Beispiel #1
0
void GatherPipeBursted()
{
	if (IsOnThread())
		SetCPStatusFromCPU();

	ProcessFifoEvents();
	// if we aren't linked, we don't care about gather pipe data
	if (!m_CPCtrlReg.GPLinkEnable)
	{
		if (IsOnThread() && !g_use_deterministic_gpu_thread)
		{
			// In multibuffer mode is not allowed write in the same FIFO attached to the GPU.
			// Fix Pokemon XD in DC mode.
			if ((ProcessorInterface::Fifo_CPUEnd == fifo.CPEnd) &&
				(ProcessorInterface::Fifo_CPUBase == fifo.CPBase) &&
				fifo.CPReadWriteDistance > 0)
			{
				FlushGpu();
			}
		}
		RunGpu();
		return;
	}

	// update the fifo pointer
	if (fifo.CPWritePointer == fifo.CPEnd)
		fifo.CPWritePointer = fifo.CPBase;
	else
		fifo.CPWritePointer += GATHER_PIPE_SIZE;

	if (m_CPCtrlReg.GPReadEnable && m_CPCtrlReg.GPLinkEnable)
	{
		ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer;
		ProcessorInterface::Fifo_CPUBase = fifo.CPBase;
		ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd;
	}

	// If the game is running close to overflowing, make the exception checking more frequent.
	if (fifo.bFF_HiWatermark)
		CoreTiming::ForceExceptionCheck(0);

	Common::AtomicAdd(fifo.CPReadWriteDistance, GATHER_PIPE_SIZE);

	RunGpu();

	_assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance <= fifo.CPEnd - fifo.CPBase,
		"FIFO is overflowed by GatherPipe !\nCPU thread is too fast!");

	// check if we are in sync
	_assert_msg_(COMMANDPROCESSOR, fifo.CPWritePointer == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync");
	_assert_msg_(COMMANDPROCESSOR, fifo.CPBase == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync");
	_assert_msg_(COMMANDPROCESSOR, fifo.CPEnd == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync");
}
Beispiel #2
0
/* This function checks the emulated CPU - GPU distance and may wake up the GPU,
 * or block the CPU if required. It should be called by the CPU thread regularly.
 * @ticks The gone emulated CPU time.
 * @return A good time to call WaitForGpuThread() next.
 */
static int WaitForGpuThread(int ticks)
{
  const SConfig& param = SConfig::GetInstance();

  int old = s_sync_ticks.fetch_add(ticks);
  int now = old + ticks;

  // GPU is idle, so stop polling.
  if (old >= 0 && s_gpu_mainloop.IsDone())
    return -1;

  // Wakeup GPU
  if (old < param.iSyncGpuMinDistance && now >= param.iSyncGpuMinDistance)
    RunGpu();

  // If the GPU is still sleeping, wait for a longer time
  if (now < param.iSyncGpuMinDistance)
    return GPU_TIME_SLOT_SIZE + param.iSyncGpuMinDistance - now;

  // Wait for GPU
  if (now >= param.iSyncGpuMaxDistance)
    s_sync_wakeup_event.Wait();

  return GPU_TIME_SLOT_SIZE;
}
Beispiel #3
0
int Fifo_Update(int ticks)
{
	const SConfig& param = SConfig::GetInstance();

	if (ticks == 0)
	{
		FlushGpu();
		return param.iSyncGpuMaxDistance;
	}

	// GPU is sleeping, so no need for synchronization
	if (s_gpu_mainloop.IsDone() || g_use_deterministic_gpu_thread)
	{
		if (s_sync_ticks.load() < 0)
		{
			int old = s_sync_ticks.fetch_add(ticks);
			if (old < param.iSyncGpuMinDistance && old + ticks >= param.iSyncGpuMinDistance)
				RunGpu();
		}
		return param.iSyncGpuMaxDistance;
	}

	int old = s_sync_ticks.fetch_add(ticks);
	if (old < param.iSyncGpuMinDistance && old + ticks >= param.iSyncGpuMinDistance)
		RunGpu();

	if (s_sync_ticks.load() >= param.iSyncGpuMaxDistance)
	{
		while (s_sync_ticks.load() > 0)
		{
			s_sync_wakeup_event.Wait();
		}
	}

	return param.iSyncGpuMaxDistance - s_sync_ticks.load();
}
Beispiel #4
0
void STACKALIGN GatherPipeBursted()
{
	if (cpreg.ctrl.GPLinkEnable)
	{
		DEBUG_LOG(COMMANDPROCESSOR,"\t WGP burst. write thru : %08x", cpreg.writeptr);

		if (cpreg.writeptr == cpreg.fifoend)
			cpreg.writeptr = cpreg.fifobase;
		else
			cpreg.writeptr += GATHER_PIPE_SIZE;

