Beispiel #1
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecMutation)
{  /*lint --e{715}*/
   SCIP_Longint maxnnodes;
   SCIP_Longint nsubnodes;                   /* node limit for the subproblem                       */

   SCIP_HEURDATA* heurdata;                  /* heuristic's data                                    */
   SCIP* subscip;                            /* the subproblem created by mutation                  */
   SCIP_VAR** vars;                          /* original problem's variables                        */
   SCIP_VAR** subvars;                       /* subproblem's variables                              */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem                 */
   SCIP_Real maxnnodesr;
   SCIP_Real memorylimit;
   SCIP_Real timelimit;                      /* timelimit for the subproblem                        */
   SCIP_Real upperbound;

   int nvars;                                /* number of original problem's variables              */
   int i;

   SCIP_Bool success;

   SCIP_RETCODE retcode;

   assert( heur != NULL );
   assert( scip != NULL );
   assert( result != NULL );

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   *result = SCIP_DELAYED;

   /* only call heuristic, if feasible solution is available */
   if( SCIPgetNSols(scip) <= 0 )
      return SCIP_OKAY;

   /* only call heuristic, if the best solution comes from transformed problem */
   assert( SCIPgetBestSol(scip) != NULL );
   if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if enough nodes were processed since last incumbent */
   if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip))  < heurdata->nwaitingnodes)
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic, if discrete variables are present */
   if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 )
      return SCIP_OKAY;

   /* calculate the maximal number of branching nodes until heuristic is aborted */
   maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip);

   /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */
   maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0);
   maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur);
   maxnnodes += heurdata->nodesofs;

   /* determine the node limit for the current process */
   nsubnodes = maxnnodes - heurdata->usednodes;
   nsubnodes = MIN(nsubnodes, heurdata->maxnodes);

   /* check whether we have enough nodes left to call subproblem solving */
   if( nsubnodes < heurdata->minnodes )
       return SCIP_OKAY;

   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initializing the subproblem */
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );

   if( heurdata->uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_mutationsub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_Bool valid;
      valid = FALSE;

      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) );

      if( heurdata->copycuts )
      {
         /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }

      SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");
   }

   for( i = 0; i < nvars; i++ )
     subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */
   SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) );

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

  /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   if( !SCIPisParamFixed(subscip, "conflict/useprop") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useinflp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usesb") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usepseudo") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) );
   }

   /* add an objective cutoff */
   cutoff = SCIPinfinity(scip);
   assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) );

   upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
   if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) )
   {
      cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip);
   }
   else
   {
      if( SCIPgetUpperbound ( scip ) >= 0 )
         cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip );
      else
         cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip );
   }
   cutoff = MIN(upperbound, cutoff );
   SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );

   /* solve the subproblem */
   SCIPdebugMessage("Solve Mutation subMIP\n");
   retcode = SCIPsolve(subscip);

   /* Errors in solving the subproblem should not kill the overall solving process
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   heurdata->usednodes += SCIPgetNNodes(subscip);

   /* check, whether a solution was found */
   if( SCIPgetNSols(subscip) > 0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      }
      if( success )
         *result = SCIP_FOUNDSOL;
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
/** node selection method of node selector */
static
SCIP_DECL_NODESELSELECT(nodeselSelectBfs)
{  /*lint --e{715}*/
   SCIP_NODESELDATA* nodeseldata;
   int minplungedepth;
   int maxplungedepth;
   int plungedepth;
   SCIP_Real maxplungequot;

   assert(nodesel != NULL);
   assert(strcmp(SCIPnodeselGetName(nodesel), NODESEL_NAME) == 0);
   assert(scip != NULL);
   assert(selnode != NULL);

   *selnode = NULL;

   /* get node selector user data */
   nodeseldata = SCIPnodeselGetData(nodesel);
   assert(nodeseldata != NULL);

   /* calculate minimal and maximal plunging depth */
   minplungedepth = nodeseldata->minplungedepth;
   maxplungedepth = nodeseldata->maxplungedepth;
   maxplungequot = nodeseldata->maxplungequot;
   if( minplungedepth == -1 )
   {
      minplungedepth = SCIPgetMaxDepth(scip)/10;
      if( SCIPgetNStrongbranchLPIterations(scip) > 2*SCIPgetNNodeLPIterations(scip) )
        minplungedepth += 10;
      if( maxplungedepth >= 0 )
         minplungedepth = MIN(minplungedepth, maxplungedepth);
   }
   if( maxplungedepth == -1 )
      maxplungedepth = SCIPgetMaxDepth(scip)/2;
   maxplungedepth = MAX(maxplungedepth, minplungedepth);

   /* check, if we exceeded the maximal plunging depth */
   plungedepth = SCIPgetPlungeDepth(scip);
   if( plungedepth > maxplungedepth )
   {
      /* we don't want to plunge again: select best node from the tree */
      SCIPdebugMessage("plungedepth: [%d,%d], cur: %d -> abort plunging\n", minplungedepth, maxplungedepth, plungedepth);
      *selnode = SCIPgetBestNode(scip);
      SCIPdebugMessage("  -> best node   : lower=%g\n",
         *selnode != NULL ? SCIPnodeGetLowerbound(*selnode) : SCIPinfinity(scip));
   }
   else
   {
      SCIP_NODE* node;
      SCIP_Real maxbound;
         
      /* check, if plunging is forced at the current depth */
      if( plungedepth < minplungedepth )
      {
         maxbound = SCIPinfinity(scip);
         SCIPdebugMessage("plungedepth: [%d,%d], cur: %d => maxbound: infinity\n",
            minplungedepth, maxplungedepth, plungedepth);
      }
      else
      {
         SCIP_Real lowerbound;
         SCIP_Real cutoffbound;
         /* get global lower and cutoff bound */
         lowerbound = SCIPgetLowerbound(scip);
         cutoffbound = SCIPgetCutoffbound(scip);
         
         /* if we didn't find a solution yet, the cutoff bound is usually very bad:
          * use only 20% of the gap as cutoff bound
          */
         if( SCIPgetNSolsFound(scip) == 0 )
            cutoffbound = lowerbound + 0.2 * (cutoffbound - lowerbound);
         /* calculate maximal plunging bound */
         maxbound = lowerbound + maxplungequot * (cutoffbound - lowerbound);

         SCIPdebugMessage("plungedepth: [%d,%d], cur: %d, bounds: [%g,%g], maxbound: %g\n",
            minplungedepth, maxplungedepth, plungedepth, lowerbound, cutoffbound, maxbound);         
      }

