERROR */
				printf("STORE_NAME ERROR\n");
				break;
			}
			err = PyDict_SetItem(x, w, v);
			Py_DECREF(v);
			break;

		case LOAD_NAME:
			w = GETITEM(names, oparg);
			if ((x = f->f_locals) == NULL) {
				/* ERROR */
				printf("LOAD_NAME ERROR\n");
				break;
			}
			x = PyDict_GetItem(x, w);
			if (x == NULL) {
				x = PyDict_GetItem(f->f_globals, w);
				if (x == NULL) {
					x = PyDict_GetItem(f->f_builtins, w);
					if (x == NULL) {
						printf("can't find %s\n", ((PyStringObject *)w)->ob_sval);
						/* format_exc_check_arg */
						break;
					}
				}
			}
			Py_INCREF(x);
			PUSH(x);
			break;
			
		case LOAD_GLOBAL:
			w = GETITEM(names, oparg);
			if (PyString_CheckExact(w)) {
				/* Inline the PyDict_GetItem() calls.
				   WARNING: this is an extreme speed hack.
				   Do not try this at home. */
				long hash = ((PyStringObject *)w)->ob_shash;
				if (hash != -1) {
					PyDictObject *d;
					d = (PyDictObject *)(f->f_globals);
					x = d->ma_lookup(d, w, hash)->me_value;
					if (x != NULL) {
						Py_INCREF(x);
						PUSH(x);
						continue;
					}
					d = (PyDictObject *)(f->f_builtins);
					x = d->ma_lookup(d, w, hash)->me_value;
					if (x != NULL) {
						Py_INCREF(x);
						PUSH(x);
						continue;
					}
					goto load_global_error;
				}
			}
			/* This is the un-inlined version of the code above */
			x = PyDict_GetItem(f->f_globals, w);
			if (x == NULL) {
				x = PyDict_GetItem(f->f_builtins, w);
				if (x == NULL) {
				  load_global_error:
					printf("LOAD_GLOBAL ERROR %s", ((PyStringObject *)w)->ob_sval);
					break;
				}
			}
			Py_INCREF(x);
			PUSH(x);
			break;

		case LOAD_ATTR:
			w = GETITEM(names, oparg);
			v = TOP();
			x = PyObject_GetAttr(v, w);
			Py_DECREF(v);
			SET_TOP(x);
			if (x != NULL) continue;
			break;

		case IMPORT_NAME:
			w = GETITEM(names, oparg);
			x = PyDict_GetItemString(f->f_builtins, "__import__");
			if (x == NULL) {
				printf("__import__ not found");
				break;
			}
			u = TOP();
			w = Py_BuildValue("(O)", w);
			Py_DECREF(u);
			if (w == NULL) {
				u = POP();
				x = NULL;
				break;
			}
			x = PyEval_CallObject(x, w);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) continue;
			break;

		case JUMP_FORWARD:
			JUMPBY(oparg);
			goto fast_next_opcode;

		PREDICTED_WITH_ARG(JUMP_IF_FALSE);
		case JUMP_IF_FALSE:
			w = TOP();
			if (w == Py_True) {
				PREDICT(POP_TOP);
				goto fast_next_opcode;
			}
			if (w == Py_False) {
				JUMPBY(oparg);
				goto fast_next_opcode;
			}
			err = PyObject_IsTrue(w);
			if (err > 0)
				err = 0;
			else if (err == 0)
				JUMPBY(oparg);
			else
				break;
			continue;
			
		case JUMP_ABSOLUTE:
			JUMPTO(oparg);
			continue;

		case SETUP_LOOP:
			PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg, STACK_LEVEL());
			continue;

		case CALL_FUNCTION:
			x = call_function(&stack_pointer, oparg);
			PUSH(x);
			if (x != NULL)
				continue;
			break;
			
