CodeSkipSizeType FKismetBytecodeDisassembler::ReadSkipCount(int32& ScriptIndex)
{
#if SCRIPT_LIMIT_BYTECODE_TO_64KB
	return ReadWORD(ScriptIndex);
#else
	static_assert(sizeof(CodeSkipSizeType) == 4, "Update this code as size changed.");
	return ReadINT(ScriptIndex);
#endif
}
FString FKismetBytecodeDisassembler::ReadString16(int32& ScriptIndex)
{
	FString Result;

	do
	{
		Result += ReadWORD(ScriptIndex);
	}
	while ((Script[ScriptIndex-1] != 0) || (Script[ScriptIndex-2] != 0));

	return Result;
}
int        AuthPackageDispatcher::_HandleLogonChallenge()
{
    int readLend = sizeof(sAuthLogonChallenge_C);
    if (m_SendBufferPacket.GetOrgData().Length() < readLend)
        return 0;

    int pos = 0;
//    BYTE    cmd = ReadBYTE(m_SendBufferPacket.c_str(), pos);
//    BYTE    error = ReadBYTE(m_SendBufferPacket.c_str(), pos);

    pos += 2;
    WORD    size = ReadWORD(m_SendBufferPacket.GetOrgData().c_str(), pos);
    

    return      pos + size;
}
Beispiel #4
0
bool CBinFile::ReadBinFile(const QString&  strFile,unsigned int nACount,
						   unsigned int nDCount,ChanelDataList& dataList)
{
	QFile file(strFile);
	if (!file.exists())
	{
		m_ErrorList << QString("文件%1不存在,读取出错.").arg(strFile);
		return false;
	}
	if (!file.open(QIODevice::ReadOnly))
	{
		m_ErrorList << QString("文件%1无法打开,读取出错.").arg(strFile);
		return false;
	}
	m_FileContent = file.readAll();
	if (m_FileContent.isEmpty())
	{
		m_ErrorList << QString("文件%1内容为空,读取出错.").arg(strFile);
		file.close();
		return false;
	}

	while (m_nReadPos < m_FileContent.count())
	{
		CChanelSampleData chanelData;
		//采样序号
		chanelData.m_nTick = ReadDWORD();
		//时戳
		chanelData.m_nTimeStamp = ReadDWORD();
		//A通道数据
		unsigned int nIndex=0;
		while(nIndex < nACount) //数据缺失为 0x8000
		{
			int nData = ReadWORD();
			if(nData >= 32768L)	nData = nData - 65536;
			chanelData.m_AChanelDataList << nData;
			if(nData>32767||nData<-32767)
			{
				chanelData.m_AChanelDataValidList <<false;
			}
			else
			{
				chanelData.m_AChanelDataValidList <<true;
			}
			nIndex++;
		}
		nIndex = 0;

		unsigned int nCount = (nDCount%16 == 0)? (nDCount/16):(nDCount/16 + 1);
		//D通道数据
		while(nIndex < nCount)
		{
			short nDValue = ReadWORD(); 
			unsigned int nPos = 0;
			unsigned int nBitCount = (nDCount-16*nIndex > 16)?16:(nDCount-16*nIndex);
			while (nPos < nBitCount)
			{
				short nTmp = (nDValue &(1<<nPos));
				unsigned short nValue = (nTmp != 0);
				chanelData.m_DChanelDataList.append(nValue);
				nPos++;
			}
			nIndex++;
		}
		dataList << chanelData;
	}
	
	file.close();
	return true;
}
/****************************************************************************
  Function:
    void* AndroidInitialize_Pv1 ( BYTE address, DWORD flags, BYTE clientDriverID )

  Summary:
    Per instance client driver for Android device.  Called by USB host stack from
    the client driver table.

  Description:
    Per instance client driver for Android device.  Called by USB host stack from
    the client driver table.

  Precondition:
    None

  Parameters:
    BYTE address - the address of the device that is being initialized
    DWORD flags - the initialization flags for the device
    BYTE clientDriverID - the clientDriverID for the device

  Return Values:
    TRUE - initialized successfully
    FALSE - does not support this device

  Remarks:
    This is a internal API only.  This should not be called by anything other
    than the USB host stack via the client driver table
  ***************************************************************************/
void* AndroidInitialize_Pv1 ( BYTE address, DWORD flags, BYTE clientDriverID )
{
    BYTE   *config_descriptor         = NULL;
    BYTE *device_descriptor = NULL;
    WORD tempWord;
    BYTE *config_desc_end;

    ANDROID_PROTOCOL_V1_DEVICE_DATA* device = NULL;
    BYTE i;

    device_descriptor = USBHostGetDeviceDescriptor(address);

    ReadWORD(&tempWord, &device_descriptor[USB_DEV_DESC_VID_OFFSET]);

    if(tempWord == 0x18D1)
    {
        ReadWORD(&tempWord, &device_descriptor[USB_DEV_DESC_PID_OFFSET]);
        if((tempWord == 0x2D00) || (tempWord == 0x2D01))
        {
            for(i=0;i<NUM_ANDROID_DEVICES_SUPPORTED;i++)
            {
                if(devices_pv1[i].state == WAITING_FOR_ACCESSORY_RETURN) 
                {
                    device = &devices_pv1[i];
                    device->state = RETURN_OF_THE_ACCESSORY;
                    break;
                }
            }
        }
    }