      /* we want to plunge again: prefer children over siblings, and siblings over leaves,
       * but only select a child or sibling, if its dual bound is small enough;
       * prefer using nodes with higher node selection priority assigned by the branching rule
       */
      node = SCIPgetPrioChild(scip);
      if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound )
      {
         *selnode = node;
         SCIPdebugMessage("  -> selected prio child: lower=%g\n", SCIPnodeGetLowerbound(*selnode));
      }
      else
      {
         node = SCIPgetBestChild(scip);
         if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound )
         {
            *selnode = node;
            SCIPdebugMessage("  -> selected best child: lower=%g\n", SCIPnodeGetLowerbound(*selnode));
         }
         else
         {
            node = SCIPgetPrioSibling(scip);
            if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound )
            {
               *selnode = node;
               SCIPdebugMessage("  -> selected prio sibling: lower=%g\n", SCIPnodeGetLowerbound(*selnode));
            }
            else
            {
               node = SCIPgetBestSibling(scip);
               if( node != NULL && SCIPnodeGetLowerbound(node) < maxbound )
               {
                  *selnode = node;
                  SCIPdebugMessage("  -> selected best sibling: lower=%g\n", SCIPnodeGetLowerbound(*selnode));
               }
               else
               {
                  *selnode = SCIPgetBestNode(scip);
                  SCIPdebugMessage("  -> selected best leaf: lower=%g\n",
                     *selnode != NULL ? SCIPnodeGetLowerbound(*selnode) : SCIPinfinity(scip));
               }
            }
         }
      }
   }

   return SCIP_OKAY;
}
Beispiel #3
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR** pseudocands;
   SCIP_VAR** fixcands;
   SCIP_Real* fixcandscores;
   SCIP_Real searchubbound;
   SCIP_Real searchavgbound;
   SCIP_Real searchbound;
   SCIP_Real objval;
   SCIP_Bool lperror;
   SCIP_Bool cutoff;
   SCIP_Bool backtracked;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int nfixcands;
   int nbinfixcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int nextcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 100);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get unfixed integer variables */
   SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nfixcands == 0 )
      return SCIP_OKAY;

   /* calculate the objective search bound */
   if( SCIPgetNSolsFound(scip) == 0 )
   {
      if( heurdata->maxdiveubquotnosol > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquotnosol > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   else
   {
      if( heurdata->maxdiveubquot > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquot > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   searchbound = MIN(searchubbound, searchavgbound);
   if( SCIPisObjIntegral(scip) )
      searchbound = SCIPceil(scip, searchbound);

   /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
   maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   maxdivedepth = MIN(maxdivedepth, maxdepth);
   maxdivedepth *= 10;

   *result = SCIP_DIDNOTFIND;

   /* start diving */
   SCIP_CALL( SCIPstartProbing(scip) );

   /* enables collection of variable statistics during probing */
   SCIPenableVarHistory(scip);

   SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound));

   /* copy the pseudo candidates into own array, because we want to reorder them */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) );

   /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */
   SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) );
   nbinfixcands = 0;
   for( c = 0; c < nfixcands; ++c )
   {
      SCIP_VAR* var;
      SCIP_Real score;
      int colveclen;
      int left;
      int right;
      int i;

      assert(c >= nbinfixcands);
      var = fixcands[c];
      assert(SCIPvarIsIntegral(var));
      colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0);
      if( SCIPvarIsBinary(var) )
      {
         score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE)
            + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0;

         /* shift the non-binary variables one slot to the right */
         for( i = c; i > nbinfixcands; --i )
         {
            fixcands[i] = fixcands[i-1];
            fixcandscores[i] = fixcandscores[i-1];
         }
         /* put the new candidate into the first nbinfixcands slot */
         left = 0;
         right = nbinfixcands;
         nbinfixcands++;
      }
      else
      {
         score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE))
            + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var)
            + (SCIP_Real)colveclen/10000.0;

         /* put the new candidate in the slots after the binary candidates */
         left = nbinfixcands;
         right = c;
      }
      for( i = right; i > left && score > fixcandscores[i-1]; --i )
      {
         fixcands[i] = fixcands[i-1];
         fixcandscores[i] = fixcandscores[i-1];
      }
      fixcands[i] = var;
      fixcandscores[i] = score;
      SCIPdebugMessage("  <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d  ->  score=%g\n",
         SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE),
         SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var),
         colveclen, score);
   }
   SCIPfreeBufferArray(scip, &fixcandscores);

   /* get LP objective value */
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   objval = SCIPgetLPObjval(scip);

   /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with
    * the depth 10
    */
   lperror = FALSE;
   cutoff = FALSE;
   divedepth = 0;
   nextcand = 0;
   while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL
      && (divedepth < 10
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
      && !SCIPisStopped(scip) )
   {
      SCIP_VAR* var;
      SCIP_Real bestsolval;
      SCIP_Real bestfixval;
      int bestcand;
      SCIP_Longint nnewlpiterations;
      SCIP_Longint nnewdomreds;

      /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */
      if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) )
      {
         SCIP_CALL( SCIPnewProbingNode(scip) );
         divedepth++;
      }
      else
         break;

      nnewlpiterations = 0;
      nnewdomreds = 0;

      /* fix binary variable that is closest to 1 in the LP solution to 1;
       * if all binary variables are fixed, fix integer variable with least fractionality in LP solution
       */
      bestcand = -1;
      bestsolval = -1.0;
      bestfixval = 1.0;

      /* look in the binary variables for fixing candidates */
      for( c = nextcand; c < nbinfixcands; ++c )
      {
         SCIP_Real solval;

         var = fixcands[c];

         /* ignore already fixed variables */
         if( var == NULL )
            continue;
         if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 )
         {
            fixcands[c] = NULL;
            continue;
         }

         /* get the LP solution value */
         solval = SCIPvarGetLPSol(var);

         if( solval > bestsolval )
         {
            bestcand = c;
            bestfixval = 1.0;
            bestsolval = solval;
            if( SCIPisGE(scip, bestsolval, 1.0) )
            {
               /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */
               break;
            }
            else if( SCIPisLE(scip, bestsolval, 0.0) )
            {
               /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */
               bestfixval = 0.0;
            }
         }
      }

