Beispiel #1
0
static void _my_create_generation_sorted_member_cache(SG_context * pCtx,
													  SG_dagfrag * pFrag)
{
	// everything in the main CACHE is (implicitly) sorted by HID.  there are
	// times when we need this list sorted by generation.
	//
	// here we construct a copy of the CACHE in that alternate ordering.  we
	// simply borrow the associated data pointers of the items in the real
	// CACHE, so we don't own/free them.  we only include items of type
	// START_MEMBER and INTERIOR_MEMBER.
	//
	// WARNING: whenever you change the CACHE (such as during __add_{leaf,leaves}()),
	// WARNING: you must delete/recreate or likewise update this copy.

	SG_RBTREE_NULLFREE(pCtx, pFrag->m_pRB_GenerationSortedMemberCache);
	pFrag->m_pRB_GenerationSortedMemberCache = NULL;

	SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx,
									&pFrag->m_pRB_GenerationSortedMemberCache)  );
	SG_ERR_CHECK(  SG_rbtree__foreach(pCtx,
									  pFrag->m_pRB_Cache,
									  _sg_dagfrag__my_create_generation_sorted_member_cache_callback,
									  pFrag)  );
	return;

fail:
	SG_RBTREE_NULLFREE(pCtx, pFrag->m_pRB_GenerationSortedMemberCache);
	pFrag->m_pRB_GenerationSortedMemberCache = NULL;
}
Beispiel #2
0
void u0048_multidag_test__1(SG_context * pCtx)
{
	char bufName[SG_TID_MAX_BUFFER_LENGTH + u0048_multidag__MY_LABEL_LENGTH];
    SG_repo* pRepo = NULL;
    SG_rbtree* prb = NULL;
    SG_uint32 count;

    char* pid1 = NULL;
    char* pid1a = NULL;
    char* pid1b = NULL;
    char* pid1c = NULL;

    char* pid2 = NULL;
    char* pid2a = NULL;
    char* pid2b = NULL;

	VERIFY_ERR_CHECK(  SG_strcpy(pCtx, bufName, sizeof(bufName), u0048_multidag__MY_LABEL)  );
	VERIFY_ERR_CHECK(  SG_tid__generate2(pCtx, &bufName[u0048_multidag__MY_LABEL_LENGTH], (sizeof(bufName) - u0048_multidag__MY_LABEL_LENGTH), 32)  );

    /* create the repo */
	VERIFY_ERR_CHECK(  u0048_multidag__new_repo(pCtx, bufName, &pRepo)  );

    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid1, NULL, SG_DAGNUM__TESTING__NOTHING, pRepo)  );
    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid1a, pid1, SG_DAGNUM__TESTING__NOTHING, pRepo)  );
    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid1b, pid1, SG_DAGNUM__TESTING__NOTHING, pRepo)  );
    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid1c, pid1, SG_DAGNUM__TESTING__NOTHING, pRepo)  );

    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid2, NULL, SG_DAGNUM__TESTING2__NOTHING, pRepo)  );
    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid2a, pid2, SG_DAGNUM__TESTING2__NOTHING, pRepo)  );
    VERIFY_ERR_CHECK(  u0048_multidag__add_dagnode(pCtx, &pid2b, pid2, SG_DAGNUM__TESTING2__NOTHING, pRepo)  );

    SG_NULLFREE(pCtx, pid1);
    SG_NULLFREE(pCtx, pid1a);
    SG_NULLFREE(pCtx, pid1b);
    SG_NULLFREE(pCtx, pid1c);

    SG_NULLFREE(pCtx, pid2);
    SG_NULLFREE(pCtx, pid2a);
    SG_NULLFREE(pCtx, pid2b);

    VERIFY_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, SG_DAGNUM__TESTING__NOTHING, &prb)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb, &count)  );
    SG_RBTREE_NULLFREE(pCtx, prb);
    VERIFY_COND("count", (3 == count));

