/** calculate score and preferred rounding direction for the candidate variable; the best candidate maximizes the
 *  score
 */
static
SCIP_DECL_DIVESETGETSCORE(divesetGetScoreGuideddiving)
{
   SCIP_SOL* bestsol;
   SCIP_Real bestsolval;
   SCIP_Real obj;
   SCIP_Real objnorm;
   SCIP_Real objgain;

   bestsol = SCIPgetBestSol(scip);
   assert(bestsol != NULL);
   assert(!SCIPsolIsOriginal(bestsol));

   bestsolval = SCIPgetSolVal(scip, bestsol, cand);

   /* variable should be rounded (guided) into the direction of its incumbent solution value */
   if( candsol < bestsolval )
      *roundup = TRUE;
   else
      *roundup = FALSE;

   obj = SCIPvarGetObj(cand);
   objnorm = SCIPgetObjNorm(scip);

   /* divide by objective norm to normalize obj into [-1,1] */
   if( SCIPisPositive(scip, objnorm) )
      obj /= objnorm;

   /* calculate objective gain and fractionality for the selected rounding direction */
   if( *roundup )
   {
      candsfrac = 1.0 - candsfrac;
      objgain = obj * candsfrac;
   }
   else
      objgain = -obj * candsfrac;

   assert(objgain >= -1.0 && objgain <= 1.0);

   /* penalize too small fractions */
   if( candsfrac < 0.01 )
      candsfrac *= 0.1;

   /* prefer decisions on binary variables */
   if( !SCIPvarIsBinary(cand) )
      candsfrac *= 0.1;

   /* prefer variables which cannot be rounded by scoring their fractionality */
   if( !(SCIPvarMayRoundDown(cand) || SCIPvarMayRoundUp(cand)) )
      *score = -candsfrac;
   else
      *score = -2.0 - objgain;

   return SCIP_OKAY;
}
Beispiel #2
0
static
void calcPscostQuot(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_VAR*             var,                /**< problem variable */
   SCIP_Real             primsol,            /**< primal solution of variable */
   SCIP_Real             frac,               /**< fractionality of variable */
   int                   rounddir,           /**< -1: round down, +1: round up, 0: select due to pseudo cost values */
   SCIP_Real*            pscostquot,         /**< pointer to store pseudo cost quotient */
   SCIP_Bool*            roundup             /**< pointer to store whether the variable should be rounded up */
   )
{
   SCIP_Real pscostdown;
   SCIP_Real pscostup;

   assert(pscostquot != NULL);
   assert(roundup != NULL);

   /* bound fractions to not prefer variables that are nearly integral */
   frac = MAX(frac, 0.1);
   frac = MIN(frac, 0.9);

   /* get pseudo cost quotient */
   pscostdown = SCIPgetVarPseudocostVal(scip, var, 0.0-frac);
   pscostup = SCIPgetVarPseudocostVal(scip, var, 1.0-frac);
   assert(pscostdown >= 0.0 && pscostup >= 0.0);

   /* choose rounding direction */
   if( rounddir == -1 )
      *roundup = FALSE;
   else if( rounddir == +1 )
      *roundup = TRUE;
   else if( frac < 0.3 )
      *roundup = FALSE;
   else if( frac > 0.7 )
      *roundup = TRUE;
   else if( primsol < SCIPvarGetRootSol(var) - 0.4 )
      *roundup = FALSE;
   else if( primsol > SCIPvarGetRootSol(var) + 0.4 )
      *roundup = TRUE;
   else if( pscostdown < pscostup )
      *roundup = FALSE;
   else
      *roundup = TRUE;

   /* calculate pseudo cost quotient */
   if( *roundup )
      *pscostquot = sqrt(frac) * (1.0+pscostdown) / (1.0+pscostup);
   else
      *pscostquot = sqrt(1.0-frac) * (1.0+pscostup) / (1.0+pscostdown);

   /* prefer decisions on binary variables */
   if( SCIPvarIsBinary(var) )
      (*pscostquot) *= 1000.0;
}
/** calculate score and preferred rounding direction for the candidate variable; the best candidate maximizes the
 *  score
 */
static
SCIP_DECL_DIVESETGETSCORE(divesetGetScoreActconsdiving)
{
   SCIP_Bool mayrounddown;
   SCIP_Bool mayroundup;
   SCIP_Real downscore;
   SCIP_Real upscore;


   mayrounddown = SCIPvarMayRoundDown(cand);
   mayroundup = SCIPvarMayRoundUp(cand);

   /* first, calculate the variable score */
   assert(SCIPdivesetGetWorkSolution(diveset) != NULL);
   *score = getNActiveConsScore(scip, SCIPdivesetGetWorkSolution(diveset), cand, &downscore, &upscore);

   /* get the rounding direction: prefer an unroundable direction */
   if( mayrounddown && mayroundup )
      *roundup = (candsfrac > 0.5);
   else if( mayrounddown || mayroundup )
      *roundup = mayrounddown;
   else
      *roundup = (downscore > upscore);

   if( *roundup )
      candsfrac = 1.0 - candsfrac;

   /* penalize too small fractions */
   if( candsfrac < 0.01 )
      (*score) *= 0.01;

   /* prefer decisions on binary variables */
   if( !SCIPvarIsBinary(cand) )
      (*score) *= 0.01;

   /* penalize variable if it may be rounded */
   if( mayrounddown || mayroundup )
      *score -= 3.0;

   assert(!(mayrounddown || mayroundup) || *score <= 0.0);

   return SCIP_OKAY;
}
Beispiel #4
0
/** calculate score and preferred rounding direction for the candidate variable; the best candidate maximizes the
 *  score
 */
static
SCIP_DECL_DIVESETGETSCORE(divesetGetScoreFracdiving)
{
   SCIP_Real obj;
   SCIP_Real objnorm;
   SCIP_Real objgain;
   SCIP_Bool mayrounddown;
   SCIP_Bool mayroundup;

   /* score fractionality if candidate is an SOS1 variable */
   if ( divetype == SCIP_DIVETYPE_SOS1VARIABLE )
   {
      *score = candsfrac;