      /* if all binary variables are fixed, look in the integer variables for a fixing candidate */
      if( bestcand == -1 )
      {
         SCIP_Real bestfrac;

         bestfrac = SCIP_INVALID;
         for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c )
         {
            SCIP_Real solval;
            SCIP_Real frac;

            var = fixcands[c];

            /* ignore already fixed variables */
            if( var == NULL )
               continue;
            if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 )
            {
               fixcands[c] = NULL;
               continue;
            }

            /* get the LP solution value */
            solval = SCIPvarGetLPSol(var);
            frac = SCIPfrac(scip, solval);

            /* ignore integer variables that are currently integral */
            if( SCIPisFeasFracIntegral(scip, frac) )
               continue;

            if( frac < bestfrac )
            {
               bestcand = c;
               bestsolval = solval;
               bestfrac = frac;
               bestfixval = SCIPfloor(scip, bestsolval + 0.5);
               if( SCIPisZero(scip, bestfrac) )
               {
                  /* we found an unfixed integer variable with integral LP solution value */
                  break;
               }
            }
         }
      }
      assert(-1 <= bestcand && bestcand < nfixcands);

      /* if there is no unfixed candidate left, we are done */
      if( bestcand == -1 )
         break;

      var = fixcands[bestcand];
      assert(var != NULL);
      assert(SCIPvarIsIntegral(var));
      assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5);
      assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var)));
      assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var)));

      backtracked = FALSE;
      do
      {
         /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
          * occured or variable was fixed by propagation while backtracking => Abort diving!
          */
         if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
         {
            SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var));
            cutoff = TRUE;
            break;
         }
         if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) )
         {
            SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
            assert(backtracked);
            break;
         }

         /* apply fixing of best candidate */
         SCIPdebugMessage("  dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n",
            divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip),
            SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
         SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) );

         /* apply domain propagation */
         SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) );
         if( !cutoff )
         {
            /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution
             * stays valid, and the LP does not need to be resolved
             */
            if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
            {
            /* resolve the diving LP */
               /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                */
#ifdef NDEBUG
               SCIP_RETCODE retstat;
               nlpiterations = SCIPgetNLPIterations(scip);
               retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
               if( retstat != SCIP_OKAY )
               {
                  SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat);
               }
#else
               nlpiterations = SCIPgetNLPIterations(scip);
               SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

               if( lperror )
                  break;

               /* update iteration count */
               nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations;
               heurdata->nlpiterations += nnewlpiterations;

               /* get LP solution status */
               lpsolstat = SCIPgetLPSolstat(scip);
               assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                     (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }
         }

         /* perform backtracking if a cutoff was detected */
         if( cutoff && !backtracked && heurdata->backtrack )
         {
            SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
            SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );

            /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */
            assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip));

            SCIP_CALL( SCIPnewProbingNode(scip) );

            bestfixval = SCIPvarIsBinary(var)
               ? 1.0 - bestfixval
               : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1);

            backtracked = TRUE;
         }
         else
            backtracked = FALSE;
      }
      while( backtracked );

      if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* get new objective value */
         objval = SCIPgetLPObjval(scip);

         if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
         {
            /* we must start again with the first candidate, since the LP solution changed */
            nextcand = 0;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );
            if( success )
            {
               SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n",
                  SCIPgetSolOrigObj(scip, heurdata->sol));

               /* try to add solution to SCIP */
               SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

               /* check, if solution was feasible and good enough */
               if( success )
               {
                  SCIPdebugMessage(" -> solution was feasible and good enough\n");
                  *result = SCIP_FOUNDSOL;
               }
            }
         }
         else
            nextcand = bestcand+1; /* continue with the next candidate in the following loop */
      }
      SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound);
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &fixcands);

   /* end diving */
   SCIP_CALL( SCIPendProbing(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   SCIPdebugMessage("intdiving heuristic finished\n");

   return SCIP_OKAY;
}
Beispiel #4
0
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */
SCIP_RETCODE SCIPapplyZeroobj(
   SCIP*                 scip,               /**< original SCIP data structure                                        */
   SCIP_HEUR*            heur,               /**< heuristic data structure                                            */
   SCIP_RESULT*          result,             /**< result data structure                                               */
   SCIP_Real             minimprove,         /**< factor by which zeroobj should at least improve the incumbent      */
   SCIP_Longint          nnodes              /**< node limit for the subproblem                                       */
   )
{
   SCIP*                 subscip;            /* the subproblem created by zeroobj              */
   SCIP_HASHMAP*         varmapfw;           /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR**            vars;               /* original problem's variables                    */
   SCIP_VAR**            subvars;            /* subproblem's variables                          */
   SCIP_HEURDATA*        heurdata;           /* heuristic's private data structure              */
   SCIP_EVENTHDLR*       eventhdlr;          /* event handler for LP events                     */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem             */
   SCIP_Real timelimit;                      /* time limit for zeroobj subproblem              */
   SCIP_Real memorylimit;                    /* memory limit for zeroobj subproblem            */
   SCIP_Real large;

   int nvars;                                /* number of original problem's variables          */
   int i;

   SCIP_Bool success;
   SCIP_Bool valid;
   SCIP_RETCODE retcode;
   SCIP_SOL** subsols;
   int nsubsols;

   assert(scip != NULL);
   assert(heur != NULL);
   assert(result != NULL);

   assert(nnodes >= 0);
   assert(0.0 <= minimprove && minimprove <= 1.0);

   *result = SCIP_DIDNOTRUN;

   /* only call heuristic once at the root */
   if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 )
      return SCIP_OKAY;

   /* get heuristic data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only call the heuristic if we do not have an incumbent  */
   if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol )
      return SCIP_OKAY;

   /* check whether there is enough time and memory left */
   timelimit = 0.0;
   memorylimit = 0.0;
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   /* get variable data */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initialize the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

   /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */
   valid = FALSE;

   /* copy complete SCIP instance */
   SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) );
   SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");

   /* create event handler for LP events */
   eventhdlr = NULL;
   SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) );
   if( eventhdlr == NULL )
   {
      SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n");
      return SCIP_PLUGINNOTFOUND;
   }

   /* determine large value to set variables to */
   large = SCIPinfinity(scip);
   if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) )
      large = 0.1 / SCIPfeastol(scip);

   /* get variable image and change to 0.0 in sub-SCIP */
   for( i = 0; i < nvars; i++ )
   {
      SCIP_Real adjustedbound;
      SCIP_Real lb;
      SCIP_Real ub;
      SCIP_Real inf;
      
      subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);
      SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) );

      lb = SCIPvarGetLbGlobal(subvars[i]);
      ub = SCIPvarGetUbGlobal(subvars[i]);
      inf = SCIPinfinity(subscip);