    //if this isn't an old accessory, then it must be a new one
    if(device == NULL)
    {
        //Find the first available device.
        for(i=0;i<NUM_ANDROID_DEVICES_SUPPORTED;i++)
        {
            if(devices_pv1[i].state == NO_DEVICE)
            {
                device = &devices_pv1[i];
                if( (flags & ANDROID_INIT_FLAG_BYPASS_PROTOCOL) == ANDROID_INIT_FLAG_BYPASS_PROTOCOL)
                {
                    device->state = RETURN_OF_THE_ACCESSORY;
                }
                else
                {
                    device->state = DEVICE_ATTACHED;
                }
                break;
            }
        }
    }

    config_descriptor = USBHostGetCurrentConfigurationDescriptor( address );

    //Save the total length for this configuration descriptor
    ReadWORD(&tempWord,&config_descriptor[2]);

    //Record the end of the descriptor so we know when to stop searching through
    //  the descriptor list
    config_desc_end = config_descriptor + tempWord;

    //Skip past the configuration part of this descriptor to the next 
    //  descriptor in the configuration descriptor list.  The size of the config
    //  part of the descriptor is the first byte of the list.
    config_descriptor += *config_descriptor;

    //Search the entire configuration descriptor for COMM interfaces
    while(config_descriptor < config_desc_end)
    {
        //We are expecting a interface descriptor
        if(config_descriptor[USB_DESC_BDESCRIPTORTYPE_OFFSET] != USB_DESCRIPTOR_INTERFACE)
        {
            //Jump past this descriptor by adding the current descriptor length
            //  to the current descriptor pointer.
            config_descriptor += config_descriptor[USB_DESC_BLENGTH_OFFSET];

            //Jump back to the top of the while loop to continue searching through
            //  this configuration for the next interface
            continue;
        }

        device->address = address;
        device->clientDriverID = clientDriverID;

        if( (config_descriptor[USB_INTERFACE_DESC_BINTERFACECLASS_OFFSET] == 0xFF) &&
            (config_descriptor[USB_INTERFACE_DESC_BINTERFACESUBCLASS_OFFSET] == 0xFF) &&
            (config_descriptor[USB_INTERFACE_DESC_BINTERFACEPROTOCOL_OFFSET] == 0x00))
        {
            //Jump past this descriptor to the next descriptor.
            config_descriptor += config_descriptor[USB_DESC_BLENGTH_OFFSET];

            //Parse through the rest of this interface.  Stop when we reach the
            //  next interface or the end of the configuration descriptor
            while((config_descriptor[USB_DESC_BDESCRIPTORTYPE_OFFSET] != USB_DESCRIPTOR_INTERFACE) && (config_descriptor < config_desc_end))
            {
                if(config_descriptor[USB_DESC_BDESCRIPTORTYPE_OFFSET] == USB_DESCRIPTOR_ENDPOINT)
                {
                    //If this is an endpoint descriptor in the DATA interface, then
                    //  copy all of the endpoint data to the device information.

                    if((config_descriptor[USB_ENDPOINT_DESC_BENDPOINTADDRESS_OFFSET] & 0x80) == 0x80)
                    {
                        //If this is an IN endpoint, record the endpoint number
                        device->INEndpointNum = config_descriptor[USB_ENDPOINT_DESC_BENDPOINTADDRESS_OFFSET]; 

                        //record the endpoint size (2 bytes)
                        device->INEndpointSize = (config_descriptor[USB_ENDPOINT_DESC_WMAXPACKETSIZE_OFFSET]) + (config_descriptor[USB_ENDPOINT_DESC_WMAXPACKETSIZE_OFFSET+1] << 8);
                    }
                    else
                    {
                        //Otherwise this is an OUT endpoint, record the endpoint number
                        device->OUTEndpointNum = config_descriptor[USB_ENDPOINT_DESC_BENDPOINTADDRESS_OFFSET]; 

                        //record the endpoint size (2 bytes)
                        device->OUTEndpointSize = (config_descriptor[USB_ENDPOINT_DESC_WMAXPACKETSIZE_OFFSET]) + (config_descriptor[USB_ENDPOINT_DESC_WMAXPACKETSIZE_OFFSET+1] << 8);
                    }
                }
                config_descriptor += config_descriptor[USB_DESC_BLENGTH_OFFSET];
            }
        }
        else
        {
            //Jump past this descriptor by adding the current descriptor length
            //  to the current descriptor pointer.
            config_descriptor += config_descriptor[USB_DESC_BLENGTH_OFFSET];
        }
    }

    return device;
}
void FKismetBytecodeDisassembler::ProcessCommon(int32& ScriptIndex, EExprToken Opcode)
{
	switch (Opcode)
	{
	case EX_PrimitiveCast:
		{
			// A type conversion.
			uint8 ConversionType = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: PrimitiveCast of type %d"), *Indents, (int32)Opcode, ConversionType);
			AddIndent();

			Ar.Logf(TEXT("%s Argument:"), *Indents);
			ProcessCastByte(ConversionType, ScriptIndex);

