Beispiel #1
0
void calcIncompressibleYPlus
(
    const fvMesh& mesh,
    const Time& runTime,
    const volVectorField& U,
    volScalarField& yPlus
)
{
    typedef incompressible::RASModels::nutWallFunctionFvPatchScalarField
        wallFunctionPatchField;

    #include "createPhi.H"

    singlePhaseTransportModel laminarTransport(U, phi);

    autoPtr<incompressible::RASModel> RASModel
    (
        incompressible::RASModel::New(U, phi, laminarTransport)
    );

    const volScalarField::GeometricBoundaryField nutPatches =
        RASModel->nut()().boundaryField();

    bool foundNutPatch = false;
    forAll(nutPatches, patchi)
    {
        if (isA<wallFunctionPatchField>(nutPatches[patchi]))
        {
            foundNutPatch = true;

            const wallFunctionPatchField& nutPw =
                dynamic_cast<const wallFunctionPatchField&>
                    (nutPatches[patchi]);

            yPlus.boundaryField()[patchi] = nutPw.yPlus();
            const scalarField& Yp = yPlus.boundaryField()[patchi];

            Info<< "Patch " << patchi
                << " named " << nutPw.patch().name()
                << " y+ : min: " << gMin(Yp) << " max: " << gMax(Yp)
                << " average: " << gAverage(Yp) << nl << endl;
        }
    }

    if (!foundNutPatch)
    {
        Info<< "    no " << wallFunctionPatchField::typeName << " patches"
            << endl;
    }
}
Beispiel #2
0
void calcCompressibleYPlus
(
    const fvMesh& mesh,
    const Time& runTime,
    const volVectorField& U,
    volScalarField& yPlus
)
{
    typedef compressible::RASModels::mutkWallFunctionFvPatchScalarField
        wallFunctionPatchField;

    IOobject rhoHeader
    (
        "rho",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO_WRITE
    );

    if (!rhoHeader.headerOk())
    {
        Info<< "    no rho field" << endl;
        return;
    }

    Info<< "Reading field rho\n" << endl;
    volScalarField rho(rhoHeader, mesh);

    #include "compressibleCreatePhi.H"

    autoPtr<basicThermo> pThermo
    (
        basicThermo::New(mesh)
    );
    basicThermo& thermo = pThermo();

    autoPtr<compressible::RASModel> RASModel
    (
        compressible::RASModel::New
        (
            rho,
            U,
            phi,
            thermo
        )
    );

    const volScalarField::GeometricBoundaryField mutPatches =
        RASModel->mut()().boundaryField();

    bool foundMutPatch = false;
    forAll(mutPatches, patchi)
    {
        if (isA<wallFunctionPatchField>(mutPatches[patchi]))
        {
            foundMutPatch = true;

            const wallFunctionPatchField& mutPw =
                dynamic_cast<const wallFunctionPatchField&>
                    (mutPatches[patchi]);

            yPlus.boundaryField()[patchi] = mutPw.yPlus();
            const scalarField& Yp = yPlus.boundaryField()[patchi];

            Info<< "Patch " << patchi
                << " named " << mutPw.patch().name()
                << " y+ : min: " << gMin(Yp) << " max: " << gMax(Yp)
                << " average: " << gAverage(Yp) << nl << endl;
        }
    }

    if (!foundMutPatch)
    {
        Info<< "    no " << wallFunctionPatchField::typeName << " patches"
            << endl;
    }
}
Beispiel #3
0
void Foam::calc(const argList& args, const Time& runTime, const fvMesh& mesh)
{
    bool writeResults = !args.optionFound("noWrite");

    IOobject phiHeader
    (
        "phi",
        runTime.timeName(),
        mesh,
        IOobject::MUST_READ
    );

    if (phiHeader.headerOk())
    {
        autoPtr<surfaceScalarField> PePtr;

        Info<< "    Reading phi" << endl;
        surfaceScalarField phi(phiHeader, mesh);

        volVectorField U
        (
            IOobject
            (
                "U",
                runTime.timeName(),
                mesh,
                IOobject::MUST_READ
            ),
            mesh
        );

        IOobject RASPropertiesHeader
        (
            "RASProperties",
            runTime.constant(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE
        );

        IOobject LESPropertiesHeader
        (
            "LESProperties",
            runTime.constant(),
            mesh,
            IOobject::MUST_READ,
            IOobject::NO_WRITE
        );

