Beispiel #1
0
/** create initial columns */
static
SCIP_RETCODE createInitialColumns(
   SCIP*                 scip,               /**< SCIP data structure */
   SCIP_PROBDATA*        probdata            /**< problem data */
   )
{
   SCIP_CONS** conss;
   SCIP_VARDATA* vardata;
   SCIP_VAR* var;
   char name[SCIP_MAXSTRLEN];

   int* ids;
   SCIP_Longint* weights;
   int nitems;

   int i;

   conss = probdata->conss;
   ids = probdata->ids;
   weights = probdata->weights;
   nitems = probdata->nitems;

   /* create start solution each item in exactly one bin */
   for( i = 0; i < nitems; ++i )
   {
      (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "item_%d", ids[i]);

      SCIPdebugMessage("create variable for item %d with weight = %"SCIP_LONGINT_FORMAT"\n", ids[i], weights[i]);

      /* create variable for the packing pattern which contains only this item */
      SCIP_CALL( SCIPcreateVarBinpacking(scip, &var, name, 1.0, TRUE, TRUE, NULL) );

      /* add variable to the problem */
      SCIP_CALL( SCIPaddVar(scip, var) );

      /* store variable in the problme data */
      SCIP_CALL( SCIPprobdataAddVar(scip, probdata, var) );

      /* add variable to corresponding set covering constraint */
      SCIP_CALL( SCIPaddCoefSetppc(scip, conss[i], var) );

      /* create the variable data for the variable; the variable data contains the information in which constraints the
       * variable appears */
      SCIP_CALL( SCIPvardataCreateBinpacking(scip, &vardata, &i, 1) );

      /* add the variable data to the variable */
      SCIPvarSetData(var, vardata);

      /* change the upper bound of the binary variable to lazy since the upper bound is already enforced
       * due to the objective function the set covering constraint;
       * The reason for doing is that, is to avoid the bound of x <= 1 in the LP relaxation since this bound
       * constraint would produce a dual variable which might have a positive reduced cost
       */
      SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );

      /* release variable */
      SCIP_CALL( SCIPreleaseVar(scip, &var) );
   }

   return SCIP_OKAY;
}
Beispiel #2
0
/** reduced cost pricing method of variable pricer for feasible LPs */
static
SCIP_DECL_PRICERREDCOST(pricerRedcostBinpacking)
{  /*lint --e{715}*/
   SCIP* subscip;
   SCIP_PRICERDATA* pricerdata;
   SCIP_CONS** conss;
   SCIP_VAR** vars;
   int* ids;
   SCIP_Bool addvar;

   SCIP_SOL** sols;
   int nsols;
   int s;

   int nitems;
   SCIP_Longint capacity;

   SCIP_Real timelimit;
   SCIP_Real memorylimit;

   assert(scip != NULL);
   assert(pricer != NULL);

   (*result) = SCIP_DIDNOTRUN;

   /* get the pricer data */
   pricerdata = SCIPpricerGetData(pricer);
   assert(pricerdata != NULL);

   capacity = pricerdata->capacity;
   conss = pricerdata->conss;
   ids = pricerdata->ids;
   nitems = pricerdata->nitems;

   /* get the remaining time and memory limit */
   SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) );
   if( !SCIPisInfinity(scip, timelimit) )
      timelimit -= SCIPgetSolvingTime(scip);
   SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) );
   if( !SCIPisInfinity(scip, memorylimit) )
      memorylimit -= SCIPgetMemUsed(scip)/1048576.0;

   /* initialize SCIP */
   SCIP_CALL( SCIPcreate(&subscip) );
   SCIP_CALL( SCIPincludeDefaultPlugins(subscip) );

   /* create problem in sub SCIP */
   SCIP_CALL( SCIPcreateProbBasic(subscip, "pricing") );
   SCIP_CALL( SCIPsetObjsense(subscip, SCIP_OBJSENSE_MAXIMIZE) );

   /* do not abort subproblem on CTRL-C */
   SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) );

   /* disable output to console */
   SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) );

   /* set time and memory limit */
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) );
   SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) );

   SCIP_CALL( SCIPallocMemoryArray(subscip, &vars, nitems) );

   /* initialization local pricing problem */
   SCIP_CALL( initPricing(scip, pricerdata, subscip, vars) );