			//@TODO:
			//Ar.Logf(TEXT("%s Expression:"), *Indents);
			//SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ObjToInterfaceCast:
		{
			// A conversion from an object variable to a native interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: ObjToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_CrossInterfaceCast:
		{
			// A conversion from one interface variable to a different interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_InterfaceToObjCast:
		{
			// A conversion from an interface variable to a object variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* ObjectClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToObjCast to %s"), *Indents, (int32)Opcode, *ObjectClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Let:
		{
			Ar.Logf(TEXT("%s $%X: Let (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetObj:
	case EX_LetWeakObjPtr:
		{
			if( Opcode == EX_LetObj )
			{
				Ar.Logf(TEXT("%s $%X: Let Obj (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			else
			{
				Ar.Logf(TEXT("%s $%X: Let WeakObjPtr (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetBool:
		{
			Ar.Logf(TEXT("%s $%X: LetBool (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case Ex_LetValueOnPersistentFrame:
		{
			Ar.Logf(TEXT("%s $%X: LetValueOnPersistentFrame"), *Indents, (int32)Opcode);
			AddIndent();

			auto Prop = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s Destination variable: %s, offset: %d"), *Indents, *GetNameSafe(Prop), 
				Prop ? Prop->GetOffset_ForDebug() : 0);
			
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr(ScriptIndex);

			DropIndent();

			break;
		}
	case EX_StructMemberContext:
		{
			Ar.Logf(TEXT("%s $%X: Struct member context "), *Indents, (int32)Opcode);
			AddIndent();

			UProperty* Prop = ReadPointer<UProperty>(ScriptIndex);

			Ar.Logf(TEXT("%s Expression within struct %s, offset %d"), *Indents, *(Prop->GetName()), 
				Prop->GetOffset_ForDebug()); // although that isn't a UFunction, we are not going to indirect the props of a struct, so this should be fine

			Ar.Logf(TEXT("%s Expression to struct:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();

			break;
		}
	case EX_LetDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetMulticastDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}

	case EX_ComputedJump:
		{
			Ar.Logf(TEXT("%s $%X: Computed Jump, offset specified by expression:"), *Indents, (int32)Opcode);

			AddIndent();
			SerializeExpr( ScriptIndex );
			DropIndent();

			break;
		}

	case EX_Jump:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_LocalVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InstanceVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Instance variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_LocalOutVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local out variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InterfaceContext:
		{
			Ar.Logf(TEXT("%s $%X: EX_InterfaceContext:"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
			break;
		}
	case EX_DeprecatedOp4A:
		{
			Ar.Logf(TEXT("%s $%X: This opcode has been removed and does nothing."), *Indents, (int32)Opcode);
			break;
		}
	case EX_Nothing:
		{
			Ar.Logf(TEXT("%s $%X: EX_Nothing"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndOfScript:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndOfScript"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndFunctionParms:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndFunctionParms"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndStructConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndStructConst"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndArray:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndArray"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntZero:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntZero"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntOne:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntOne"), *Indents, (int32)Opcode);
			break;
		}
	case EX_True:
		{
			Ar.Logf(TEXT("%s $%X: EX_True"), *Indents, (int32)Opcode);
			break;
		}
	case EX_False:
		{
			Ar.Logf(TEXT("%s $%X: EX_False"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoObject:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoInterface:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Self:
		{
			Ar.Logf(TEXT("%s $%X: EX_Self"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndParmValue:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndParmValue"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Return:
		{
			Ar.Logf(TEXT("%s $%X: Return expression"), *Indents, (int32)Opcode);

			SerializeExpr( ScriptIndex ); // Return expression.
			break;
		}
	case EX_FinalFunction:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Final Function (stack node %s::%s)"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));

			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_CallMulticastDelegate:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: CallMulticastDelegate (signature %s::%s) delegate:"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));
			SerializeExpr( ScriptIndex );
			Ar.Logf(TEXT("Params:"));
			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_VirtualFunction:
		{
			FString FunctionName = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Virtual Function named %s"), *Indents, (int32)Opcode, *FunctionName);

			while (SerializeExpr(ScriptIndex) != EX_EndFunctionParms)
			{
			}
			break;
		}
	case EX_Context:
	case EX_Context_FailSilent:
		{
			Ar.Logf(TEXT("%s $%X: %s"), *Indents, (int32)Opcode, TEXT("Context"));
			AddIndent();

			// Object expression.
			Ar.Logf(TEXT("%s ObjectExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			if (Opcode == EX_Context_FailSilent)
			{
				Ar.Logf(TEXT(" Can fail silently on access none "));
			}

			// Code offset for NULL expressions.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s Skip Bytes: 0x%X"), *Indents, SkipCount);

			// Property corresponding to the r-value data, in case the l-value needs to be mem-zero'd
			UField* Field = ReadPointer<UField>(ScriptIndex);
			Ar.Logf(TEXT("%s R-Value Property: %s"), *Indents, Field ? *Field->GetName() : TEXT("(null)"));

			// Property type, in case the r-value is a non-property such as dynamic array length
			uint8 PropType = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s PropertyTypeIfNeeded: %d"), *Indents, PropType);

