Beispiel #1
0
		sparse<double> sprand(size_t nrow, size_t ncol, double density)
		{
			assert(density <= 1 && density > 0);

			size_t n = (size_t)(density * nrow * ncol);

			dense_vector<size_t> rows(n);
			dense_vector<size_t> columns(n);
			dense_vector<double> values(n);

			for (size_t i = 0; i < n; ++i)
			{
				rows[i] = (size_t)RANDI(0, nrow - 1);
				columns[i] = (size_t)RANDI(0, ncol - 1);
				values[i] = RAND();
			}

			return triplet<double>(rows, columns, values, nrow, ncol, n).to_sparse();
		}
Beispiel #2
0
Datei: karl.c Projekt: zhaop/go
move_result karl_play(player* self, state* st, move* mv) {
    int N = ((karl_params*) self->params)->N;

    state test_st;

    move reasonable_moves[NMOVES];
    int num_moves = go_get_reasonable_moves(st, reasonable_moves);

    if (num_moves == 1) {
        *mv = reasonable_moves[0];
        return go_play_move(st, mv);
    }

    color me = st->nextPlayer;
    color notme = (me == BLACK) ? WHITE : BLACK;

    int win[NMOVES];
    int lose[NMOVES];
    double pwin[NMOVES];

    int i;
    for (i = 0; i < num_moves; ++i) {
        win[i] = lose[i] = 0;
        pwin[i] = 0.0;
    }

    // Do playouts
    for (int i = 0; i < N; ++i) {
        state_copy(st, &test_st);

        int starting_move_idx = RANDI(0, num_moves);
        move starting_move = reasonable_moves[starting_move_idx];
        go_play_move(&test_st, &starting_move);

        playout_result result;
        go_play_out(&test_st, &result);

        if (result.winner == me) {
            ++win[starting_move_idx];
        } else if (result.winner == notme) {
            ++lose[starting_move_idx];
        }
    }

    // Calculate chances
    double best_pwin = 0;
    move best_pwin_move;
    for (i = 0; i < num_moves; ++i) {

        if (win[i] + lose[i] == 0) {
            pwin[i] = 0;
        } else {
            pwin[i] = (double) win[i] / (win[i] + lose[i]);
        }

        if (pwin[i] > best_pwin) {
            best_pwin = pwin[i];
            best_pwin_move = reasonable_moves[i];
        };
    }

    wprintf(L"\nDecision heatmap\n");
    go_print_heatmap(st, reasonable_moves, pwin, num_moves);

    wprintf(L"Going with ");
    move_print(&best_pwin_move);
    wprintf(L" at %.1f%%\n", best_pwin*100);

    *mv = best_pwin_move;
    return go_play_move(st, mv);
}