      /* 'round' in nonzero direction, i.e., fix the candidates neighbors in the conflict graph to zero */
      *roundup = SCIPisFeasPositive(scip, candsol);

      return SCIP_OKAY;
   }

   mayrounddown = SCIPvarMayRoundDown(cand);
   mayroundup = SCIPvarMayRoundUp(cand);

   /* choose rounding direction:
    * - if variable may be rounded in either both or neither direction, round corresponding to the fractionality
    * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
    *   the current fractional solution
    */
   if( mayrounddown != mayroundup )
      *roundup = mayrounddown;
   else
      *roundup = (candsfrac > 0.5);

   obj = SCIPvarGetObj(cand);
   objnorm = SCIPgetObjNorm(scip);

   /* divide by objective norm to normalize obj into [-1,1] */
   if( SCIPisPositive(scip, objnorm) )
      obj /= objnorm;

   /* calculate objective gain and fractionality for the selected rounding direction */
   if( *roundup )
   {
      candsfrac = 1.0 - candsfrac;
      objgain = obj * candsfrac;
   }
   else
      objgain = -obj * candsfrac;

   assert(objgain >= -1.0 && objgain <= 1.0);

      /* penalize too small fractions */
      if( candsfrac < 0.01 )
         candsfrac += 10.0;

      /* prefer decisions on binary variables */
      if( !SCIPvarIsBinary(cand) )
         candsfrac *= 1000.0;

      /* prefer variables which cannot be rounded by scoring their fractionality */
      if( !(mayrounddown || mayroundup) )
         *score = -candsfrac;
      else
         *score =  -2.0 - objgain;

      return SCIP_OKAY;
}
Beispiel #5
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/
{  /*lint --e{715}*/
   SCIP_HEURDATA* heurdata;
   SCIP_LPSOLSTAT lpsolstat;
   SCIP_VAR** pseudocands;
   SCIP_VAR** fixcands;
   SCIP_Real* fixcandscores;
   SCIP_Real searchubbound;
   SCIP_Real searchavgbound;
   SCIP_Real searchbound;
   SCIP_Real objval;
   SCIP_Bool lperror;
   SCIP_Bool cutoff;
   SCIP_Bool backtracked;
   SCIP_Longint ncalls;
   SCIP_Longint nsolsfound;
   SCIP_Longint nlpiterations;
   SCIP_Longint maxnlpiterations;
   int nfixcands;
   int nbinfixcands;
   int depth;
   int maxdepth;
   int maxdivedepth;
   int divedepth;
   int nextcand;
   int c;

   assert(heur != NULL);
   assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
   assert(scip != NULL);
   assert(result != NULL);
   assert(SCIPhasCurrentNodeLP(scip));

   *result = SCIP_DELAYED;

   /* do not call heuristic of node was already detected to be infeasible */
   if( nodeinfeasible )
      return SCIP_OKAY;

   /* only call heuristic, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
   if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
      return SCIP_OKAY;

   /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* don't dive two times at the same node */
   if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTRUN;

   /* get heuristic's data */
   heurdata = SCIPheurGetData(heur);
   assert(heurdata != NULL);

   /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
   depth = SCIPgetDepth(scip);
   maxdepth = SCIPgetMaxDepth(scip);
   maxdepth = MAX(maxdepth, 100);
   if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
      return SCIP_OKAY;

   /* calculate the maximal number of LP iterations until heuristic is aborted */
   nlpiterations = SCIPgetNNodeLPIterations(scip);
   ncalls = SCIPheurGetNCalls(heur);
   nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
   maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
   maxnlpiterations += heurdata->maxlpiterofs;

   /* don't try to dive, if we took too many LP iterations during diving */
   if( heurdata->nlpiterations >= maxnlpiterations )
      return SCIP_OKAY;

   /* allow at least a certain number of LP iterations in this dive */
   maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

   /* get unfixed integer variables */
   SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) );

   /* don't try to dive, if there are no fractional variables */
   if( nfixcands == 0 )
      return SCIP_OKAY;

   /* calculate the objective search bound */
   if( SCIPgetNSolsFound(scip) == 0 )
   {
      if( heurdata->maxdiveubquotnosol > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquotnosol > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   else
   {
      if( heurdata->maxdiveubquot > 0.0 )
         searchubbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
      else
         searchubbound = SCIPinfinity(scip);
      if( heurdata->maxdiveavgquot > 0.0 )
         searchavgbound = SCIPgetLowerbound(scip)
            + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
      else
         searchavgbound = SCIPinfinity(scip);
   }
   searchbound = MIN(searchubbound, searchavgbound);
   if( SCIPisObjIntegral(scip) )
      searchbound = SCIPceil(scip, searchbound);

   /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
   maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
   maxdivedepth = MIN(maxdivedepth, maxdepth);
   maxdivedepth *= 10;

   *result = SCIP_DIDNOTFIND;

   /* start diving */
   SCIP_CALL( SCIPstartProbing(scip) );

   /* enables collection of variable statistics during probing */
   SCIPenableVarHistory(scip);

   SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n",
      SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound));

   /* copy the pseudo candidates into own array, because we want to reorder them */
   SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) );

   /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */
   SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) );
   nbinfixcands = 0;
   for( c = 0; c < nfixcands; ++c )
   {
      SCIP_VAR* var;
      SCIP_Real score;
      int colveclen;
      int left;
      int right;
      int i;

      assert(c >= nbinfixcands);
      var = fixcands[c];
      assert(SCIPvarIsIntegral(var));
      colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0);
      if( SCIPvarIsBinary(var) )
      {
         score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE)
            + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0;

         /* shift the non-binary variables one slot to the right */
         for( i = c; i > nbinfixcands; --i )
         {
            fixcands[i] = fixcands[i-1];
            fixcandscores[i] = fixcandscores[i-1];
         }
         /* put the new candidate into the first nbinfixcands slot */
         left = 0;
         right = nbinfixcands;
         nbinfixcands++;
      }
      else
      {
         score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE))
            + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var)
            + (SCIP_Real)colveclen/10000.0;