      /* adjust infinite bounds in order to avoid that variables with non-zero objective 
       * get fixed to infinite value in zeroobj subproblem
       */
      if( SCIPisInfinity(subscip, ub ) )
      {
         adjustedbound = MAX(large, lb+large);
         adjustedbound = MIN(adjustedbound, inf);
         SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) );
      }
      if( SCIPisInfinity(subscip, -lb ) )
      {
         adjustedbound = MIN(-large, ub-large);
         adjustedbound = MAX(adjustedbound, -inf);
         SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) );
      }
   }

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );
   SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) );

   /* forbid recursive call of heuristics and separators solving sub-SCIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable expensive techniques that merely work on the dual bound */

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );
   if( !SCIPisParamFixed(subscip, "presolving/maxrounds") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) );
   }

   /* use best dfs node selection */
   if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) );
   }

   /* disable feaspump and fracdiving */
   if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) );
   }
   if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) );
   }

   /* restrict LP iterations */
   SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) );

#ifdef SCIP_DEBUG
   /* for debugging zeroobj, enable MIP output */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) );
   SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) );
#endif

   /* if there is already a solution, add an objective cutoff */
   if( SCIPgetNSols(scip) > 0 )
   {
      SCIP_Real upperbound;
      SCIP_CONS* origobjcons;
#ifndef NDEBUG
      int nobjvars;
      nobjvars = 0;
#endif

      cutoff = SCIPinfinity(scip);
      assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

      upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);

      if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
      {
         cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip);
      }
      else
      {
         if( SCIPgetUpperbound(scip) >= 0 )
            cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip );
         else
            cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip );
      }
      cutoff = MIN(upperbound, cutoff);

      SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff,
            TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) );
      for( i = 0; i < nvars; ++i)
      {
         if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) )
         {
            SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) );
#ifndef NDEBUG
            nobjvars++;
#endif
         }
      }
      SCIP_CALL( SCIPaddCons(subscip, origobjcons) );
      SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) );
      assert(nobjvars == SCIPgetNObjVars(scip));
   }

   /* catch LP events of sub-SCIP */
   SCIP_CALL( SCIPtransformProb(subscip) );
   SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );

   SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes);
   retcode = SCIPsolve(subscip);

   /* drop LP events of sub-SCIP */
   SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );

   /* errors in solving the subproblem should not kill the overall solving process;
    * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   /* check, whether a solution was found;
    * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
    */
   nsubsols = SCIPgetNSols(subscip);
   subsols = SCIPgetSols(subscip);
   success = FALSE;
   for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i )
   {
      SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      if( success )
         *result = SCIP_FOUNDSOL;
   }

#ifdef SCIP_DEBUG
   SCIP_CALL( SCIPprintStatistics(subscip, NULL) );
#endif

   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
Beispiel #5
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_LPSOLSTAT lpsolstat;
    SCIP_VAR* var;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_Real* lpcandsfrac;
    SCIP_Real searchubbound;
    SCIP_Real searchavgbound;
    SCIP_Real searchbound;
    SCIP_Real objval;
    SCIP_Real oldobjval;
    SCIP_Real frac;
    SCIP_Real bestfrac;
    SCIP_Bool bestcandmayrounddown;
    SCIP_Bool bestcandmayroundup;
    SCIP_Bool bestcandroundup;
    SCIP_Bool mayrounddown;
    SCIP_Bool mayroundup;
    SCIP_Bool roundup;
    SCIP_Bool lperror;
    SCIP_Bool cutoff;
    SCIP_Bool backtracked;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nlpiterations;
    SCIP_Longint maxnlpiterations;
    int nlpcands;
    int startnlpcands;
    int depth;
    int maxdepth;
    int maxdivedepth;
    int divedepth;
    SCIP_Real actscore;
    SCIP_Real downscore;
    SCIP_Real upscore;
    SCIP_Real bestactscore;
    int bestcand;
    int c;

    assert(heur != NULL);
    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DELAYED;

    /* do not call heuristic of node was already detected to be infeasible */
    if( nodeinfeasible )
        return SCIP_OKAY;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
    if( !SCIPisLPSolBasic(scip) )
        return SCIP_OKAY;

    /* don't dive two times at the same node */
    if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTRUN;

    /* get heuristic's data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
    depth = SCIPgetDepth(scip);
    maxdepth = SCIPgetMaxDepth(scip);
    maxdepth = MAX(maxdepth, 30);
    if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
        return SCIP_OKAY;

    /* calculate the maximal number of LP iterations until heuristic is aborted */
    nlpiterations = SCIPgetNNodeLPIterations(scip);
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
    maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
    maxnlpiterations += heurdata->maxlpiterofs;

    /* don't try to dive, if we took too many LP iterations during diving */
    if( heurdata->nlpiterations >= maxnlpiterations )
        return SCIP_OKAY;

    /* allow at least a certain number of LP iterations in this dive */
    maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

    /* get fractional variables that should be integral */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

    /* don't try to dive, if there are no fractional variables */
    if( nlpcands == 0 )
        return SCIP_OKAY;

    /* calculate the objective search bound */
    if( SCIPgetNSolsFound(scip) == 0 )
    {
        if( heurdata->maxdiveubquotnosol > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquotnosol > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    else
    {
        if( heurdata->maxdiveubquot > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquot > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    searchbound = MIN(searchubbound, searchavgbound);
    if( SCIPisObjIntegral(scip) )
        searchbound = SCIPceil(scip, searchbound);

    /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
    maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
    maxdivedepth = MIN(maxdivedepth, maxdepth);
    maxdivedepth *= 10;

    *result = SCIP_DIDNOTFIND;

    /* start diving */
    SCIP_CALL( SCIPstartProbing(scip) );

    /* enables collection of variable statistics during probing */
    SCIPenableVarHistory(scip);

    /* get LP objective value */
    lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
    objval = SCIPgetLPObjval(scip);

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n",
                     SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip),
                     SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound));

    /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but
     * - if possible, we dive at least with the depth 10
     * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
     */
    lperror = FALSE;
    cutoff = FALSE;
    divedepth = 0;
    bestcandmayrounddown = FALSE;
    bestcandmayroundup = FALSE;
    startnlpcands = nlpcands;
    while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
            && (divedepth < 10
                || nlpcands <= startnlpcands - divedepth/2
                || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
            && !SCIPisStopped(scip) )
    {
        divedepth++;
        SCIP_CALL( SCIPnewProbingNode(scip) );