			// Context expression.
			Ar.Logf(TEXT("%s ContextExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_IntConst:
		{
			int32 ConstValue = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int32 %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_SkipOffsetConst:
		{
			CodeSkipSizeType ConstValue = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal CodeSkipSizeType 0x%X"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_FloatConst:
		{
			float ConstValue = ReadFLOAT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal float %f"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_StringConst:
		{
			FString ConstValue = ReadString8(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal ansi string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_UnicodeStringConst:
		{
			FString ConstValue = ReadString16(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal unicode string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_TextConst:
		{
			Ar.Logf(TEXT("%s $%X: literal text"), *Indents, (int32)Opcode);
			break;
		}
	case EX_ObjectConst:
		{
			UObject* Pointer = ReadPointer<UObject>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: EX_ObjectConst (%p:%s)"), *Indents, (int32)Opcode, Pointer, *Pointer->GetFullName());
			break;
		}
	case EX_NameConst:
		{
			FString ConstValue = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal name %s"), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_RotationConst:
		{
			float Pitch = ReadFLOAT(ScriptIndex);
			float Yaw = ReadFLOAT(ScriptIndex);
			float Roll = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal rotation (%f,%f,%f)"), *Indents, (int32)Opcode, Pitch, Yaw, Roll);
			break;
		}
	case EX_VectorConst:
		{
			float X = ReadFLOAT(ScriptIndex);
			float Y = ReadFLOAT(ScriptIndex);
			float Z = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal vector (%f,%f,%f)"), *Indents, (int32)Opcode, X, Y, Z);
			break;
		}
	case EX_TransformConst:
		{

			float RotX = ReadFLOAT(ScriptIndex);
			float RotY = ReadFLOAT(ScriptIndex);
			float RotZ = ReadFLOAT(ScriptIndex);
			float RotW = ReadFLOAT(ScriptIndex);

			float TransX = ReadFLOAT(ScriptIndex);
			float TransY = ReadFLOAT(ScriptIndex);
			float TransZ = ReadFLOAT(ScriptIndex);

			float ScaleX = ReadFLOAT(ScriptIndex);
			float ScaleY = ReadFLOAT(ScriptIndex);
			float ScaleZ = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal transform R(%f,%f,%f,%f) T(%f,%f,%f) S(%f,%f,%f)"), *Indents, (int32)Opcode, TransX, TransY, TransZ, RotX, RotY, RotZ, RotW, ScaleX, ScaleY, ScaleZ);
			break;
		}
	case EX_StructConst:
		{
			UScriptStruct* Struct = ReadPointer<UScriptStruct>(ScriptIndex);
			int32 SerializedSize = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal struct %s (serialized size: %d)"), *Indents, (int32)Opcode, *Struct->GetName(), SerializedSize);
			while( SerializeExpr(ScriptIndex) != EX_EndStructConst )
			{
				// struct contents
			}
			break;
		}
	case EX_SetArray:
		{
 			Ar.Logf(TEXT("%s $%X: set array"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
 			while( SerializeExpr(ScriptIndex) != EX_EndArray)
 			{
 				// Array contents
 			}
 			break;
		}
	case EX_ByteConst:
		{
			uint8 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal byte %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_IntConstByte:
		{
			int32 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_MetaCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: MetaCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_DynamicCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: DynamicCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_JumpIfNot:
		{
			// Code offset.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
				
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X if not expr:"), *Indents, (int32)Opcode, SkipCount);

			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Assert:
		{
			uint16 LineNumber = ReadWORD(ScriptIndex);
			uint8 InDebugMode = ReadBYTE(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: assert at line %d, in debug mode = %d with expr:"), *Indents, (int32)Opcode, LineNumber, InDebugMode);
			SerializeExpr( ScriptIndex ); // Assert expr.
			break;
		}
	case EX_Skip:
		{
			CodeSkipSizeType W = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: possibly skip 0x%X bytes of expr:"), *Indents, (int32)Opcode, W);

			// Expression to possibly skip.
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_InstanceDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: instance delegate function named %s"), *Indents, (int32)Opcode, *FuncName);
			break;
		}
	case EX_AddMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Add MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_RemoveMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Remove MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ClearMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Clear MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_BindDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: BindDelegate '%s' "), *Indents, (int32)Opcode, *FuncName);

			Ar.Logf(TEXT("%s Delegate:"), *Indents);
			SerializeExpr( ScriptIndex );

			Ar.Logf(TEXT("%s Object:"), *Indents);
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_PushExecutionFlow:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: FlowStack.Push(0x%X);"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_PopExecutionFlow:
		{
			Ar.Logf(TEXT("%s $%X: if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! }"), *Indents, (int32)Opcode);
			break;
		}
	case EX_PopExecutionFlowIfNot:
		{
			Ar.Logf(TEXT("%s $%X: if (!condition) { if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! } }"), *Indents, (int32)Opcode);
			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Breakpoint:
		{
			Ar.Logf(TEXT("%s $%X: <<< BREAKPOINT >>>"), *Indents, (int32)Opcode);
			break;
		}
	case EX_WireTracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. wire debug site .."), *Indents, (int32)Opcode);
			break;
		}
	case EX_Tracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. debug site .."), *Indents, (int32)Opcode);
			break;
		}
	default:
		{
			// This should never occur.
			UE_LOG(LogScriptDisassembler, Warning, TEXT("Unknown bytecode 0x%02X; ignoring it"), (uint8)Opcode );
			break;
		}
	}
}
Beispiel #7
0
String		NormalVar::OnParse(char *lpData, int Len, int &pos, int key)
{
	String resultStr;
	if(m_Type == "int")
	{
		int result = (int)ReadDWORD(lpData, pos);
		resultStr = IntToStr(result);
	}
	else	if(m_Type == "DWORD")
	{
		if(GetParseAsHex())
		{
			DWORD	result = ReadDWORD(lpData, pos);
			resultStr = IntToHex((int)result, 8);
		}
		else
		{
			DWORD	result = (DWORD)ReadDWORD(lpData, pos);
			resultStr = IntToStr((__int64)result);
		}
	}
	else	if(m_Type == "short")
	{
		short	result = (short)ReadWORD(lpData, pos);
		resultStr = IntToStr(result);
	}
	else	if(m_Type == "WORD")
	{
		if(GetParseAsHex())
		{
			WORD	result = ReadWORD(lpData, pos);
			resultStr = IntToHex((int)result, 4);
		}
		else
		{
			WORD	result = (WORD)ReadWORD(lpData, pos);
			resultStr = IntToStr(result);
		}
	}
	else	if(m_Type == "char")
	{
		char	result = (char)ReadBYTE(lpData, pos);
		resultStr = result;
	}
	else	if(m_Type == "BYTE")
	{
		if(GetParseAsHex())
		{
			BYTE	result = ReadBYTE(lpData, pos);
			resultStr = IntToHex((int)result, 2);
		}
		else
		{
			BYTE	result = (BYTE)ReadBYTE(lpData, pos);
			resultStr = IntToStr(result);
		}
	}
	else	if(m_Type == "float")
	{
		float result = ReadFloat(lpData, pos);
		resultStr = FloatToStr(result);
	}
	else	if(m_Type == "double")
	{
		double	result = ReadDouble(lpData, pos);
		String date = "";
		try
		{
			date = DateTimeToStr(FloatToDateTime(result));
			resultStr = FormatStr("%s(%s)", FloatToStr(result), date);
		}
		catch(...)
		{
			resultStr = FormatStr("%s", FloatToStr(result));
		}
	}
	else	if(m_Type == "DateTime")
	{
		double	result = ReadDouble(lpData, pos);
		String date = DateTimeToStr(FloatToDateTime(result));
		resultStr = FormatStr("%s", date);
	}