         /* put the new candidate in the slots after the binary candidates */
         left = nbinfixcands;
         right = c;
      }
      for( i = right; i > left && score > fixcandscores[i-1]; --i )
      {
         fixcands[i] = fixcands[i-1];
         fixcandscores[i] = fixcandscores[i-1];
      }
      fixcands[i] = var;
      fixcandscores[i] = score;
      SCIPdebugMessage("  <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d  ->  score=%g\n",
         SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE),
         SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var),
         colveclen, score);
   }
   SCIPfreeBufferArray(scip, &fixcandscores);

   /* get LP objective value */
   lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
   objval = SCIPgetLPObjval(scip);

   /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with
    * the depth 10
    */
   lperror = FALSE;
   cutoff = FALSE;
   divedepth = 0;
   nextcand = 0;
   while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL
      && (divedepth < 10
         || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
      && !SCIPisStopped(scip) )
   {
      SCIP_VAR* var;
      SCIP_Real bestsolval;
      SCIP_Real bestfixval;
      int bestcand;
      SCIP_Longint nnewlpiterations;
      SCIP_Longint nnewdomreds;

      /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */
      if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) )
      {
         SCIP_CALL( SCIPnewProbingNode(scip) );
         divedepth++;
      }
      else
         break;

      nnewlpiterations = 0;
      nnewdomreds = 0;

      /* fix binary variable that is closest to 1 in the LP solution to 1;
       * if all binary variables are fixed, fix integer variable with least fractionality in LP solution
       */
      bestcand = -1;
      bestsolval = -1.0;
      bestfixval = 1.0;

      /* look in the binary variables for fixing candidates */
      for( c = nextcand; c < nbinfixcands; ++c )
      {
         SCIP_Real solval;

         var = fixcands[c];

         /* ignore already fixed variables */
         if( var == NULL )
            continue;
         if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 )
         {
            fixcands[c] = NULL;
            continue;
         }

         /* get the LP solution value */
         solval = SCIPvarGetLPSol(var);

         if( solval > bestsolval )
         {
            bestcand = c;
            bestfixval = 1.0;
            bestsolval = solval;
            if( SCIPisGE(scip, bestsolval, 1.0) )
            {
               /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */
               break;
            }
            else if( SCIPisLE(scip, bestsolval, 0.0) )
            {
               /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */
               bestfixval = 0.0;
            }
         }
      }

      /* if all binary variables are fixed, look in the integer variables for a fixing candidate */
      if( bestcand == -1 )
      {
         SCIP_Real bestfrac;

         bestfrac = SCIP_INVALID;
         for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c )
         {
            SCIP_Real solval;
            SCIP_Real frac;

            var = fixcands[c];

            /* ignore already fixed variables */
            if( var == NULL )
               continue;
            if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 )
            {
               fixcands[c] = NULL;
               continue;
            }

            /* get the LP solution value */
            solval = SCIPvarGetLPSol(var);
            frac = SCIPfrac(scip, solval);

            /* ignore integer variables that are currently integral */
            if( SCIPisFeasFracIntegral(scip, frac) )
               continue;

            if( frac < bestfrac )
            {
               bestcand = c;
               bestsolval = solval;
               bestfrac = frac;
               bestfixval = SCIPfloor(scip, bestsolval + 0.5);
               if( SCIPisZero(scip, bestfrac) )
               {
                  /* we found an unfixed integer variable with integral LP solution value */
                  break;
               }
            }
         }
      }
      assert(-1 <= bestcand && bestcand < nfixcands);

      /* if there is no unfixed candidate left, we are done */
      if( bestcand == -1 )
         break;

      var = fixcands[bestcand];
      assert(var != NULL);
      assert(SCIPvarIsIntegral(var));
      assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5);
      assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var)));
      assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var)));

      backtracked = FALSE;
      do
      {
         /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
          * occured or variable was fixed by propagation while backtracking => Abort diving!
          */
         if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
         {
            SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var));
            cutoff = TRUE;
            break;
         }
         if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) )
         {
            SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
               SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
            assert(backtracked);
            break;
         }

         /* apply fixing of best candidate */
         SCIPdebugMessage("  dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n",
            divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip),
            SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval);
         SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) );

         /* apply domain propagation */
         SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) );
         if( !cutoff )
         {
            /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution
             * stays valid, and the LP does not need to be resolved
             */
            if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
            {
            /* resolve the diving LP */
               /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                */
#ifdef NDEBUG
               SCIP_RETCODE retstat;
               nlpiterations = SCIPgetNLPIterations(scip);
               retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
               if( retstat != SCIP_OKAY )
               {
                  SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat);
               }
#else
               nlpiterations = SCIPgetNLPIterations(scip);
               SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

               if( lperror )
                  break;

               /* update iteration count */
               nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations;
               heurdata->nlpiterations += nnewlpiterations;

               /* get LP solution status */
               lpsolstat = SCIPgetLPSolstat(scip);
               assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                     (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }
         }

         /* perform backtracking if a cutoff was detected */
         if( cutoff && !backtracked && heurdata->backtrack )
         {
            SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
            SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );

            /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */
            assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip));

            SCIP_CALL( SCIPnewProbingNode(scip) );

            bestfixval = SCIPvarIsBinary(var)
               ? 1.0 - bestfixval
               : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1);

            backtracked = TRUE;
         }
         else
            backtracked = FALSE;
      }
      while( backtracked );

      if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
      {
         SCIP_Bool success;

         /* get new objective value */
         objval = SCIPgetLPObjval(scip);

         if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) )
         {
            /* we must start again with the first candidate, since the LP solution changed */
            nextcand = 0;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );
            if( success )
            {
               SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n",
                  SCIPgetSolOrigObj(scip, heurdata->sol));

               /* try to add solution to SCIP */
               SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

               /* check, if solution was feasible and good enough */
               if( success )
               {
                  SCIPdebugMessage(" -> solution was feasible and good enough\n");
                  *result = SCIP_FOUNDSOL;
               }
            }
         }
         else
            nextcand = bestcand+1; /* continue with the next candidate in the following loop */
      }
      SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound);
   }

   /* free temporary memory */
   SCIPfreeBufferArray(scip, &fixcands);

   /* end diving */
   SCIP_CALL( SCIPendProbing(scip) );

   if( *result == SCIP_FOUNDSOL )
      heurdata->nsuccess++;