    VERIFY_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, SG_DAGNUM__TESTING2__NOTHING, &prb)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb, &count)  );
    SG_RBTREE_NULLFREE(pCtx, prb);
    VERIFY_COND("count", (2 == count));

	SG_REPO_NULLFREE(pCtx, pRepo);

	return;

fail:
	SG_REPO_NULLFREE(pCtx, pRepo);
}
void SG_dagquery__new_since(SG_context * pCtx,
							SG_repo* pRepo,
							SG_uint64 iDagNum,
							const char* pszOldNodeHid,
							const char* pszNewNodeHid,
							SG_rbtree** pprbNewNodeHids)
{
	SG_dagquery_relationship rel;
	new_since_context cbCtx;

    cbCtx.dagnum = iDagNum;
	cbCtx.prbNewNodeHids = NULL;
	cbCtx.pszNewNodeHid = pszNewNodeHid;
	cbCtx.pszOldNodeHid = pszOldNodeHid;

	SG_ERR_CHECK(  SG_dagquery__how_are_dagnodes_related(pCtx, pRepo, iDagNum, pszNewNodeHid, pszOldNodeHid, SG_FALSE, SG_FALSE, &rel)  );

	if (rel != SG_DAGQUERY_RELATIONSHIP__DESCENDANT)
		SG_ERR_THROW2_RETURN(SG_ERR_UNSPECIFIED, (pCtx, "pszNewNodeHid must be a descendant of pszOldNodeHid"));

	SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &cbCtx.prbNewNodeHids)  );

	SG_ERR_CHECK(  SG_dagwalker__walk_dag_single(pCtx, pRepo, iDagNum, pszNewNodeHid, _dagquery__new_since__callback, (void*)&cbCtx)  );

	SG_RETURN_AND_NULL(cbCtx.prbNewNodeHids, pprbNewNodeHids);

	/* Fall through to common cleanup */
fail:
	SG_RBTREE_NULLFREE(pCtx, cbCtx.prbNewNodeHids);
}
void SG_repo__free_implementation_plugin_list(
        SG_context* pCtx
        )
{
    // TODO do we need to call each one to free up dynamic resources somehow?

    SG_RBTREE_NULLFREE(pCtx, g_prb_repo_vtables);
}
Beispiel #5
0
void SG_dagfrag__free(SG_context * pCtx, SG_dagfrag * pFrag)
{
	if (!pFrag)
		return;

	SG_RBTREE_NULLFREE_WITH_ASSOC(pCtx, pFrag->m_pRB_Cache, _my_data__free);
	SG_RBTREE_NULLFREE(pCtx, pFrag->m_pRB_GenerationSortedMemberCache);	// we borrowed the assoc data from the real cache, so we don't free them.

	SG_NULLFREE(pCtx, pFrag);
}
static void _loadModuleDir(SG_context *pCtx, const SG_pathname *path, const char *modname, JSContext *cx, JSObject *glob)
{
	SG_rbtree * pJavascriptFiles = NULL;
	SG_rbtree_iterator * pJavascriptFile = NULL;
	const char *szJavascriptFile = NULL; 
	SG_pathname *pJavascriptFilePath = NULL;
	SG_bool ok = SG_FALSE;
	SG_bool valid = SG_FALSE;
	char *psz_js = NULL; // free
	SG_uint32 len_js = 0;
	jsval rval = JSVAL_VOID;
	
	SG_ERR_CHECK(  SG_dir__list(pCtx, path, NULL, NULL, ".js", &pJavascriptFiles)  );
	SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pJavascriptFile, pJavascriptFiles, &ok, &szJavascriptFile, NULL)  );
	SG_ERR_CHECK(  SG_PATHNAME__ALLOC__COPY(pCtx, &pJavascriptFilePath, path)  );

	while(ok)
	{
		SG_ERR_CHECK(  _isValidJsFile(pCtx, szJavascriptFile, &valid)  );

		if (valid)
		{
			SG_ERR_CHECK(  SG_pathname__append__from_sz(pCtx, pJavascriptFilePath, szJavascriptFile)  );