	return	resultStr;
}
void FKismetBytecodeDisassembler::ProcessCommon(int32& ScriptIndex, EExprToken Opcode)
{
	switch (Opcode)
	{
	case EX_PrimitiveCast:
		{
			// A type conversion.
			uint8 ConversionType = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: PrimitiveCast of type %d"), *Indents, (int32)Opcode, ConversionType);
			AddIndent();

			Ar.Logf(TEXT("%s Argument:"), *Indents);
			ProcessCastByte(ConversionType, ScriptIndex);

			//@TODO:
			//Ar.Logf(TEXT("%s Expression:"), *Indents);
			//SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ObjToInterfaceCast:
		{
			// A conversion from an object variable to a native interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: ObjToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_CrossInterfaceCast:
		{
			// A conversion from one interface variable to a different interface variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* InterfaceClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToInterfaceCast to %s"), *Indents, (int32)Opcode, *InterfaceClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_InterfaceToObjCast:
		{
			// A conversion from an interface variable to a object variable.
			// We use a different bytecode to avoid the branching each time we process a cast token

			// the interface class to convert to
			UClass* ObjectClass = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: InterfaceToObjCast to %s"), *Indents, (int32)Opcode, *ObjectClass->GetName());

			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Let:
		{
			Ar.Logf(TEXT("%s $%X: Let (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			ReadPointer<UProperty>(ScriptIndex);

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetObj:
	case EX_LetWeakObjPtr:
		{
			if( Opcode == EX_LetObj )
			{
				Ar.Logf(TEXT("%s $%X: Let Obj (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			else
			{
				Ar.Logf(TEXT("%s $%X: Let WeakObjPtr (Variable = Expression)"), *Indents, (int32)Opcode);
			}
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetBool:
		{
			Ar.Logf(TEXT("%s $%X: LetBool (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );

			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetValueOnPersistentFrame:
		{
			Ar.Logf(TEXT("%s $%X: LetValueOnPersistentFrame"), *Indents, (int32)Opcode);
			AddIndent();

			auto Prop = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s Destination variable: %s, offset: %d"), *Indents, *GetNameSafe(Prop), 
				Prop ? Prop->GetOffset_ForDebug() : 0);
			
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr(ScriptIndex);

			DropIndent();

			break;
		}
	case EX_StructMemberContext:
		{
			Ar.Logf(TEXT("%s $%X: Struct member context "), *Indents, (int32)Opcode);
			AddIndent();

			UProperty* Prop = ReadPointer<UProperty>(ScriptIndex);

			Ar.Logf(TEXT("%s Expression within struct %s, offset %d"), *Indents, *(Prop->GetName()), 
				Prop->GetOffset_ForDebug()); // although that isn't a UFunction, we are not going to indirect the props of a struct, so this should be fine

			Ar.Logf(TEXT("%s Expression to struct:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();

			break;
		}
	case EX_LetDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_LetMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: LetMulticastDelegate (Variable = Expression)"), *Indents, (int32)Opcode);
			AddIndent();

			// Variable expr.
			Ar.Logf(TEXT("%s Variable:"), *Indents);
			SerializeExpr( ScriptIndex );
				
			// Assignment expr.
			Ar.Logf(TEXT("%s Expression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}

	case EX_ComputedJump:
		{
			Ar.Logf(TEXT("%s $%X: Computed Jump, offset specified by expression:"), *Indents, (int32)Opcode);