   SCIPdebugMessage("intdiving heuristic finished\n");

   return SCIP_OKAY;
}
/** reduced cost propagation method for an LP solution */
static
SCIP_DECL_PROPEXEC(propExecRedcost)
{  /*lint --e{715}*/
   SCIP_PROPDATA* propdata;
   SCIP_COL** cols;
   SCIP_Real requiredredcost;
   SCIP_Real cutoffbound;
   SCIP_Real lpobjval;
   SCIP_Bool propbinvars;
   SCIP_Bool cutoff;
   int nchgbds;
   int ncols;
   int c;

   *result = SCIP_DIDNOTRUN;

   /* in case we have a zero objective function, we skip the reduced cost propagator */
   if( SCIPgetNObjVars(scip) == 0 )
      return SCIP_OKAY;

   /* propagator can only be applied during solving stage */
   if( SCIPgetStage(scip) < SCIP_STAGE_SOLVING )
      return SCIP_OKAY;

   /* we cannot apply reduced cost fixing, if we want to solve exactly */
   /**@todo implement reduced cost fixing with interval arithmetics */
   if( SCIPisExactSolve(scip) )
      return SCIP_OKAY;

   /* only call propagator, if the current node has an LP */
   if( !SCIPhasCurrentNodeLP(scip) )
      return SCIP_OKAY;

   /* only call propagator, if an optimal LP solution is at hand */
   if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
      return SCIP_OKAY;

   /* only call propagator, if the current LP is a valid relaxation */
   if( !SCIPisLPRelax(scip) )
      return SCIP_OKAY;

   /* we cannot apply reduced cost strengthening, if no simplex basis is available */
   if( !SCIPisLPSolBasic(scip) )
      return SCIP_OKAY;

   /* get current cutoff bound */
   cutoffbound = SCIPgetCutoffbound(scip);

   /* reduced cost strengthening can only be applied, if we have a finite cutoff */
   if( SCIPisInfinity(scip, cutoffbound) )
      return SCIP_OKAY;

   /* get LP columns */
   cols = SCIPgetLPCols(scip);
   ncols = SCIPgetNLPCols(scip);

   /* do nothing if the LP has no columns (is empty) */
   if( ncols == 0 )
      return SCIP_OKAY;

   /* get propagator data */
   propdata = SCIPpropGetData(prop);
   assert(propdata != NULL);

   /* chack if all integral variables are fixed and the continuous variables should not be propagated */
   if( !propdata->continuous && SCIPgetNPseudoBranchCands(scip) == 0 )
      return SCIP_OKAY;

   /* get LP objective value */
   lpobjval = SCIPgetLPObjval(scip);

   /* check if binary variables should be propagated */
   propbinvars = (SCIPgetDepth(scip) == 0) || (cutoffbound - lpobjval < 5 * propdata->maxredcost);

   /* skip the propagator if the problem has only binary variables and those should not be propagated */
   if( !propbinvars && SCIPgetNVars(scip) == SCIPgetNBinVars(scip) )
      return SCIP_OKAY;

   *result = SCIP_DIDNOTFIND;
   cutoff = FALSE;
   nchgbds = 0;

   /* compute the required reduced cost which are needed for a binary variable to be fixed */
   requiredredcost = cutoffbound - lpobjval;

   SCIPdebugMessage("lpobjval <%g>, cutoffbound <%g>, max reduced <%g>, propgate binary %u, use implics %u\n",
      lpobjval, cutoffbound, propdata->maxredcost, propbinvars, propdata->usefullimplics);

   /* check reduced costs for non-basic columns */
   for( c = 0; c < ncols && !cutoff; ++c )
   {
      SCIP_VAR* var;

      var = SCIPcolGetVar(cols[c]);

      /* skip continuous variables in case the corresponding parameter is set */
      if( !propdata->continuous && !SCIPvarIsIntegral(var) )
         continue;

      if( SCIPvarIsBinary(var) )
      {
         if( propbinvars )
         {
            if( SCIPgetDepth(scip) == 0 )
            {
               SCIP_CALL( propagateRootRedcostBinvar(scip, propdata, var, cols[c], cutoffbound, &nchgbds) );
            }
            else
            {
               SCIP_CALL( propagateRedcostBinvar(scip, propdata, var, cols[c], requiredredcost, &nchgbds, &cutoff) );
            }
         }
      }
      else
      {
         SCIP_CALL( propagateRedcostVar(scip, var, cols[c], lpobjval, cutoffbound, &nchgbds) );
      }
   }

   if( cutoff )
   {
      *result = SCIP_CUTOFF;

      SCIPdebugMessage("node %"SCIP_LONGINT_FORMAT": detected cutoff\n",
         SCIPnodeGetNumber(SCIPgetCurrentNode(scip)));
   }
   else if( nchgbds > 0 )
   {
      *result = SCIP_REDUCEDDOM;

      SCIPdebugMessage("node %"SCIP_LONGINT_FORMAT": %d bound changes (max redcost <%g>)\n",
         SCIPnodeGetNumber(SCIPgetCurrentNode(scip)) , nchgbds, propdata->maxredcost);
   }

   return SCIP_OKAY;
}
Beispiel #7
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_LPSOLSTAT lpsolstat;
    SCIP_VAR* var;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_Real* lpcandsfrac;
    SCIP_Real searchubbound;
    SCIP_Real searchavgbound;
    SCIP_Real searchbound;
    SCIP_Real objval;
    SCIP_Real oldobjval;
    SCIP_Real frac;
    SCIP_Real bestfrac;
    SCIP_Bool bestcandmayrounddown;
    SCIP_Bool bestcandmayroundup;
    SCIP_Bool bestcandroundup;
    SCIP_Bool mayrounddown;
    SCIP_Bool mayroundup;
    SCIP_Bool roundup;
    SCIP_Bool lperror;
    SCIP_Bool cutoff;
    SCIP_Bool backtracked;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nlpiterations;
    SCIP_Longint maxnlpiterations;
    int nlpcands;
    int startnlpcands;
    int depth;
    int maxdepth;
    int maxdivedepth;
    int divedepth;
    SCIP_Real actscore;
    SCIP_Real downscore;
    SCIP_Real upscore;
    SCIP_Real bestactscore;
    int bestcand;
    int c;

    assert(heur != NULL);
    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DELAYED;