		Common::AtomicAdd(cpreg.rwdistance, GATHER_PIPE_SIZE);
	}

	RunGpu();
}
Beispiel #5
0
void UpdateInterrupts(u64 userdata)
{
	if (userdata)
	{
		s_interrupt_set.store(true);
		INFO_LOG(COMMANDPROCESSOR, "Interrupt set");
		ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true);
	}
	else
	{
		s_interrupt_set.store(false);
		INFO_LOG(COMMANDPROCESSOR, "Interrupt cleared");
		ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false);
	}
	CoreTiming::ForceExceptionCheck(0);
	s_interrupt_waiting.store(false);
	RunGpu();
}
Beispiel #6
0
void RegisterMMIO(MMIO::Mapping* mmio, u32 base)
{
	struct {
		u32 addr;
		u16* ptr;
		bool readonly;
		bool writes_align_to_32_bytes;
	} directly_mapped_vars[] = {
		{ FIFO_TOKEN_REGISTER, &m_tokenReg },

		// Bounding box registers are read only.
		{ FIFO_BOUNDING_BOX_LEFT, &m_bboxleft, true },
		{ FIFO_BOUNDING_BOX_RIGHT, &m_bboxright, true },
		{ FIFO_BOUNDING_BOX_TOP, &m_bboxtop, true },
		{ FIFO_BOUNDING_BOX_BOTTOM, &m_bboxbottom, true },

		// Some FIFO addresses need to be aligned on 32 bytes on write - only
		// the high part can be written directly without a mask.
		{ FIFO_BASE_LO, MMIO::Utils::LowPart(&fifo.CPBase), false, true },
		{ FIFO_BASE_HI, MMIO::Utils::HighPart(&fifo.CPBase) },
		{ FIFO_END_LO, MMIO::Utils::LowPart(&fifo.CPEnd), false, true },
		{ FIFO_END_HI, MMIO::Utils::HighPart(&fifo.CPEnd) },
		{ FIFO_HI_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPHiWatermark) },
		{ FIFO_HI_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPHiWatermark) },
		{ FIFO_LO_WATERMARK_LO, MMIO::Utils::LowPart(&fifo.CPLoWatermark) },
		{ FIFO_LO_WATERMARK_HI, MMIO::Utils::HighPart(&fifo.CPLoWatermark) },
		// FIFO_RW_DISTANCE has some complex read code different for
		// single/dual core.
		{ FIFO_WRITE_POINTER_LO, MMIO::Utils::LowPart(&fifo.CPWritePointer), false, true },
		{ FIFO_WRITE_POINTER_HI, MMIO::Utils::HighPart(&fifo.CPWritePointer) },
		// FIFO_READ_POINTER has different code for single/dual core.
	};

	for (auto& mapped_var : directly_mapped_vars)
	{
		u16 wmask = mapped_var.writes_align_to_32_bytes ? 0xFFE0 : 0xFFFF;
		mmio->Register(base | mapped_var.addr,
			MMIO::DirectRead<u16>(mapped_var.ptr),
			mapped_var.readonly
			? MMIO::InvalidWrite<u16>()
			: MMIO::DirectWrite<u16>(mapped_var.ptr, wmask)
			);
	}

	mmio->Register(base | FIFO_BP_LO,
		MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.CPBreakpoint)),
		MMIO::ComplexWrite<u16>([](u32, u16 val) {
		WriteLow(fifo.CPBreakpoint, val & 0xffe0);
	})
		);
	mmio->Register(base | FIFO_BP_HI,
		MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.CPBreakpoint)),
		MMIO::ComplexWrite<u16>([](u32, u16 val) {
		WriteHigh(fifo.CPBreakpoint, val);
	})
		);