			AddIndent();
			SerializeExpr( ScriptIndex );
			DropIndent();

			break;
		}

	case EX_Jump:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_LocalVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_DefaultVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Default variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InstanceVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Instance variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_LocalOutVariable:
		{
			UProperty* PropertyPtr = ReadPointer<UProperty>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Local out variable named %s"), *Indents, (int32)Opcode, PropertyPtr ? *PropertyPtr->GetName() : TEXT("(null)"));
			break;
		}
	case EX_InterfaceContext:
		{
			Ar.Logf(TEXT("%s $%X: EX_InterfaceContext:"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
			break;
		}
	case EX_DeprecatedOp4A:
		{
			Ar.Logf(TEXT("%s $%X: This opcode has been removed and does nothing."), *Indents, (int32)Opcode);
			break;
		}
	case EX_Nothing:
		{
			Ar.Logf(TEXT("%s $%X: EX_Nothing"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndOfScript:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndOfScript"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndFunctionParms:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndFunctionParms"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndStructConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndStructConst"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndArray:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndArray"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndArrayConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndArrayConst"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntZero:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntZero"), *Indents, (int32)Opcode);
			break;
		}
	case EX_IntOne:
		{
			Ar.Logf(TEXT("%s $%X: EX_IntOne"), *Indents, (int32)Opcode);
			break;
		}
	case EX_True:
		{
			Ar.Logf(TEXT("%s $%X: EX_True"), *Indents, (int32)Opcode);
			break;
		}
	case EX_False:
		{
			Ar.Logf(TEXT("%s $%X: EX_False"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoObject:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_NoInterface:
		{
			Ar.Logf(TEXT("%s $%X: EX_NoObject"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Self:
		{
			Ar.Logf(TEXT("%s $%X: EX_Self"), *Indents, (int32)Opcode);
			break;
		}
	case EX_EndParmValue:
		{
			Ar.Logf(TEXT("%s $%X: EX_EndParmValue"), *Indents, (int32)Opcode);
			break;
		}
	case EX_Return:
		{
			Ar.Logf(TEXT("%s $%X: Return expression"), *Indents, (int32)Opcode);

			SerializeExpr( ScriptIndex ); // Return expression.
			break;
		}
	case EX_CallMath:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Call Math (stack node %s::%s)"), *Indents, (int32)Opcode, *GetNameSafe(StackNode ? StackNode->GetOuter() : nullptr), *GetNameSafe(StackNode));

			while (SerializeExpr(ScriptIndex) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_FinalFunction:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Final Function (stack node %s::%s)"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));

			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_CallMulticastDelegate:
		{
			UStruct* StackNode = ReadPointer<UStruct>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: CallMulticastDelegate (signature %s::%s) delegate:"), *Indents, (int32)Opcode, StackNode ? *StackNode->GetOuter()->GetName() : TEXT("(null)"), StackNode ? *StackNode->GetName() : TEXT("(null)"));
			SerializeExpr( ScriptIndex );
			Ar.Logf(TEXT("Params:"));
			while (SerializeExpr( ScriptIndex ) != EX_EndFunctionParms)
			{
				// Params
			}
			break;
		}
	case EX_VirtualFunction:
		{
			FString FunctionName = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: Virtual Function named %s"), *Indents, (int32)Opcode, *FunctionName);

			while (SerializeExpr(ScriptIndex) != EX_EndFunctionParms)
			{
			}
			break;
		}
	case EX_ClassContext:
	case EX_Context:
	case EX_Context_FailSilent:
		{
			Ar.Logf(TEXT("%s $%X: %s"), *Indents, (int32)Opcode, Opcode == EX_ClassContext ? TEXT("Class Context") : TEXT("Context"));
			AddIndent();

			// Object expression.
			Ar.Logf(TEXT("%s ObjectExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			if (Opcode == EX_Context_FailSilent)
			{
				Ar.Logf(TEXT(" Can fail silently on access none "));
			}

			// Code offset for NULL expressions.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s Skip Bytes: 0x%X"), *Indents, SkipCount);

			// Property corresponding to the r-value data, in case the l-value needs to be mem-zero'd
			UField* Field = ReadPointer<UField>(ScriptIndex);
			Ar.Logf(TEXT("%s R-Value Property: %s"), *Indents, Field ? *Field->GetName() : TEXT("(null)"));

			// Context expression.
			Ar.Logf(TEXT("%s ContextExpression:"), *Indents);
			SerializeExpr( ScriptIndex );

			DropIndent();
			break;
		}
	case EX_IntConst:
		{
			int32 ConstValue = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int32 %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_SkipOffsetConst:
		{
			CodeSkipSizeType ConstValue = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal CodeSkipSizeType 0x%X"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_FloatConst:
		{
			float ConstValue = ReadFLOAT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal float %f"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_StringConst:
		{
			FString ConstValue = ReadString8(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal ansi string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_UnicodeStringConst:
		{
			FString ConstValue = ReadString16(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal unicode string \"%s\""), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_TextConst:
		{
			// What kind of text are we dealing with?
			const EBlueprintTextLiteralType TextLiteralType = (EBlueprintTextLiteralType)Script[ScriptIndex++];

			switch (TextLiteralType)
			{
			case EBlueprintTextLiteralType::Empty:
				{
					Ar.Logf(TEXT("%s $%X: literal text - empty"), *Indents, (int32)Opcode);
				}
				break;

			case EBlueprintTextLiteralType::LocalizedText:
				{
					const FString SourceString = ReadString(ScriptIndex);
					const FString KeyString = ReadString(ScriptIndex);
					const FString Namespace = ReadString(ScriptIndex);
					Ar.Logf(TEXT("%s $%X: literal text - localized text { namespace: \"%s\", key: \"%s\", source: \"%s\" }"), *Indents, (int32)Opcode, *Namespace, *KeyString, *SourceString);
				}
				break;