   SCIPdebugMessage("solve pricer problem\n");

   /* solve sub SCIP */
   SCIP_CALL( SCIPsolve(subscip) );

   sols = SCIPgetSols(subscip);
   nsols = SCIPgetNSols(subscip);
   addvar = FALSE;

   /* loop over all solutions and create the corresponding column to master if the reduced cost are negative for master,
    * that is the objective value i greater than 1.0
    */
   for( s = 0; s < nsols; ++s )
   {
      SCIP_Bool feasible;
      SCIP_SOL* sol;

      /* the soultion should be sorted w.r.t. the objective function value */
      assert(s == 0 || SCIPisFeasGE(subscip, SCIPgetSolOrigObj(subscip, sols[s-1]), SCIPgetSolOrigObj(subscip, sols[s])));

      sol = sols[s];
      assert(sol != NULL);

      /* check if solution is feasible in original sub SCIP */
      SCIP_CALL( SCIPcheckSolOrig(subscip, sol, &feasible, FALSE, FALSE ) );

      if( !feasible )
      {
         SCIPwarningMessage(scip, "solution in pricing problem (capacity <%d>) is infeasible\n", capacity);
         continue;
      }

      /* check if the solution has a value greater than 1.0 */
      if( SCIPisFeasGT(subscip, SCIPgetSolOrigObj(subscip, sol), 1.0) )
      {
         SCIP_VAR* var;
         SCIP_VARDATA* vardata;
         int* consids;
         char strtmp[SCIP_MAXSTRLEN];
         char name[SCIP_MAXSTRLEN];
         int nconss;
         int o;
         int v;

         SCIPdebug( SCIP_CALL( SCIPprintSol(subscip, sol, NULL, FALSE) ) );

         nconss = 0;
         (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "items");

         SCIP_CALL( SCIPallocBufferArray(scip, &consids, nitems) );

         /* check which variables are fixed -> which item belongs to this packing */
         for( o = 0, v = 0; o < nitems; ++o )
         {
            if( !SCIPconsIsEnabled(conss[o]) )
               continue;

            assert(SCIPgetNFixedonesSetppc(scip, conss[o]) == 0);

            if( SCIPgetSolVal(subscip, sol, vars[v]) > 0.5 )
            {
               (void) SCIPsnprintf(strtmp, SCIP_MAXSTRLEN, "_%d", ids[o]);
               strcat(name, strtmp);

               consids[nconss] = o;
               nconss++;
            }
            else
               assert( SCIPisFeasEQ(subscip, SCIPgetSolVal(subscip, sol, vars[v]), 0.0) );

            v++;
         }

         SCIP_CALL( SCIPvardataCreateBinpacking(scip, &vardata, consids, nconss) );

         /* create variable for a new column with objective function coefficient 0.0 */
         SCIP_CALL( SCIPcreateVarBinpacking(scip, &var, name, 1.0, FALSE, TRUE, vardata) );

         /* add the new variable to the pricer store */
         SCIP_CALL( SCIPaddPricedVar(scip, var, 1.0) );
         addvar = TRUE;

         /* change the upper bound of the binary variable to lazy since the upper bound is already enforced due to
          * the objective function the set covering constraint; The reason for doing is that, is to avoid the bound
          * of x <= 1 in the LP relaxation since this bound constraint would produce a dual variable which might have
          * a positive reduced cost
          */
         SCIP_CALL( SCIPchgVarUbLazy(scip, var, 1.0) );

         /* check which variable are fixed -> which orders belong to this packing */
         for( v = 0; v < nconss; ++v )
         {
            assert(SCIPconsIsEnabled(conss[consids[v]]));
            SCIP_CALL( SCIPaddCoefSetppc(scip, conss[consids[v]], var) );
         }

         SCIPdebug(SCIPprintVar(scip, var, NULL) );
         SCIP_CALL( SCIPreleaseVar(scip, &var) );

         SCIPfreeBufferArray(scip, &consids);
      }
      else
         break;
   }

   /* free pricer MIP */
   SCIPfreeMemoryArray(subscip, &vars);

   if( addvar || SCIPgetStatus(subscip) == SCIP_STATUS_OPTIMAL )
      (*result) = SCIP_SUCCESS;

   /* free sub SCIP */
   SCIP_CALL( SCIPfree(&subscip) );

   return SCIP_OKAY;
}