        Info<< "    Calculating Pe" << endl;

        if (phi.dimensions() == dimensionSet(0, 3, -1, 0, 0))
        {
            if (RASPropertiesHeader.headerOk())
            {
                IOdictionary RASProperties(RASPropertiesHeader);

                singlePhaseTransportModel laminarTransport(U, phi);

                autoPtr<incompressible::RASModel> RASModel
                (
                    incompressible::RASModel::New
                    (
                        U,
                        phi,
                        laminarTransport
                    )
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(RASModel->nuEff())
                        )
                    )
                );
            }
            else if (LESPropertiesHeader.headerOk())
            {
                IOdictionary LESProperties(LESPropertiesHeader);

                singlePhaseTransportModel laminarTransport(U, phi);

                autoPtr<incompressible::LESModel> sgsModel
                (
                    incompressible::LESModel::New(U, phi, laminarTransport)
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(sgsModel->nuEff())
                        )
                    )
                );
            }
            else
            {
                IOdictionary transportProperties
                (
                    IOobject
                    (
                        "transportProperties",
                        runTime.constant(),
                        mesh,
                        IOobject::MUST_READ,
                        IOobject::NO_WRITE
                    )
                );

                dimensionedScalar nu(transportProperties.lookup("nu"));

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mesh.surfaceInterpolation::deltaCoeffs()
                        * (mag(phi)/mesh.magSf())*(runTime.deltaT()/nu)
                    )
                );
            }
        }
        else if (phi.dimensions() == dimensionSet(1, 0, -1, 0, 0))
        {
            if (RASPropertiesHeader.headerOk())
            {
                IOdictionary RASProperties(RASPropertiesHeader);

                autoPtr<basicPsiThermo> thermo(basicPsiThermo::New(mesh));

                volScalarField rho
                (
                    IOobject
                    (
                        "rho",
                        runTime.timeName(),
                        mesh
                    ),
                    thermo->rho()
                );

                autoPtr<compressible::RASModel> RASModel
                (
                    compressible::RASModel::New
                    (
                        rho,
                        U,
                        phi,
                        thermo()
                    )
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(RASModel->muEff())
                        )
                    )
                );
            }
            else if (LESPropertiesHeader.headerOk())
            {
                IOdictionary LESProperties(LESPropertiesHeader);

                autoPtr<basicPsiThermo> thermo(basicPsiThermo::New(mesh));

                volScalarField rho
                (
                    IOobject
                    (
                        "rho",
                        runTime.timeName(),
                        mesh
                    ),
                    thermo->rho()
                );

                autoPtr<compressible::LESModel> sgsModel
                (
                    compressible::LESModel::New(rho, U, phi, thermo())
                );

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mag(phi)
                        /(
                            mesh.magSf()
                            * mesh.surfaceInterpolation::deltaCoeffs()
                            * fvc::interpolate(sgsModel->muEff())
                        )
                    )
                );
            }
            else
            {
                IOdictionary transportProperties
                (
                    IOobject
                    (
                        "transportProperties",
                        runTime.constant(),
                        mesh,
                        IOobject::MUST_READ,
                        IOobject::NO_WRITE
                    )
                );

                dimensionedScalar mu(transportProperties.lookup("mu"));

                PePtr.set
                (
                    new surfaceScalarField
                    (
                        IOobject
                        (
                            "Pe",
                            runTime.timeName(),
                            mesh,
                            IOobject::NO_READ
                        ),
                        mesh.surfaceInterpolation::deltaCoeffs()
                        * (mag(phi)/(mesh.magSf()))*(runTime.deltaT()/mu)
                    )
                );
            }
        }
        else
        {
            FatalErrorIn(args.executable())
                    << "Incorrect dimensions of phi: " << phi.dimensions()
                    << abort(FatalError);
        }


        // can also check how many cells exceed a particular Pe limit
        /*
        {
            label count = 0;
            label PeLimit = 200;
            forAll(PePtr(), i)
            {
                if (PePtr()[i] > PeLimit)
                {
                    count++;
                }

            }

            Info<< "Fraction > " << PeLimit << " = "
                << scalar(count)/Pe.size() << endl;
        }
        */

        Info << "Pe max : " << max(PePtr()).value() << endl;

        if (writeResults)
        {
            PePtr().write();
        }
    }
    else
    {
        Info<< "    No phi" << endl;
    }

    Info<< "\nEnd\n" << endl;
}