			case EBlueprintTextLiteralType::InvariantText:
				{
					const FString SourceString = ReadString(ScriptIndex);
					Ar.Logf(TEXT("%s $%X: literal text - invariant text: \"%s\""), *Indents, (int32)Opcode, *SourceString);
				}
				break;

			case EBlueprintTextLiteralType::LiteralString:
				{
					const FString SourceString = ReadString(ScriptIndex);
					Ar.Logf(TEXT("%s $%X: literal text - literal string: \"%s\""), *Indents, (int32)Opcode, *SourceString);
				}
				break;

			default:
				checkf(false, TEXT("Unknown EBlueprintTextLiteralType! Please update FKismetBytecodeDisassembler::ProcessCommon to handle this type of text."));
				break;
			}
			break;
		}
	case EX_ObjectConst:
		{
			UObject* Pointer = ReadPointer<UObject>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: EX_ObjectConst (%p:%s)"), *Indents, (int32)Opcode, Pointer, *Pointer->GetFullName());
			break;
		}
	case EX_AssetConst:
		{
			Ar.Logf(TEXT("%s $%X: EX_AssetConst"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
			break;
		}
	case EX_NameConst:
		{
			FString ConstValue = ReadName(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal name %s"), *Indents, (int32)Opcode, *ConstValue);
			break;
		}
	case EX_RotationConst:
		{
			float Pitch = ReadFLOAT(ScriptIndex);
			float Yaw = ReadFLOAT(ScriptIndex);
			float Roll = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal rotation (%f,%f,%f)"), *Indents, (int32)Opcode, Pitch, Yaw, Roll);
			break;
		}
	case EX_VectorConst:
		{
			float X = ReadFLOAT(ScriptIndex);
			float Y = ReadFLOAT(ScriptIndex);
			float Z = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal vector (%f,%f,%f)"), *Indents, (int32)Opcode, X, Y, Z);
			break;
		}
	case EX_TransformConst:
		{

			float RotX = ReadFLOAT(ScriptIndex);
			float RotY = ReadFLOAT(ScriptIndex);
			float RotZ = ReadFLOAT(ScriptIndex);
			float RotW = ReadFLOAT(ScriptIndex);

			float TransX = ReadFLOAT(ScriptIndex);
			float TransY = ReadFLOAT(ScriptIndex);
			float TransZ = ReadFLOAT(ScriptIndex);

			float ScaleX = ReadFLOAT(ScriptIndex);
			float ScaleY = ReadFLOAT(ScriptIndex);
			float ScaleZ = ReadFLOAT(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: literal transform R(%f,%f,%f,%f) T(%f,%f,%f) S(%f,%f,%f)"), *Indents, (int32)Opcode, TransX, TransY, TransZ, RotX, RotY, RotZ, RotW, ScaleX, ScaleY, ScaleZ);
			break;
		}
	case EX_StructConst:
		{
			UScriptStruct* Struct = ReadPointer<UScriptStruct>(ScriptIndex);
			int32 SerializedSize = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal struct %s (serialized size: %d)"), *Indents, (int32)Opcode, *Struct->GetName(), SerializedSize);
			while( SerializeExpr(ScriptIndex) != EX_EndStructConst )
			{
				// struct contents
			}
			break;
		}
	case EX_SetArray:
		{
 			Ar.Logf(TEXT("%s $%X: set array"), *Indents, (int32)Opcode);
			SerializeExpr(ScriptIndex);
 			while( SerializeExpr(ScriptIndex) != EX_EndArray)
 			{
 				// Array contents
 			}
 			break;
		}
	case EX_ArrayConst:
		{
			UProperty* InnerProp = ReadPointer<UProperty>(ScriptIndex);
			int32 Num = ReadINT(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: set array const - elements number: %d, inner property: %s"), *Indents, (int32)Opcode, Num, *GetNameSafe(InnerProp));
			while (SerializeExpr(ScriptIndex) != EX_EndArrayConst)
			{
				// Array contents
			}
			break;
		}
	case EX_ByteConst:
		{
			uint8 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal byte %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_IntConstByte:
		{
			int32 ConstValue = ReadBYTE(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: literal int %d"), *Indents, (int32)Opcode, ConstValue);
			break;
		}
	case EX_MetaCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: MetaCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_DynamicCast:
		{
			UClass* Class = ReadPointer<UClass>(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: DynamicCast to %s of expr:"), *Indents, (int32)Opcode, *Class->GetName());
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_JumpIfNot:
		{
			// Code offset.
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
				
			Ar.Logf(TEXT("%s $%X: Jump to offset 0x%X if not expr:"), *Indents, (int32)Opcode, SkipCount);

			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Assert:
		{
			uint16 LineNumber = ReadWORD(ScriptIndex);
			uint8 InDebugMode = ReadBYTE(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: assert at line %d, in debug mode = %d with expr:"), *Indents, (int32)Opcode, LineNumber, InDebugMode);
			SerializeExpr( ScriptIndex ); // Assert expr.
			break;
		}
	case EX_Skip:
		{
			CodeSkipSizeType W = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: possibly skip 0x%X bytes of expr:"), *Indents, (int32)Opcode, W);