	// Timing and metrics MMIOs are stubbed with fixed values.
	struct {
		u32 addr;
		u16 value;
	} metrics_mmios[] = {
		{ XF_RASBUSY_L, 0 },
		{ XF_RASBUSY_H, 0 },
		{ XF_CLKS_L, 0 },
		{ XF_CLKS_H, 0 },
		{ XF_WAIT_IN_L, 0 },
		{ XF_WAIT_IN_H, 0 },
		{ XF_WAIT_OUT_L, 0 },
		{ XF_WAIT_OUT_H, 0 },
		{ VCACHE_METRIC_CHECK_L, 0 },
		{ VCACHE_METRIC_CHECK_H, 0 },
		{ VCACHE_METRIC_MISS_L, 0 },
		{ VCACHE_METRIC_MISS_H, 0 },
		{ VCACHE_METRIC_STALL_L, 0 },
		{ VCACHE_METRIC_STALL_H, 0 },
		{ CLKS_PER_VTX_OUT, 4 },
	};
	for (auto& metrics_mmio : metrics_mmios)
	{
		mmio->Register(base | metrics_mmio.addr,
			MMIO::Constant<u16>(metrics_mmio.value),
			MMIO::InvalidWrite<u16>()
			);
	}

	mmio->Register(base | STATUS_REGISTER,
		MMIO::ComplexRead<u16>([](u32) {
		SetCpStatusRegister();
		return m_CPStatusReg.Hex;
	}),
		MMIO::InvalidWrite<u16>()
		);

	mmio->Register(base | CTRL_REGISTER,
		MMIO::DirectRead<u16>(&m_CPCtrlReg.Hex),
		MMIO::ComplexWrite<u16>([](u32, u16 val) {
		UCPCtrlReg tmp(val);
		m_CPCtrlReg.Hex = tmp.Hex;
		SetCpControlRegister();
		RunGpu();
	})
		);

	mmio->Register(base | CLEAR_REGISTER,
		MMIO::DirectRead<u16>(&m_CPClearReg.Hex),
		MMIO::ComplexWrite<u16>([](u32, u16 val) {
		UCPClearReg tmp(val);
		m_CPClearReg.Hex = tmp.Hex;
		SetCpClearRegister();
		RunGpu();
	})
		);

	mmio->Register(base | PERF_SELECT,
		MMIO::InvalidRead<u16>(),
		MMIO::Nop<u16>()
		);

	// Some MMIOs have different handlers for single core vs. dual core mode.
	mmio->Register(base | FIFO_RW_DISTANCE_LO,
		IsOnThread()
		? MMIO::ComplexRead<u16>([](u32) {
		if (fifo.CPWritePointer >= fifo.SafeCPReadPointer)
			return ReadLow(fifo.CPWritePointer - fifo.SafeCPReadPointer);
		else
			return ReadLow(fifo.CPEnd - fifo.SafeCPReadPointer + fifo.CPWritePointer - fifo.CPBase + 32);
	})
		: MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance)),
		MMIO::DirectWrite<u16>(MMIO::Utils::LowPart(&fifo.CPReadWriteDistance), 0xFFE0)
		);
	mmio->Register(base | FIFO_RW_DISTANCE_HI,
		IsOnThread()
		? MMIO::ComplexRead<u16>([](u32) {
		if (fifo.CPWritePointer >= fifo.SafeCPReadPointer)
			return ReadHigh(fifo.CPWritePointer - fifo.SafeCPReadPointer);
		else
			return ReadHigh(fifo.CPEnd - fifo.SafeCPReadPointer + fifo.CPWritePointer - fifo.CPBase + 32);
	})
		: MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.CPReadWriteDistance)),
		MMIO::ComplexWrite<u16>([](u32, u16 val) {
		WriteHigh(fifo.CPReadWriteDistance, val);
		SyncGPU(SYNC_GPU_OTHER);
		if (fifo.CPReadWriteDistance == 0)
		{
			GPFifo::ResetGatherPipe();
			ResetVideoBuffer();
		}
		else
		{
			ResetVideoBuffer();
		}
		RunGpu();
	})
		);
	mmio->Register(base | FIFO_READ_POINTER_LO,
		IsOnThread()
		? MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.SafeCPReadPointer))
		: MMIO::DirectRead<u16>(MMIO::Utils::LowPart(&fifo.CPReadPointer)),
		MMIO::DirectWrite<u16>(MMIO::Utils::LowPart(&fifo.CPReadPointer), 0xFFE0)
		);
	mmio->Register(base | FIFO_READ_POINTER_HI,
		IsOnThread()
		? MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.SafeCPReadPointer))
		: MMIO::DirectRead<u16>(MMIO::Utils::HighPart(&fifo.CPReadPointer)),
		IsOnThread()
		? MMIO::ComplexWrite<u16>([](u32, u16 val) {
		WriteHigh(fifo.CPReadPointer, val);
		fifo.SafeCPReadPointer = fifo.CPReadPointer;
	})
		: MMIO::DirectWrite<u16>(MMIO::Utils::HighPart(&fifo.CPReadPointer))
		);
}