        /* choose variable fixing:
         * - prefer variables that may not be rounded without destroying LP feasibility:
         *   - of these variables, round variable with least number of locks in corresponding direction
         * - if all remaining fractional variables may be rounded without destroying LP feasibility:
         *   - round variable with least number of locks in opposite of its feasible rounding direction
         */
        bestcand = -1;
        bestactscore = -1.0;
        bestfrac = SCIP_INVALID;
        bestcandmayrounddown = TRUE;
        bestcandmayroundup = TRUE;
        bestcandroundup = FALSE;
        for( c = 0; c < nlpcands; ++c )
        {
            var = lpcands[c];
            mayrounddown = SCIPvarMayRoundDown(var);
            mayroundup = SCIPvarMayRoundUp(var);
            frac = lpcandsfrac[c];
            if( mayrounddown || mayroundup )
            {
                /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
                if( bestcandmayrounddown || bestcandmayroundup )
                {
                    /* choose rounding direction:
                     * - if variable may be rounded in both directions, round corresponding to the fractionality
                     * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                     *   the current fractional solution
                     */
                    if( mayrounddown && mayroundup )
                        roundup = (frac > 0.5);
                    else
                        roundup = mayrounddown;

                    if( roundup )
                        frac = 1.0 - frac;
                    actscore = getNActiveConsScore(scip, var, &downscore, &upscore);

                    /* penalize too small fractions */
                    if( frac < 0.01 )
                        actscore *= 0.01;

                    /* prefer decisions on binary variables */
                    if( !SCIPvarIsBinary(var) )
                        actscore *= 0.01;

                    /* check, if candidate is new best candidate */
                    assert(0.0 < frac && frac < 1.0);
                    if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                    {
                        bestcand = c;
                        bestactscore = actscore;
                        bestfrac = frac;
                        bestcandmayrounddown = mayrounddown;
                        bestcandmayroundup = mayroundup;
                        bestcandroundup = roundup;
                    }
                }
            }
            else
            {
                /* the candidate may not be rounded */
                actscore = getNActiveConsScore(scip, var, &downscore, &upscore);
                roundup = (downscore < upscore);
                if( roundup )
                    frac = 1.0 - frac;

                /* penalize too small fractions */
                if( frac < 0.01 )
                    actscore *= 0.01;

                /* prefer decisions on binary variables */
                if( !SCIPvarIsBinary(var) )
                    actscore *= 0.01;

                /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
                assert(0.0 < frac && frac < 1.0);
                if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) ||
                        (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                {
                    bestcand = c;
                    bestactscore = actscore;
                    bestfrac = frac;
                    bestcandmayrounddown = FALSE;
                    bestcandmayroundup = FALSE;
                    bestcandroundup = roundup;
                }
                assert(bestfrac < SCIP_INVALID);
            }
        }
        assert(bestcand != -1);

        /* if all candidates are roundable, try to round the solution */
        if( bestcandmayrounddown || bestcandmayroundup )
        {
            SCIP_Bool success;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

            if( success )
            {
                SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

                /* try to add solution to SCIP */
                SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

                /* check, if solution was feasible and good enough */
                if( success )
                {
                    SCIPdebugMessage(" -> solution was feasible and good enough\n");
                    *result = SCIP_FOUNDSOL;
                }
            }
        }
        assert(bestcand != -1);
        var = lpcands[bestcand];

        backtracked = FALSE;
        do
        {
            /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
             * occured or variable was fixed by propagation while backtracking => Abort diving!
             */
            if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
            {
                SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                cutoff = TRUE;
                break;
            }
            if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) )
            {
                SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                assert(backtracked);
                break;
            }

            /* apply rounding of best candidate */
            if( bestcandroundup == !backtracked )
            {
                /* round variable up */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var));
                SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
            }
            else
            {
                /* round variable down */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand]));
                SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) );
            }

            /* apply domain propagation */
            SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) );
            if( !cutoff )
            {
                /* resolve the diving LP */
                /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                 */
#ifdef NDEBUG
                SCIP_RETCODE retstat;
                nlpiterations = SCIPgetNLPIterations(scip);
                retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
                if( retstat != SCIP_OKAY )
                {
                    SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat);
                }
#else
                nlpiterations = SCIPgetNLPIterations(scip);
                SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

                if( lperror )
                    break;

                /* update iteration count */
                heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

                /* get LP solution status, objective value, and fractional variables, that should be integral */
                lpsolstat = SCIPgetLPSolstat(scip);
                assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                                  (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }

            /* perform backtracking if a cutoff was detected */
            if( cutoff && !backtracked && heurdata->backtrack )
            {
                SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
                SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );
                SCIP_CALL( SCIPnewProbingNode(scip) );
                backtracked = TRUE;
            }
            else
                backtracked = FALSE;
        }
        while( backtracked );

        if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
        {
            /* get new objective value */
            oldobjval = objval;
            objval = SCIPgetLPObjval(scip);

            /* update pseudo cost values */
            if( SCIPisGT(scip, objval, oldobjval) )
            {
                if( bestcandroundup )
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
                else
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
            }

            /* get new fractional variables */
            SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
        }
        SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands);
    }

    /* check if a solution has been found */
    if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
    {
        SCIP_Bool success;

        /* create solution from diving LP */
        SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
        SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

        /* try to add solution to SCIP */
        SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

        /* check, if solution was feasible and good enough */
        if( success )
        {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
        }
    }

    /* end diving */
    SCIP_CALL( SCIPendProbing(scip) );

    if( *result == SCIP_FOUNDSOL )
        heurdata->nsuccess++;

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n",
                     SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                     SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff);

    return SCIP_OKAY;
}
Beispiel #6
0
/** main procedure of the RENS heuristic, creates and solves a subMIP */
SCIP_RETCODE SCIPapplyGcgrens(
   SCIP*                 scip,               /**< original SCIP data structure                                   */
   SCIP_HEUR*            heur,               /**< heuristic data structure                                       */
   SCIP_RESULT*          result,             /**< result data structure                                          */
   SCIP_Real             minfixingrate,      /**< minimum percentage of integer variables that have to be fixed  */
   SCIP_Real             minimprove,         /**< factor by which RENS should at least improve the incumbent     */
   SCIP_Longint          maxnodes,           /**< maximum number of  nodes for the subproblem                    */
   SCIP_Longint          nstallnodes,        /**< number of stalling nodes for the subproblem                    */
   SCIP_Bool             binarybounds,       /**< should general integers get binary bounds [floor(.),ceil(.)]?  */
   SCIP_Bool             uselprows           /**< should subproblem be created out of the rows in the LP rows?   */
   )
{
   SCIP* subscip;                            /* the subproblem created by RENS                  */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR** vars;                          /* original problem's variables                    */
   SCIP_VAR** subvars;                       /* subproblem's variables                          */