			// Expression to possibly skip.
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_InstanceDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: instance delegate function named %s"), *Indents, (int32)Opcode, *FuncName);
			break;
		}
	case EX_AddMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Add MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_RemoveMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Remove MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_ClearMulticastDelegate:
		{
			Ar.Logf(TEXT("%s $%X: Clear MC delegate"), *Indents, (int32)Opcode);
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_BindDelegate:
		{
			// the name of the function assigned to the delegate.
			FString FuncName = ReadName(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: BindDelegate '%s' "), *Indents, (int32)Opcode, *FuncName);

			Ar.Logf(TEXT("%s Delegate:"), *Indents);
			SerializeExpr( ScriptIndex );

			Ar.Logf(TEXT("%s Object:"), *Indents);
			SerializeExpr( ScriptIndex );

			break;
		}
	case EX_PushExecutionFlow:
		{
			CodeSkipSizeType SkipCount = ReadSkipCount(ScriptIndex);
			Ar.Logf(TEXT("%s $%X: FlowStack.Push(0x%X);"), *Indents, (int32)Opcode, SkipCount);
			break;
		}
	case EX_PopExecutionFlow:
		{
			Ar.Logf(TEXT("%s $%X: if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! }"), *Indents, (int32)Opcode);
			break;
		}
	case EX_PopExecutionFlowIfNot:
		{
			Ar.Logf(TEXT("%s $%X: if (!condition) { if (FlowStack.Num()) { jump to statement at FlowStack.Pop(); } else { ERROR!!! } }"), *Indents, (int32)Opcode);
			// Boolean expr.
			SerializeExpr( ScriptIndex );
			break;
		}
	case EX_Breakpoint:
		{
			Ar.Logf(TEXT("%s $%X: <<< BREAKPOINT >>>"), *Indents, (int32)Opcode);
			break;
		}
	case EX_WireTracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. wire debug site .."), *Indents, (int32)Opcode);
			break;
		}
	case EX_InstrumentationEvent:
		{
			const uint8 EventType = ReadBYTE(ScriptIndex);
			switch (EventType)
			{
				case EScriptInstrumentation::InlineEvent:
					Ar.Logf(TEXT("%s $%X: .. instrumented inline event .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::Stop:
					Ar.Logf(TEXT("%s $%X: .. instrumented event stop .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::PureNodeEntry:
					Ar.Logf(TEXT("%s $%X: .. instrumented pure node entry site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::NodeDebugSite:
					Ar.Logf(TEXT("%s $%X: .. instrumented debug site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::NodeEntry:
					Ar.Logf(TEXT("%s $%X: .. instrumented wire entry site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::NodeExit:
					Ar.Logf(TEXT("%s $%X: .. instrumented wire exit site .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::PushState:
					Ar.Logf(TEXT("%s $%X: .. push execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::RestoreState:
					Ar.Logf(TEXT("%s $%X: .. restore execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::ResetState:
					Ar.Logf(TEXT("%s $%X: .. reset execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::SuspendState:
					Ar.Logf(TEXT("%s $%X: .. suspend execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::PopState:
					Ar.Logf(TEXT("%s $%X: .. pop execution state .."), *Indents, (int32)Opcode);
					break;
				case EScriptInstrumentation::TunnelEndOfThread:
					Ar.Logf(TEXT("%s $%X: .. tunnel end of thread .."), *Indents, (int32)Opcode);
					break;
			}
			break;
		}
	case EX_Tracepoint:
		{
			Ar.Logf(TEXT("%s $%X: .. debug site .."), *Indents, (int32)Opcode);
			break;
		}
	case EX_SwitchValue:
		{
			const auto NumCases = ReadWORD(ScriptIndex);
			const auto AfterSkip = ReadSkipCount(ScriptIndex);

			Ar.Logf(TEXT("%s $%X: Switch Value %d cases, end in 0x%X"), *Indents, (int32)Opcode, NumCases, AfterSkip);
			AddIndent();
			Ar.Logf(TEXT("%s Index:"), *Indents);
			SerializeExpr(ScriptIndex);

			for (uint16 CaseIndex = 0; CaseIndex < NumCases; ++CaseIndex)
			{
				Ar.Logf(TEXT("%s [%d] Case Index (label: 0x%X):"), *Indents, CaseIndex, ScriptIndex);
				SerializeExpr(ScriptIndex);	// case index value term
				const auto OffsetToNextCase = ReadSkipCount(ScriptIndex);
				Ar.Logf(TEXT("%s [%d] Offset to the next case: 0x%X"), *Indents, CaseIndex, OffsetToNextCase);
				Ar.Logf(TEXT("%s [%d] Case Result:"), *Indents, CaseIndex);
				SerializeExpr(ScriptIndex);	// case term
			}

			Ar.Logf(TEXT("%s Default result (label: 0x%X):"), *Indents, ScriptIndex);
			SerializeExpr(ScriptIndex);
			Ar.Logf(TEXT("%s (label: 0x%X)"), *Indents, ScriptIndex);
			DropIndent();
			break;
		}
	case EX_ArrayGetByRef:
		{
			Ar.Logf(TEXT("%s $%X: Array Get-by-Ref Index"), *Indents, (int32)Opcode);
			AddIndent();
			SerializeExpr(ScriptIndex);
			SerializeExpr(ScriptIndex);
			DropIndent();
			break;
		}
	default:
		{
			// This should never occur.
			UE_LOG(LogScriptDisassembler, Warning, TEXT("Unknown bytecode 0x%02X; ignoring it"), (uint8)Opcode );
			break;
		}
	}
}