		case MAKE_FUNCTION:
			v = POP(); /* code object */
			x = PyFunction_New(v, f->f_globals);
			Py_DECREF(v);
			/* XXX Maybe this should be a separate opcode? */
			if (x != NULL && oparg > 0) {
				v = PyTuple_New(oparg);
				if (v == NULL) {
					Py_DECREF(x);
					x = NULL;
			break;
				}
				while (--oparg >= 0) {
					w = POP();
					PyTuple_SET_ITEM(v, oparg, w);
				}
				err = PyFunction_SetDefaults(x, v);
				Py_DECREF(v);
			}
			PUSH(x);
			break;
			
		case SET_LINENO:
			break;

		default:
			printf("opcode: %d\n", opcode);
			Py_FatalError("unknown opcode");
		} /* switch */

	  on_error:
		
		if (why == WHY_NOT) {
			if (err == 0 && x != NULL) {
					continue; /* Normal, fast path */
			}
			why = WHY_EXCEPTION;
			x = Py_None;
			err = 0;
		}

		/* End the loop if we still have an error (or return) */

		if (why != WHY_NOT)
			break;

	} /* main loop */

	if (why != WHY_YIELD) {
		/* Pop remaining stack entries -- but when yielding */
		while (!EMPTY()) {
			v = POP();
			Py_XDECREF(v);
		}
	}

	if (why != WHY_RETURN && why != WHY_YIELD)
		retval = NULL;

	/* pop frame */
	--tstate->recursion_depth;
	tstate->frame = f->f_back;

	return retval;
}}
Beispiel #6
0
static PyObject *
func_new_impl(PyTypeObject *type, PyCodeObject *code, PyObject *globals,
              PyObject *name, PyObject *defaults, PyObject *closure)
/*[clinic end generated code: output=99c6d9da3a24e3be input=93611752fc2daf11]*/
{
    PyFunctionObject *newfunc;
    Py_ssize_t nfree, nclosure;

    if (name != Py_None && !PyUnicode_Check(name)) {
        PyErr_SetString(PyExc_TypeError,
                        "arg 3 (name) must be None or string");
        return NULL;
    }
    if (defaults != Py_None && !PyTuple_Check(defaults)) {
        PyErr_SetString(PyExc_TypeError,
                        "arg 4 (defaults) must be None or tuple");
        return NULL;
    }
    nfree = PyTuple_GET_SIZE(code->co_freevars);
    if (!PyTuple_Check(closure)) {
        if (nfree && closure == Py_None) {
            PyErr_SetString(PyExc_TypeError,
                            "arg 5 (closure) must be tuple");
            return NULL;
        }
        else if (closure != Py_None) {
            PyErr_SetString(PyExc_TypeError,
                "arg 5 (closure) must be None or tuple");
            return NULL;
        }
    }

    /* check that the closure is well-formed */
    nclosure = closure == Py_None ? 0 : PyTuple_GET_SIZE(closure);
    if (nfree != nclosure)
        return PyErr_Format(PyExc_ValueError,
                            "%U requires closure of length %zd, not %zd",
                            code->co_name, nfree, nclosure);
    if (nclosure) {
        Py_ssize_t i;
        for (i = 0; i < nclosure; i++) {
            PyObject *o = PyTuple_GET_ITEM(closure, i);
            if (!PyCell_Check(o)) {
                return PyErr_Format(PyExc_TypeError,
                    "arg 5 (closure) expected cell, found %s",
                                    o->ob_type->tp_name);
            }
        }
    }

    newfunc = (PyFunctionObject *)PyFunction_New((PyObject *)code,
                                                 globals);
    if (newfunc == NULL)
        return NULL;

    if (name != Py_None) {
        Py_INCREF(name);
        Py_SETREF(newfunc->func_name, name);
    }
    if (defaults != Py_None) {
        Py_INCREF(defaults);
        newfunc->func_defaults  = defaults;
    }
    if (closure != Py_None) {
        Py_INCREF(closure);
        newfunc->func_closure = closure;
    }

    return (PyObject *)newfunc;
}