			SG_ERR_CHECK(  sg_read_entire_file(pCtx, pJavascriptFilePath, &psz_js, &len_js)  );
			if(!JS_EvaluateScript(cx, glob, psz_js, len_js, szJavascriptFile, 1, &rval))
			{
				SG_ERR_CHECK_CURRENT;
				SG_ERR_THROW2(SG_ERR_JS, (pCtx, "An error occurred loading %s javascript file '%s'", modname, szJavascriptFile));
			}
			SG_NULLFREE(pCtx, psz_js);
			SG_ERR_CHECK(  SG_pathname__remove_last(pCtx, pJavascriptFilePath)  );
		}

		SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pJavascriptFile, &ok, &szJavascriptFile, NULL)  );
	}

fail:
	SG_PATHNAME_NULLFREE(pCtx, pJavascriptFilePath);
	SG_RBTREE_ITERATOR_NULLFREE(pCtx, pJavascriptFile);
	SG_RBTREE_NULLFREE(pCtx, pJavascriptFiles);
	SG_NULLFREE(pCtx, psz_js);
}
void SG_dagquery__find_single_descendant_head(SG_context * pCtx,
											  SG_repo * pRepo,
                                              SG_uint64 dagnum,
											  const char * pszHidStart,
											  SG_dagquery_find_head_status * pdqfhs,
											  char * bufHidHead,
											  SG_uint32 lenBufHidHead)
{
	SG_rbtree * prbHeads = NULL;
	const char * pszKey_0;
	SG_dagquery_find_head_status dqfhs;
	SG_bool b;

	SG_NULLARGCHECK_RETURN(pRepo);
	SG_NONEMPTYCHECK_RETURN(pszHidStart);
	SG_NULLARGCHECK_RETURN(pdqfhs);
	SG_NULLARGCHECK_RETURN(bufHidHead);

	SG_ERR_CHECK(  SG_dagquery__find_descendant_heads(pCtx, pRepo, dagnum, pszHidStart, SG_TRUE, &dqfhs, &prbHeads)  );

	switch (dqfhs)
	{
	case SG_DAGQUERY_FIND_HEAD_STATUS__IS_LEAF:
	case SG_DAGQUERY_FIND_HEAD_STATUS__UNIQUE:
		SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, NULL, prbHeads, &b, &pszKey_0, NULL)  );
		SG_ASSERT(  (b)  );
		SG_ERR_CHECK(  SG_strcpy(pCtx, bufHidHead, lenBufHidHead, pszKey_0)  );
		break;

	case SG_DAGQUERY_FIND_HEAD_STATUS__MULTIPLE:
	default:
		// don't throw, just return the status
		bufHidHead[0] = 0;
		break;
	}

	*pdqfhs = dqfhs;

fail:
	SG_RBTREE_NULLFREE(pCtx, prbHeads);
}
static void _sg_jscore__install_modules(SG_context * pCtx, JSContext *cx, JSObject *glob,
	const SG_vhash *pServerConfig)
{
	SG_pathname *pModuleDirPath = NULL;
	SG_rbtree_iterator *pModuleDir = NULL;
	SG_rbtree *pModules = NULL;
	const char *szModuleDir = NULL;
	SG_bool ok = SG_FALSE;
	SG_uint32 len_js = 0;
	jsval rval;
	char *psz_js = NULL;
	jsval fo = JSVAL_VOID;
	JSObject * jsoServerConfig = NULL;

	if (gpJSCoreGlobalState->bSkipModules)
		return;

	SG_ERR_CHECK(  _modulesInstalled(pCtx, cx, glob, &ok)  );

	if (ok)
		return;

	if (! gpJSCoreGlobalState->pPathToDispatchDotJS)
		return;
	