    /* do not call heuristic of node was already detected to be infeasible */
    if( nodeinfeasible )
        return SCIP_OKAY;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
    if( !SCIPisLPSolBasic(scip) )
        return SCIP_OKAY;

    /* don't dive two times at the same node */
    if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTRUN;

    /* get heuristic's data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
    depth = SCIPgetDepth(scip);
    maxdepth = SCIPgetMaxDepth(scip);
    maxdepth = MAX(maxdepth, 30);
    if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
        return SCIP_OKAY;

    /* calculate the maximal number of LP iterations until heuristic is aborted */
    nlpiterations = SCIPgetNNodeLPIterations(scip);
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
    maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
    maxnlpiterations += heurdata->maxlpiterofs;

    /* don't try to dive, if we took too many LP iterations during diving */
    if( heurdata->nlpiterations >= maxnlpiterations )
        return SCIP_OKAY;

    /* allow at least a certain number of LP iterations in this dive */
    maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

    /* get fractional variables that should be integral */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

    /* don't try to dive, if there are no fractional variables */
    if( nlpcands == 0 )
        return SCIP_OKAY;

    /* calculate the objective search bound */
    if( SCIPgetNSolsFound(scip) == 0 )
    {
        if( heurdata->maxdiveubquotnosol > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquotnosol > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    else
    {
        if( heurdata->maxdiveubquot > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquot > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    searchbound = MIN(searchubbound, searchavgbound);
    if( SCIPisObjIntegral(scip) )
        searchbound = SCIPceil(scip, searchbound);

    /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
    maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
    maxdivedepth = MIN(maxdivedepth, maxdepth);
    maxdivedepth *= 10;

    *result = SCIP_DIDNOTFIND;

    /* start diving */
    SCIP_CALL( SCIPstartProbing(scip) );

    /* enables collection of variable statistics during probing */
    SCIPenableVarHistory(scip);

    /* get LP objective value */
    lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
    objval = SCIPgetLPObjval(scip);

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n",
                     SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip),
                     SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound));

    /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but
     * - if possible, we dive at least with the depth 10
     * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
     */
    lperror = FALSE;
    cutoff = FALSE;
    divedepth = 0;
    bestcandmayrounddown = FALSE;
    bestcandmayroundup = FALSE;
    startnlpcands = nlpcands;
    while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
            && (divedepth < 10
                || nlpcands <= startnlpcands - divedepth/2
                || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
            && !SCIPisStopped(scip) )
    {
        divedepth++;
        SCIP_CALL( SCIPnewProbingNode(scip) );

        /* choose variable fixing:
         * - prefer variables that may not be rounded without destroying LP feasibility:
         *   - of these variables, round variable with least number of locks in corresponding direction
         * - if all remaining fractional variables may be rounded without destroying LP feasibility:
         *   - round variable with least number of locks in opposite of its feasible rounding direction
         */
        bestcand = -1;
        bestactscore = -1.0;
        bestfrac = SCIP_INVALID;
        bestcandmayrounddown = TRUE;
        bestcandmayroundup = TRUE;
        bestcandroundup = FALSE;
        for( c = 0; c < nlpcands; ++c )
        {
            var = lpcands[c];
            mayrounddown = SCIPvarMayRoundDown(var);
            mayroundup = SCIPvarMayRoundUp(var);
            frac = lpcandsfrac[c];
            if( mayrounddown || mayroundup )
            {
                /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
                if( bestcandmayrounddown || bestcandmayroundup )
                {
                    /* choose rounding direction:
                     * - if variable may be rounded in both directions, round corresponding to the fractionality
                     * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                     *   the current fractional solution
                     */
                    if( mayrounddown && mayroundup )
                        roundup = (frac > 0.5);
                    else
                        roundup = mayrounddown;

                    if( roundup )
                        frac = 1.0 - frac;
                    actscore = getNActiveConsScore(scip, var, &downscore, &upscore);

                    /* penalize too small fractions */
                    if( frac < 0.01 )
                        actscore *= 0.01;

                    /* prefer decisions on binary variables */
                    if( !SCIPvarIsBinary(var) )
                        actscore *= 0.01;

                    /* check, if candidate is new best candidate */
                    assert(0.0 < frac && frac < 1.0);
                    if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                    {
                        bestcand = c;
                        bestactscore = actscore;
                        bestfrac = frac;
                        bestcandmayrounddown = mayrounddown;
                        bestcandmayroundup = mayroundup;
                        bestcandroundup = roundup;
                    }
                }
            }
            else
            {
                /* the candidate may not be rounded */
                actscore = getNActiveConsScore(scip, var, &downscore, &upscore);
                roundup = (downscore < upscore);
                if( roundup )
                    frac = 1.0 - frac;

                /* penalize too small fractions */
                if( frac < 0.01 )
                    actscore *= 0.01;

                /* prefer decisions on binary variables */
                if( !SCIPvarIsBinary(var) )
                    actscore *= 0.01;

                /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
                assert(0.0 < frac && frac < 1.0);
                if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) ||
                        (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                {
                    bestcand = c;
                    bestactscore = actscore;
                    bestfrac = frac;
                    bestcandmayrounddown = FALSE;
                    bestcandmayroundup = FALSE;
                    bestcandroundup = roundup;
                }
                assert(bestfrac < SCIP_INVALID);
            }
        }
        assert(bestcand != -1);

        /* if all candidates are roundable, try to round the solution */
        if( bestcandmayrounddown || bestcandmayroundup )
        {
            SCIP_Bool success;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

            if( success )
            {
                SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

                /* try to add solution to SCIP */
                SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

                /* check, if solution was feasible and good enough */
                if( success )
                {
                    SCIPdebugMessage(" -> solution was feasible and good enough\n");
                    *result = SCIP_FOUNDSOL;
                }
            }
        }
        assert(bestcand != -1);
        var = lpcands[bestcand];

        backtracked = FALSE;
        do
        {
            /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
             * occured or variable was fixed by propagation while backtracking => Abort diving!
             */
            if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
            {
                SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                cutoff = TRUE;
                break;
            }
            if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) )
            {
                SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                assert(backtracked);
                break;
            }