   SCIP_Real cutoff;                         /* objective cutoff for the subproblem             */
   SCIP_Real timelimit;
   SCIP_Real memorylimit;

   int nvars;
   int i;

   SCIP_Bool success;
   SCIP_RETCODE retcode;

   assert(scip != NULL);
   assert(heur != NULL);
   assert(result != NULL);

   assert(maxnodes >= 0);
   assert(nstallnodes >= 0);

   assert(0.0 <= minfixingrate && minfixingrate <= 1.0);
   assert(0.0 <= minimprove && minimprove <= 1.0);

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initialize the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );

   if( uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_gcgrenssub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_gcgrenssub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_Bool valid;
      SCIP_HEURDATA* heurdata;

      valid = FALSE;

      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "gcgrens", TRUE, FALSE, TRUE, &valid) ); /** @todo check for thread safeness */

      /* get heuristic's data */
      heurdata = SCIPheurGetData(heur);
      assert( heurdata != NULL );

      if( heurdata->copycuts )
      {
         /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }

      SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not ");
   }

   for( i = 0; i < nvars; i++ )
     subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */
   SCIP_CALL( createSubproblem(scip, subscip, subvars, minfixingrate, binarybounds, uselprows, &success) );
   SCIPdebugMessage("RENS subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success);

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* check whether there is enough time and memory left */
   timelimit = 0.0;
   memorylimit = 0.0;
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );
   if( !SCIPisInfinity(scip, memorylimit) )
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
   if( timelimit <= 0.0 || memorylimit <= 0.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", nstallnodes) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", maxnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving sub-SCIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(scip, "estimate") != NULL )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(scip, "inference") != NULL )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );


#ifdef SCIP_DEBUG
   /* for debugging RENS, enable MIP output */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) );
   SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) );
#endif


   /* if the subproblem could not be created, free memory and return */
   if( !success )
   {
      *result = SCIP_DIDNOTRUN;
      SCIPfreeBufferArray(scip, &subvars);
      SCIP_CALL( SCIPfree(&subscip) );
      return SCIP_OKAY;
   }

   /* if there is already a solution, add an objective cutoff */
   if( SCIPgetNSols(scip) > 0 )
   {
      SCIP_Real upperbound;
      assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

      upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);

      if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
      {
         cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip);
      }
      else
      {
         if( SCIPgetUpperbound ( scip ) >= 0 )
            cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip );
         else
            cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip );
      }
      cutoff = MIN(upperbound, cutoff);
      SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );
   }

   /* presolve the subproblem */
   retcode = SCIPpresolve(subscip);

   /* Errors in solving the subproblem should not kill the overall solving process
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while presolving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   SCIPdebugMessage("GCG RENS presolved subproblem: %d vars, %d cons, success=%u\n", SCIPgetNVars(subscip), SCIPgetNConss(subscip), success);

   /* after presolving, we should have at least reached a certain fixing rate over ALL variables (including continuous)
    * to ensure that not only the MIP but also the LP relaxation is easy enough
    */
   if( ( nvars - SCIPgetNVars(subscip) ) / (SCIP_Real)nvars >= minfixingrate / 2.0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;

      /* solve the subproblem */
      SCIPdebugMessage("solving subproblem: nstallnodes=%"SCIP_LONGINT_FORMAT", maxnodes=%"SCIP_LONGINT_FORMAT"\n", nstallnodes, maxnodes);
      retcode = SCIPsolve(subscip);

      /* Errors in solving the subproblem should not kill the overall solving process
       * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
       */
      if( retcode != SCIP_OKAY )
      {
#ifndef NDEBUG
         SCIP_CALL( retcode );
#endif
         SCIPwarningMessage(scip, "Error while solving subproblem in GCG RENS heuristic; sub-SCIP terminated with code <%d>\n",retcode);
      }

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      }
      if( success )
         *result = SCIP_FOUNDSOL;
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
Beispiel #7
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecLocalbranching)
{  /*lint --e{715}*/
   SCIP_Longint maxnnodes;                   /* maximum number of subnodes                            */
   SCIP_Longint nsubnodes;                   /* nodelimit for subscip                                 */

   SCIP_HEURDATA* heurdata;
   SCIP* subscip;                            /* the subproblem created by localbranching              */
   SCIP_VAR** subvars;                       /* subproblem's variables                                */
   SCIP_SOL* bestsol;                        /* best solution so far                                  */
   SCIP_EVENTHDLR*       eventhdlr;          /* event handler for LP events                     */

   SCIP_Real timelimit;                      /* timelimit for subscip (equals remaining time of scip) */
   SCIP_Real cutoff;                         /* objective cutoff for the subproblem                   */
   SCIP_Real upperbound;
   SCIP_Real memorylimit;

   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */
   SCIP_VAR** vars;

   int nvars;
   int i;

   SCIP_Bool success;

   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert( heurdata != NULL );

   /* there should be enough binary variables that a local branching constraint makes sense */
   if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize )
      return SCIP_OKAY;

   *result = SCIP_DELAYED;

   /* only call heuristic, if an IP solution is at hand */
   if( SCIPgetNSols(scip) <= 0  )
      return SCIP_OKAY;

   bestsol = SCIPgetBestSol(scip);
   assert(bestsol != NULL);

   /* only call heuristic, if the best solution comes from transformed problem */
   if( SCIPsolIsOriginal(bestsol) )
      return SCIP_OKAY;

   /* only call heuristic, if enough nodes were processed since last incumbent */
   if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol)  < heurdata->nwaitingnodes)
      return SCIP_OKAY;

   /* only call heuristic, if the best solution does not come from trivial heuristic */
   if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 )
      return SCIP_OKAY;