	SG_ERR_CHECK(  _setModulesInstalled(pCtx, cx, glob)  );

	SG_ERR_CHECK(  sg_read_entire_file(pCtx, gpJSCoreGlobalState->pPathToDispatchDotJS, &psz_js, &len_js)  );
	if(!JS_EvaluateScript(cx, glob, psz_js, len_js, "dispatch.js", 1, &rval))
	{
		SG_ERR_CHECK_CURRENT;
		SG_ERR_THROW2(SG_ERR_JS, (pCtx, "An error occurred evaluating dispatch.js!"));
	}
	SG_NULLFREE(pCtx, psz_js);

	// Call init function in dispatch.js
	if(pServerConfig)
	{
		jsval arg;
		JSBool js_ok;
		jsval rval2;

		SG_JS_NULL_CHECK(  jsoServerConfig = JS_NewObject(cx, NULL, NULL, NULL)  );
		SG_ERR_CHECK(  sg_jsglue__copy_vhash_into_jsobject(pCtx, cx, pServerConfig, jsoServerConfig)  );
		arg = OBJECT_TO_JSVAL(jsoServerConfig);
		js_ok = JS_CallFunctionName(cx, glob, "init", 1, &arg, &rval2);
		SG_ERR_CHECK_CURRENT;
		if(!js_ok)
			SG_ERR_THROW2(SG_ERR_JS, (pCtx, "An error occurred initializing JavaScript framework: call to JavaScript init() failed"));
		
		jsoServerConfig = NULL;
	}

	// Load core.
	SG_ERR_CHECK(  _loadModuleDir(pCtx, gpJSCoreGlobalState->pPathToCore, "core", cx, glob)  );

	// Load modules.

	SG_ERR_CHECK(  SG_dir__list(pCtx, gpJSCoreGlobalState->pPathToModules, NULL, NULL, NULL, &pModules)  );
	SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pModuleDir, pModules, &ok, &szModuleDir, NULL)  );
	SG_ERR_CHECK(  SG_PATHNAME__ALLOC__COPY(pCtx, &pModuleDirPath, gpJSCoreGlobalState->pPathToModules)  );
	while(ok)
	{
		if (szModuleDir[0] != '.')
		{
			SG_fsobj_stat fss;

			SG_ERR_CHECK(  SG_pathname__append__from_sz(pCtx, pModuleDirPath, szModuleDir)  );

			SG_ERR_CHECK(  SG_fsobj__stat__pathname(pCtx, pModuleDirPath, &fss)  );

			if (fss.type & SG_FSOBJ_TYPE__DIRECTORY)  // dot paths?
			{
				SG_ERR_CHECK(  _loadModuleDir(pCtx, pModuleDirPath, szModuleDir, cx, glob)  );
			}

			SG_ERR_CHECK(  SG_pathname__remove_last(pCtx, pModuleDirPath)  );
		}

		SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pModuleDir, &ok, &szModuleDir, NULL)  );
	}
												
	if (! JS_LookupProperty(cx, glob, "initModules", &fo))
	{
		SG_ERR_CHECK_CURRENT;
		SG_ERR_THROW2(SG_ERR_JS, (pCtx, "lookup of initModules() failed"));
	}

	if (!JSVAL_IS_VOID(fo))
		if (! JS_CallFunctionName(cx, glob, "initModules", 0, NULL, &rval))
			{
				SG_ERR_CHECK_CURRENT;
				SG_ERR_THROW2(SG_ERR_JS, (pCtx, "Call to initModules() failed"));
			}