            /* apply rounding of best candidate */
            if( bestcandroundup == !backtracked )
            {
                /* round variable up */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var));
                SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
            }
            else
            {
                /* round variable down */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand]));
                SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) );
            }

            /* apply domain propagation */
            SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) );
            if( !cutoff )
            {
                /* resolve the diving LP */
                /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                 */
#ifdef NDEBUG
                SCIP_RETCODE retstat;
                nlpiterations = SCIPgetNLPIterations(scip);
                retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
                if( retstat != SCIP_OKAY )
                {
                    SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat);
                }
#else
                nlpiterations = SCIPgetNLPIterations(scip);
                SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

                if( lperror )
                    break;

                /* update iteration count */
                heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

                /* get LP solution status, objective value, and fractional variables, that should be integral */
                lpsolstat = SCIPgetLPSolstat(scip);
                assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                                  (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }

            /* perform backtracking if a cutoff was detected */
            if( cutoff && !backtracked && heurdata->backtrack )
            {
                SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
                SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );
                SCIP_CALL( SCIPnewProbingNode(scip) );
                backtracked = TRUE;
            }
            else
                backtracked = FALSE;
        }
        while( backtracked );

        if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
        {
            /* get new objective value */
            oldobjval = objval;
            objval = SCIPgetLPObjval(scip);

            /* update pseudo cost values */
            if( SCIPisGT(scip, objval, oldobjval) )
            {
                if( bestcandroundup )
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
                else
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
            }

            /* get new fractional variables */
            SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
        }
        SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands);
    }

    /* check if a solution has been found */
    if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
    {
        SCIP_Bool success;

        /* create solution from diving LP */
        SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
        SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

        /* try to add solution to SCIP */
        SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

        /* check, if solution was feasible and good enough */
        if( success )
        {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
        }
    }

    /* end diving */
    SCIP_CALL( SCIPendProbing(scip) );

    if( *result == SCIP_FOUNDSOL )
        heurdata->nsuccess++;

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n",
                     SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                     SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff);

    return SCIP_OKAY;
}
Beispiel #8
0
/** read fixed variable */
static
SCIP_RETCODE getFixedVariable(
   SCIP*                 scip,               /**< SCIP data structure */
   CIPINPUT*             cipinput            /**< CIP parsing data */
   )
{
   SCIP_Bool success;
   SCIP_VAR* var;
   char* buf;
   char* endptr;
   char name[SCIP_MAXSTRLEN];

   buf = cipinput->strbuf;

   if( strncmp(buf, "CONSTRAINTS", 11) == 0 )
      cipinput->section = CIP_CONSTRAINTS;
   else if( strncmp(buf, "END", 3) == 0 )
      cipinput->section = CIP_END;

   if( cipinput->section != CIP_FIXEDVARS )
      return SCIP_OKAY;

   SCIPdebugMessage("parse fixed variable\n");

   /* parse the variable */
   SCIP_CALL( SCIPparseVar(scip, &var, buf, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL, &endptr, &success) );

   if( !success )
   {
      SCIPerrorMessage("syntax error in variable information (line: %d):\n%s\n", cipinput->linenumber, cipinput->strbuf);
      cipinput->haserror = TRUE;
      return SCIP_OKAY;
   }

   /* skip intermediate stuff */
   buf = endptr;

   while ( *buf != '\0' && (*buf == ' ' || *buf == ',') )
      ++buf;

   /* check whether variable is fixed */
   if ( strncmp(buf, "fixed:", 6) == 0 )
   {
      SCIP_CALL( SCIPaddVar(scip, var) );
      SCIPdebug( SCIP_CALL( SCIPprintVar(scip, var, NULL) ) );
   }
   else if ( strncmp(buf, "negated:", 8) == 0 )
   {
      SCIP_CONS* lincons;
      SCIP_VAR* negvar;
      SCIP_Real vals[2];
      SCIP_VAR* vars[2];

      buf += 8;

      /* we can just parse the next variable (ignoring all other information in between) */
      SCIP_CALL( SCIPparseVarName(scip, buf, &negvar, &endptr) );

      if ( negvar == NULL )
      {
         SCIPerrorMessage("could not parse negated variable (line: %d):\n%s\n", cipinput->linenumber, cipinput->strbuf);
         cipinput->haserror = TRUE;
         return SCIP_OKAY;
      }
      assert(SCIPvarIsBinary(var));
      assert(SCIPvarIsBinary(negvar));

      SCIP_CALL( SCIPaddVar(scip, var) );

      SCIPdebugMessage("creating negated variable <%s> (of <%s>) ...\n", SCIPvarGetName(var), SCIPvarGetName(negvar) );
      SCIPdebug( SCIP_CALL( SCIPprintVar(scip, var, NULL) ) );

      /* add linear constraint for negation */
      (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "neg_%s", SCIPvarGetName(var) );
      vars[0] = var;
      vars[1] = negvar;
      vals[0] = 1.0;
      vals[1] = 1.0;
      SCIPdebugMessage("coupling constraint:\n");
      SCIP_CALL( SCIPcreateConsLinear(scip, &lincons, name, 2, vars, vals, 1.0, 1.0, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE) );
      SCIPdebugPrintCons(scip, lincons, NULL);
      SCIP_CALL( SCIPaddCons(scip, lincons) );
      SCIP_CALL( SCIPreleaseCons(scip, &lincons) );
   }
   else if ( strncmp(buf, "aggregated:", 11) == 0 )
   {
      /* handle (multi-)aggregated variables */
      SCIP_CONS* lincons;
      SCIP_Real* vals;
      SCIP_VAR** vars;
      SCIP_Real rhs = 0.0;
      const char* str;
      int nvarssize = 20;
      int requsize;
      int nvars;

      buf += 11;

      SCIPdebugMessage("parsing aggregated variable <%s> ...\n", SCIPvarGetName(var));

      /* first parse constant */
      if ( ! SCIPstrToRealValue(buf, &rhs, &endptr) )
      {
         SCIPerrorMessage("expected constant when aggregated variable information (line: %d):\n%s\n", cipinput->linenumber, buf);
         cipinput->haserror = TRUE;
         return SCIP_OKAY;
      }