   /* reset neighborhood and minnodes, if new solution was found */
   if( heurdata->lastsol != bestsol )
   {
      heurdata->curneighborhoodsize = heurdata->neighborhoodsize;
      heurdata->curminnodes = heurdata->minnodes;
      heurdata->emptyneighborhoodsize = 0;
      heurdata->callstatus = EXECUTE;
      heurdata->lastsol = bestsol;
   }

   /* if no new solution was found and local branching also seems to fail, just keep on waiting */
   if( heurdata->callstatus == WAITFORNEWSOL )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* calculate the maximal number of branching nodes until heuristic is aborted */
   maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip));

   /* reward local branching if it succeeded often */
   maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0)));
   maxnnodes -= 100 * SCIPheurGetNCalls(heur);  /* count the setup costs for the sub-MIP as 100 nodes */
   maxnnodes += heurdata->nodesofs;

   /* determine the node limit for the current process */
   nsubnodes = maxnnodes - heurdata->usednodes;
   nsubnodes = MIN(nsubnodes, heurdata->maxnodes);

   /* check whether we have enough nodes left to call sub problem solving */
   if( nsubnodes < heurdata->curminnodes )
      return SCIP_OKAY;

   if( SCIPisStopped(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIPdebugMessage("running localbranching heuristic ...\n");

   /* get the data of the variables and the best solution */
   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );

   /* initializing the subproblem */
   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   success = FALSE;
   eventhdlr = NULL;

   if( heurdata->uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_localbranchsub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) );

      if( heurdata->copycuts )
      {
         /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }

      /* create event handler for LP events */
      SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) );
      if( eventhdlr == NULL )
      {
         SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n");
         return SCIP_PLUGINNOTFOUND;
      }
   }
   SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not ");

   for (i = 0; i < nvars; ++i)
      subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   /* if the subproblem could not be created, free memory and return */
   if( !success )
   {
      *result = SCIP_DIDNOTRUN;
      goto TERMINATE;
   }

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

#ifndef SCIP_DEBUG
   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );
#endif

   /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   heurdata->nodelimit = nsubnodes;
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) );
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) );
   SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   if( !SCIPisParamFixed(subscip, "conflict/useprop") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useinflp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usesb") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usepseudo") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );
   }

   /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that
    * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the
    * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad
    * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be
    * made for the original SCIP
    */
   if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) );
   }

   /* copy the original problem and add the local branching constraint */
   if( heurdata->uselprows )
   {
      SCIP_CALL( createSubproblem(scip, subscip, subvars) );
   }
   SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) );

   /* add an objective cutoff */
   cutoff = SCIPinfinity(scip);
   assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) );

   upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
   if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
   {
      cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip);
   }
   else
   {
      if( SCIPgetUpperbound ( scip ) >= 0 )
         cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip );
      else
         cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip );
   }
   cutoff = MIN(upperbound, cutoff );
   SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );

   /* catch LP events of sub-SCIP */
   if( !heurdata->uselprows )
   {
      assert(eventhdlr != NULL);

      SCIP_CALL( SCIPtransformProb(subscip) );
      SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) );
   }

   /* solve the subproblem */
   SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n",
      heurdata->curneighborhoodsize, nsubnodes);
   retcode = SCIPsolve(subscip);

   /* drop LP events of sub-SCIP */
   if( !heurdata->uselprows )
   {
      assert(eventhdlr != NULL);

      SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) );
   }

   /* Errors in solving the subproblem should not kill the overall solving process
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
    */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode);
   }

   /* print solving statistics of subproblem if we are in SCIP's debug mode */
   SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) );

   heurdata->usednodes += SCIPgetNNodes(subscip);
   SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n",
      SCIPgetNNodes(subscip), nsubnodes);

   /* check, whether a solution was found */
   if( SCIPgetNSols(subscip) > 0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted
       */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) );
      }
      if( success )
      {
         SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i]));
         *result = SCIP_FOUNDSOL;
      }
   }

   /* check the status of the sub-MIP */
   switch( SCIPgetStatus(subscip) )
   {
   case SCIP_STATUS_OPTIMAL:
   case SCIP_STATUS_BESTSOLLIMIT:
      heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */
      SCIPdebugMessage(" -> found new solution\n");
      break;

   case SCIP_STATUS_NODELIMIT:
   case SCIP_STATUS_STALLNODELIMIT:
   case SCIP_STATUS_TOTALNODELIMIT:
      heurdata->callstatus = EXECUTE;
      heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2;
      heurdata->curminnodes *= 2;
      SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n",
         heurdata->curneighborhoodsize, heurdata->curminnodes);
      if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize )
      {
         heurdata->callstatus = WAITFORNEWSOL;
         SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n");
      }
      break;

   case SCIP_STATUS_INFEASIBLE:
   case SCIP_STATUS_INFORUNBD:
      heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize;
      heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2;
      heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2);
      heurdata->callstatus = EXECUTE;
      SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize);
      break;

   case SCIP_STATUS_UNKNOWN:
   case SCIP_STATUS_USERINTERRUPT:
   case SCIP_STATUS_TIMELIMIT:
   case SCIP_STATUS_MEMLIMIT:
   case SCIP_STATUS_GAPLIMIT:
   case SCIP_STATUS_SOLLIMIT:
   case SCIP_STATUS_UNBOUNDED:
   default:
      heurdata->callstatus = WAITFORNEWSOL;
      SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip));
      break;
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecCrossover)
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;                  /* primal heuristic data                               */
   SCIP* subscip;                            /* the subproblem created by crossover                 */
   SCIP_HASHMAP* varmapfw;                   /* mapping of SCIP variables to sub-SCIP variables */

   SCIP_VAR** vars;                          /* original problem's variables                        */
   SCIP_VAR** subvars;                       /* subproblem's variables                              */
   SCIP_SOL** sols;

   SCIP_Real memorylimit;                    /* memory limit for the subproblem                     */
   SCIP_Real timelimit;                      /* time limit for the subproblem                       */
   SCIP_Real cutoff;                         /* objective cutoff for the subproblem                 */
   SCIP_Real upperbound;
   SCIP_Bool success;

   SCIP_Longint nstallnodes;                 /* node limit for the subproblem                       */

   int* selection;                           /* pool of solutions crossover uses                    */
   int nvars;                                /* number of original problem's variables              */
   int nbinvars;
   int nintvars;
   int nusedsols;
   int i;

   SCIP_RETCODE retcode;

   assert(heur != NULL);
   assert(scip != NULL);
   assert(result != NULL);

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);
   nusedsols = heurdata->nusedsols;