fail:
	SG_NULLFREE(pCtx, psz_js);
	SG_PATHNAME_NULLFREE(pCtx, pModuleDirPath);
	SG_RBTREE_ITERATOR_NULLFREE(pCtx, pModuleDir);
	SG_RBTREE_NULLFREE(pCtx, pModules);
}
Beispiel #9
0
int u0050_logstuff_test__1(SG_context * pCtx, SG_pathname* pPathTopDir)
{
	char bufName[SG_TID_MAX_BUFFER_LENGTH];
	SG_pathname* pPathWorkingDir = NULL;
	SG_pathname* pPathFile = NULL;
	SG_vhash* pvh = NULL;
    SG_dagnode* pdn = NULL;
    const char* psz_hid_cs = NULL;
    SG_repo* pRepo = NULL;
    SG_uint32 count;
    SG_rbtree* prb = NULL;
    SG_varray* pva = NULL;
    SG_rbtree* prb_reversed = NULL;
    const char* psz_val = NULL;
    SG_audit q;

	VERIFY_ERR_CHECK(  SG_tid__generate2(pCtx, bufName, sizeof(bufName), 32)  );

	/* create the working dir */
	VERIFY_ERR_CHECK(  SG_PATHNAME__ALLOC__PATHNAME_SZ(pCtx, &pPathWorkingDir, pPathTopDir, bufName)  );
	VERIFY_ERR_CHECK(  SG_fsobj__mkdir__pathname(pCtx, pPathWorkingDir)  );

    /* add stuff */
	VERIFY_ERR_CHECK(  u0050_logstuff__create_file__numbers(pCtx, pPathWorkingDir, "aaa", 20)  );

    /* create the repo */
	VERIFY_ERR_CHECK(  _ut_pt__new_repo(pCtx, bufName, pPathWorkingDir)  );
	VERIFY_ERR_CHECK(  _ut_pt__addremove(pCtx, pPathWorkingDir)  );
	VERIFY_ERR_CHECK(  u0050_logstuff__commit_all(pCtx, pPathWorkingDir, &pdn)  );

    VERIFY_ERR_CHECK(  SG_dagnode__get_id_ref(pCtx, pdn, &psz_hid_cs)  );

	SG_ERR_CHECK(  SG_repo__open_repo_instance(pCtx, bufName, &pRepo)  );

#define MY_COMMENT "The name of this new file sucks!  What kind of a name is 'aaa'?"

    VERIFY_ERR_CHECK(  SG_audit__init(pCtx, &q, pRepo, SG_AUDIT__WHEN__NOW, SG_AUDIT__WHO__FROM_SETTINGS)  );
    VERIFY_ERR_CHECK(  SG_vc_comments__add(pCtx, pRepo, psz_hid_cs, MY_COMMENT, &q)  );
    VERIFY_ERR_CHECK(  SG_vc_stamps__add(pCtx, pRepo, psz_hid_cs, "crap", &q)  );
    VERIFY_ERR_CHECK(  SG_vc_tags__add(pCtx, pRepo, psz_hid_cs, "tcrap", &q)  );

    VERIFY_ERR_CHECK(  SG_vc_comments__lookup(pCtx, pRepo, psz_hid_cs, &pva)  );
    VERIFY_ERR_CHECK(  SG_varray__count(pCtx, pva, &count)  );
    VERIFY_COND("count", (1 == count));
    VERIFY_ERR_CHECK(  SG_varray__get__vhash(pCtx, pva, 0, &pvh)  );
    VERIFY_ERR_CHECK(  SG_vhash__get__sz(pCtx, pvh, "text", &psz_val)  );
    VERIFY_COND("match", (0 == strcmp(psz_val, MY_COMMENT))  );
    SG_VARRAY_NULLFREE(pCtx, pva);

    VERIFY_ERR_CHECK(  SG_vc_stamps__lookup(pCtx, pRepo, psz_hid_cs, &pva)  );
    VERIFY_ERR_CHECK(  SG_varray__count(pCtx, pva, &count)  );
    VERIFY_COND("count", (1 == count));
    VERIFY_ERR_CHECK(  SG_varray__get__vhash(pCtx, pva, 0, &pvh)  );
    VERIFY_ERR_CHECK(  SG_vhash__get__sz(pCtx, pvh, "stamp", &psz_val)  );
    VERIFY_COND("match", (0 == strcmp(psz_val, "crap"))  );
    SG_VARRAY_NULLFREE(pCtx, pva);