      /* check whether constant is 0.0 */
      str = endptr;
      while ( *str != '\0' && isspace(*str) )
         ++str;
      /* if next char is '<' we found a variable -> constant is 0 */
      if ( *str != '<' )
      {
         SCIPdebugMessage("constant: %f\n", rhs);
         buf = endptr;
      }
      else
      {
         /* otherwise keep buf */
         rhs = 0.0;
      }

      /* initialize buffers for storing the variables and values */
      SCIP_CALL( SCIPallocBufferArray(scip, &vars, nvarssize) );
      SCIP_CALL( SCIPallocBufferArray(scip, &vals, nvarssize) );

      vars[0] = var;
      vals[0] = -1.0;
      --nvarssize;

      /* parse linear sum to get variables and coefficients */
      SCIP_CALL( SCIPparseVarsLinearsum(scip, buf, &(vars[1]), &(vals[1]), &nvars, nvarssize, &requsize, &endptr, &success) );
      if ( success && requsize > nvarssize )
      {
         /* realloc buffers and try again */
         nvarssize = requsize;
         SCIP_CALL( SCIPreallocBufferArray(scip, &vars, nvarssize + 1) );
         SCIP_CALL( SCIPreallocBufferArray(scip, &vals, nvarssize + 1) );

         SCIP_CALL( SCIPparseVarsLinearsum(scip, buf, &(vars[1]), &(vals[1]), &nvars, nvarssize, &requsize, &endptr, &success) );
         assert( ! success || requsize <= nvarssize); /* if successful, then should have had enough space now */
      }

      if( success )
      {
         /* add aggregated variable */
         SCIP_CALL( SCIPaddVar(scip, var) );

         /* special handling of variables that seem to be slack variables of indicator constraints */
         str = SCIPvarGetName(var);
         if ( strncmp(str, "indslack", 8) == 0 )
         {
            (void) strcpy(name, "indlin");
            (void) strncat(name, str+8, SCIP_MAXSTRLEN-7);
         }
         else if ( strncmp(str, "t_indslack", 10) == 0 )
         {
            (void) strcpy(name, "indlin");
            (void) strncat(name, str+10, SCIP_MAXSTRLEN-7);
         }
         else
            (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s", SCIPvarGetName(var) );

         /* add linear constraint for (multi-)aggregation */
         SCIPdebugMessage("coupling constraint:\n");
         SCIP_CALL( SCIPcreateConsLinear(scip, &lincons, name, nvars + 1, vars, vals, -rhs, -rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE) );
         SCIPdebugPrintCons(scip, lincons, NULL);
         SCIP_CALL( SCIPaddCons(scip, lincons) );
         SCIP_CALL( SCIPreleaseCons(scip, &lincons) );
      }
      else
      {
         SCIPwarningMessage(scip, "Could not read (multi-)aggregated variable <%s>: dependent variables unkown - consider changing the order (line: %d):\n%s\n",
            SCIPvarGetName(var), cipinput->linenumber, buf);
      }

      SCIPfreeBufferArray(scip, &vals);
      SCIPfreeBufferArray(scip, &vars);
   }
   else
   {
      SCIPerrorMessage("unknown section when parsing variables (line: %d):\n%s\n", cipinput->linenumber, buf);
      cipinput->haserror = TRUE;
      return SCIP_OKAY;
   }
   SCIP_CALL( SCIPreleaseVar(scip, &var) );

   return SCIP_OKAY;
}
/** calculate the branching score of a variable, depending on the chosen score parameter */
static
SCIP_RETCODE calcBranchScore(
   SCIP*                 scip,               /**< current SCIP */
   SCIP_HEURDATA*        heurdata,           /**< branch rule data */
   SCIP_VAR*             var,                /**< candidate variable */
   SCIP_Real             lpsolval,           /**< current fractional LP-relaxation solution value  */
   SCIP_Real*            upscore,            /**< pointer to store the variable score when branching on it in upward direction */
   SCIP_Real*            downscore,          /**< pointer to store the variable score when branching on it in downward direction */
   char                  scoreparam          /**< the score parameter of this heuristic */
   )
{
   SCIP_COL* varcol;
   SCIP_ROW** colrows;
   SCIP_Real* rowvals;
   SCIP_Real varlb;
   SCIP_Real varub;
   SCIP_Real squaredbounddiff; /* current squared difference of variable bounds (ub - lb)^2 */
   SCIP_Real newub;            /* new upper bound if branching downwards */
   SCIP_Real newlb;            /* new lower bound if branching upwards */
   SCIP_Real squaredbounddiffup; /* squared difference after branching upwards (ub - lb')^2 */
   SCIP_Real squaredbounddiffdown; /* squared difference after branching downwards (ub' - lb)^2 */
   SCIP_Real currentmean;      /* current mean value of variable uniform distribution */
   SCIP_Real meanup;           /* mean value of variable uniform distribution after branching up */
   SCIP_Real meandown;         /* mean value of variable uniform distribution after branching down*/
   SCIP_VARTYPE vartype;
   int ncolrows;
   int i;

   SCIP_Bool onlyactiverows; /* should only rows which are active at the current node be considered? */

   assert(scip != NULL);
   assert(var != NULL);
   assert(upscore != NULL);
   assert(downscore != NULL);
   assert(!SCIPisIntegral(scip, lpsolval) || SCIPvarIsBinary(var));
   assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);

   varcol = SCIPvarGetCol(var);
   assert(varcol != NULL);

   colrows = SCIPcolGetRows(varcol);
   rowvals = SCIPcolGetVals(varcol);
   ncolrows = SCIPcolGetNNonz(varcol);
   varlb = SCIPvarGetLbLocal(var);
   varub = SCIPvarGetUbLocal(var);
   assert(SCIPisFeasLT(scip, varlb, varub));
   vartype = SCIPvarGetType(var);

   /* calculate mean and variance of variable uniform distribution before and after branching */
   currentmean = 0.0;
   squaredbounddiff = 0.0;
   SCIPvarCalcDistributionParameters(scip, varlb, varub, vartype, &currentmean, &squaredbounddiff);

   /* unfixed binary variables may have an integer solution value in the LP solution, eg, at the presence of indicator constraints */
   if( !SCIPvarIsBinary(var) )
   {
      newlb = SCIPfeasCeil(scip, lpsolval);
      newub = SCIPfeasFloor(scip, lpsolval);
   }
   else
   {
      newlb = 1.0;
      newub = 0.0;
   }