   *result = SCIP_DELAYED;

   /* only call heuristic, if enough solutions are at hand */
   if( SCIPgetNSols(scip) < nusedsols  )
      return SCIP_OKAY;

   sols = SCIPgetSols(scip);
   assert(sols != NULL);

   /* if one good solution was found, heuristic should not be delayed any longer */
   if( sols[nusedsols-1] != heurdata->prevlastsol )
   {
      heurdata->nextnodenumber = SCIPgetNNodes(scip);
      if( sols[0] != heurdata->prevbestsol )
         heurdata->nfailures = 0;
   }
   /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */
   else if( !heurdata->randomization )
      return SCIP_OKAY;

   /* if heuristic should be delayed, wait until certain number of nodes is reached */
   if( SCIPgetNNodes(scip) < heurdata->nextnodenumber )
      return SCIP_OKAY;

   /* only call heuristic, if enough nodes were processed since last incumbent */
   if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip))  < heurdata->nwaitingnodes
      && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* calculate the maximal number of branching nodes until heuristic is aborted */
   nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip));

   /* reward Crossover if it succeeded often */
   nstallnodes = (SCIP_Longint)
      (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0)));

   /* count the setup costs for the sub-MIP as 100 nodes */
   nstallnodes -= 100 * SCIPheurGetNCalls(heur);
   nstallnodes += heurdata->nodesofs;

   /* determine the node limit for the current process */
   nstallnodes -= heurdata->usednodes;
   nstallnodes = MIN(nstallnodes, heurdata->maxnodes);

   /* check whether we have enough nodes left to call subproblem solving */
   if( nstallnodes < heurdata->minnodes )
      return SCIP_OKAY;

   if( SCIPisStopped(scip) )
     return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;

   SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
   assert(nvars > 0);

   /* check whether discrete variables are available */
   if( nbinvars == 0 && nintvars == 0 )
      return SCIP_OKAY;

   /* initializing the subproblem */
   SCIP_CALL( SCIPcreate(&subscip) );

   /* create the variable mapping hash map */
   SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) );
   success = FALSE;

   if( heurdata->uselprows )
   {
      char probname[SCIP_MAXSTRLEN];

      /* copy all plugins */
      SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

      /* get name of the original problem and add the string "_crossoversub" */
      (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip));

      /* create the subproblem */
      SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) );

      /* copy all variables */
      SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) );
   }
   else
   {
      SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) );

      if( heurdata->copycuts )
      {
         /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
         SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) );
      }
   }

   SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
   SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) );

   for( i = 0; i < nvars; i++ )
     subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]);

   /* free hash map */
   SCIPhashmapFree(&varmapfw);

   success = FALSE;

   /* create a new problem, which fixes variables with same value in a certain set of solutions */
   SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) );

   heurdata->prevbestsol = SCIPgetBestSol(scip);
   heurdata->prevlastsol = sols[heurdata->nusedsols-1];

   /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */
   if( !success )
   {
      *result = SCIP_DIDNOTRUN;

      /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the
       * solution was not fruitful in the sense that it was too big
       */
      updateFailureStatistic(scip, heurdata);

      goto TERMINATE;
   }

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* check whether there is enough time and memory left */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );

   /* substract the memory already used by the main SCIP and the estimated memory usage of external software */
   if( !SCIPisInfinity(scip, memorylimit) )
   {
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;
      memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0;
   }

   /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */
   if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 )
      goto TERMINATE;

   /* set limits for the subproblem */
   SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   /* forbid recursive call of heuristics and separators solving subMIPs */
   SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) );

   /* disable cutting plane separation */
   SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) );

   /* disable expensive presolving */
   SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) );

   /* use best estimate node selection */
   if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
   }

   /* use inference branching */
   if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") )
   {
      SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) );
   }

   /* disable conflict analysis */
   if( !SCIPisParamFixed(subscip, "conflict/useprop") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useinflp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/useboundlp") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usesb") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) );
   }
   if( !SCIPisParamFixed(subscip, "conflict/usepseudo") )
   {
      SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) );
   }

   /* add an objective cutoff */
   cutoff = SCIPinfinity(scip);
   assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip)));

   upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip);
   if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) )
   {
      cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip);
   }
   else
   {
      if( SCIPgetUpperbound ( scip ) >= 0 )
         cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip );
      else
         cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip );
   }
   cutoff = MIN(upperbound, cutoff );
   SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) );

   /* permute the subproblem to increase diversification */
   if( heurdata->permute )
   {
      SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) );
   }

   /* solve the subproblem */
   SCIPdebugMessage("Solve Crossover subMIP\n");
   retcode = SCIPsolve(subscip);

   /* Errors in solving the subproblem should not kill the overall solving process.
    * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */
   if( retcode != SCIP_OKAY )
   {
#ifndef NDEBUG
      SCIP_CALL( retcode );
#endif
      SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode);
   }

   heurdata->usednodes += SCIPgetNNodes(subscip);

   /* check, whether a solution was found */
   if( SCIPgetNSols(subscip) > 0 )
   {
      SCIP_SOL** subsols;
      int nsubsols;
      int solindex;                             /* index of the solution created by crossover          */

      /* check, whether a solution was found;
       * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */
      nsubsols = SCIPgetNSols(subscip);
      subsols = SCIPgetSols(subscip);
      success = FALSE;
      solindex = -1;
      for( i = 0; i < nsubsols && !success; ++i )
      {
         SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) );
      }

      if( success )
      {
         int tmp;

         assert(solindex != -1);

         *result = SCIP_FOUNDSOL;

         /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable
          * in order to avoid incest ;)
          */
         for( i = 0; i < nusedsols; i++ )
         {
            SOLTUPLE* elem;
            tmp = selection[i];
            selection[i] = solindex;

            SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) );
            SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) );
            selection[i] = tmp;
         }

         /* if solution was among the best ones, crossover should not be called until another good solution was found */
         if( !heurdata->randomization )
         {
            heurdata->prevbestsol = SCIPgetBestSol(scip);
            heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1];
         }
      }

      /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */
      if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) )
         updateFailureStatistic(scip, heurdata);
   }
   else
   {
      /* if no new solution was found, run was a failure */
      updateFailureStatistic(scip, heurdata);
   }

 TERMINATE:
   /* free subproblem */
   SCIPfreeBufferArray(scip, &selection);
   SCIPfreeBufferArray(scip, &subvars);
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}