   /* calculate the variable's uniform distribution after branching up and down, respectively. */
   squaredbounddiffup = 0.0;
   meanup = 0.0;
   SCIPvarCalcDistributionParameters(scip, newlb, varub, vartype, &meanup, &squaredbounddiffup);

   /* calculate the distribution mean and variance for a variable with finite lower bound */
   squaredbounddiffdown = 0.0;
   meandown = 0.0;
   SCIPvarCalcDistributionParameters(scip, varlb, newub, vartype, &meandown, &squaredbounddiffdown);

   /* initialize the variable's up and down score */
   *upscore = 0.0;
   *downscore = 0.0;

   onlyactiverows = FALSE;

   /* loop over the variable rows and calculate the up and down score */
   for( i = 0; i < ncolrows; ++i )
   {
      SCIP_ROW* row;
      SCIP_Real changedrowmean;
      SCIP_Real rowmean;
      SCIP_Real rowvariance;
      SCIP_Real changedrowvariance;
      SCIP_Real currentrowprob;
      SCIP_Real newrowprobup;
      SCIP_Real newrowprobdown;
      SCIP_Real squaredcoeff;
      SCIP_Real rowval;
      int rowinfinitiesdown;
      int rowinfinitiesup;
      int rowpos;

      row = colrows[i];
      rowval = rowvals[i];
      assert(row != NULL);

      /* we access the rows by their index */
      rowpos = SCIProwGetIndex(row);

      /* skip non-active rows if the user parameter was set this way */
      if( onlyactiverows && SCIPisSumPositive(scip, SCIPgetRowLPFeasibility(scip, row)) )
         continue;

      /* call method to ensure sufficient data capacity */
      SCIP_CALL( heurdataEnsureArraySize(scip, heurdata, rowpos) );

      /* calculate row activity distribution if this is the first candidate to appear in this row */
      if( heurdata->rowmeans[rowpos] == SCIP_INVALID ) /*lint !e777 doesn't like comparing floats for equality */
      {
         rowCalculateGauss(scip, heurdata, row, &heurdata->rowmeans[rowpos], &heurdata->rowvariances[rowpos],
               &heurdata->rowinfinitiesdown[rowpos], &heurdata->rowinfinitiesup[rowpos]);
      }

      /* retrieve the row distribution parameters from the branch rule data */
      rowmean = heurdata->rowmeans[rowpos];
      rowvariance = heurdata->rowvariances[rowpos];
      rowinfinitiesdown = heurdata->rowinfinitiesdown[rowpos];
      rowinfinitiesup = heurdata->rowinfinitiesup[rowpos];
      assert(!SCIPisNegative(scip, rowvariance));

      currentrowprob = SCIProwCalcProbability(scip, row, rowmean, rowvariance,
            rowinfinitiesdown, rowinfinitiesup);

      /* get variable's current expected contribution to row activity */
      squaredcoeff = SQUARED(rowval);

      /* first, get the probability change for the row if the variable is branched on upwards. The probability
       * can only be affected if the variable upper bound is finite
       */
      if( !SCIPisInfinity(scip, varub) )
      {
         int rowinftiesdownafterbranch;
         int rowinftiesupafterbranch;

         /* calculate how branching would affect the row parameters */
         changedrowmean = rowmean + rowval * (meanup - currentmean);
         changedrowvariance = rowvariance + squaredcoeff * (squaredbounddiffup - squaredbounddiff);
         changedrowvariance = MAX(0.0, changedrowvariance);

         rowinftiesdownafterbranch = rowinfinitiesdown;
         rowinftiesupafterbranch = rowinfinitiesup;

         /* account for changes of the row's infinite bound contributions */
         if( SCIPisInfinity(scip, -varlb) && rowval < 0.0 )
            rowinftiesupafterbranch--;
         if( SCIPisInfinity(scip, -varlb) && rowval > 0.0 )
            rowinftiesdownafterbranch--;

         assert(rowinftiesupafterbranch >= 0);
         assert(rowinftiesdownafterbranch >= 0);
         newrowprobup = SCIProwCalcProbability(scip, row, changedrowmean, changedrowvariance, rowinftiesdownafterbranch,
               rowinftiesupafterbranch);
      }
      else
         newrowprobup = currentrowprob;

      /* do the same for the other branching direction */
      if( !SCIPisInfinity(scip, varlb) )
      {
         int rowinftiesdownafterbranch;
         int rowinftiesupafterbranch;

         changedrowmean = rowmean + rowval * (meandown - currentmean);
         changedrowvariance = rowvariance + squaredcoeff * (squaredbounddiffdown - squaredbounddiff);
         changedrowvariance = MAX(0.0, changedrowvariance);

         rowinftiesdownafterbranch = rowinfinitiesdown;
         rowinftiesupafterbranch = rowinfinitiesup;

         /* account for changes of the row's infinite bound contributions */
         if( SCIPisInfinity(scip, varub) && rowval > 0.0 )
            rowinftiesupafterbranch -= 1;
         if( SCIPisInfinity(scip, varub) && rowval < 0.0 )
            rowinftiesdownafterbranch -= 1;

         assert(rowinftiesdownafterbranch >= 0);
         assert(rowinftiesupafterbranch >= 0);
         newrowprobdown = SCIProwCalcProbability(scip, row, changedrowmean, changedrowvariance, rowinftiesdownafterbranch,
               rowinftiesupafterbranch);
      }
      else
         newrowprobdown = currentrowprob;

      /* update the up and down score depending on the chosen scoring parameter */
      SCIP_CALL( SCIPupdateDistributionScore(scip, currentrowprob, newrowprobup, newrowprobdown, upscore, downscore, scoreparam) );

      SCIPdebugMessage("  Variable %s changes probability of row %s from %g to %g (branch up) or %g;\n",
         SCIPvarGetName(var), SCIProwGetName(row), currentrowprob, newrowprobup, newrowprobdown);
      SCIPdebugMessage("  -->  new variable score: %g (for branching up), %g (for branching down)\n",
         *upscore, *downscore);
   }

   return SCIP_OKAY;
}