    VERIFY_ERR_CHECK(  SG_vc_tags__lookup(pCtx, pRepo, psz_hid_cs, &pva)  );
    VERIFY_ERR_CHECK(  SG_varray__count(pCtx, pva, &count)  );
    VERIFY_COND("count", (1 == count));
    VERIFY_ERR_CHECK(  SG_varray__get__vhash(pCtx, pva, 0, &pvh)  );
    VERIFY_ERR_CHECK(  SG_vhash__get__sz(pCtx, pvh, "tag", &psz_val)  );
    VERIFY_COND("match", (0 == strcmp(psz_val, "tcrap"))  );
    SG_VARRAY_NULLFREE(pCtx, pva);

    VERIFY_ERR_CHECK(  SG_vc_tags__list(pCtx, pRepo, &prb)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb, &count)  );
    VERIFY_COND("count", (1 == count));
    VERIFY_ERR_CHECK(  SG_vc_tags__build_reverse_lookup(pCtx, prb, &prb_reversed)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb_reversed, &count)  );
    VERIFY_COND("count", (1 == count));

    {
        const char* psz_my_key = NULL;
        const char* psz_my_val = NULL;
        SG_bool b;

        VERIFY_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, NULL, prb_reversed, &b, &psz_my_key, (void**) &psz_my_val)  );
        VERIFY_COND("ok", (0 == strcmp(psz_my_val, "tcrap"))  );
        VERIFY_COND("ok", (0 == strcmp(psz_my_key, psz_hid_cs))  );
    }
    SG_RBTREE_NULLFREE(pCtx, prb_reversed);

    SG_RBTREE_NULLFREE(pCtx, prb);

    VERIFY_ERR_CHECK(  SG_vc_tags__add(pCtx, pRepo, psz_hid_cs, "whatever", &q)  );

    VERIFY_ERR_CHECK(  SG_vc_tags__lookup(pCtx, pRepo, psz_hid_cs, &pva)  );
    VERIFY_ERR_CHECK(  SG_varray__count(pCtx, pva, &count)  );
    VERIFY_COND("count", (2 == count));
    SG_VARRAY_NULLFREE(pCtx, pva);

    VERIFY_ERR_CHECK(  SG_vc_tags__list(pCtx, pRepo, &prb)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb, &count)  );
    VERIFY_COND("count", (2 == count));

    VERIFY_ERR_CHECK(  SG_vc_tags__build_reverse_lookup(pCtx, prb, &prb_reversed)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb_reversed, &count)  );
    VERIFY_COND("count", (1 == count));

    {
        const char* psz_my_key = NULL;
        const char* psz_my_val = NULL;
        SG_bool b;

        VERIFY_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, NULL, prb_reversed, &b, &psz_my_key, (void**) &psz_my_val)  );
        VERIFY_COND("ok", (0 == strcmp(psz_my_key, psz_hid_cs))  );
        /* we don't know whether psz_my_val is tcrap or whatever. */
        // VERIFY_COND("ok", (0 == strcmp(psz_my_val, "tcrap"))  );
    }
    SG_RBTREE_NULLFREE(pCtx, prb_reversed);

    SG_RBTREE_NULLFREE(pCtx, prb);

    {
        const char* psz_remove = "whatever";

        VERIFY_ERR_CHECK(  SG_vc_tags__remove(pCtx, pRepo, &q, 1, &psz_remove)  );
        /* Note that by removing whatever, we are bringing the tags list back
         * to a state where it has been before (just tcrap).  This changeset in
         * the tags table will have its own csid, because the parentage is
         * different, but it's root idtrie HID will be the same as a previous
         * node. */
    }

    VERIFY_ERR_CHECK(  SG_vc_tags__lookup(pCtx, pRepo, psz_hid_cs, &pva)  );
    VERIFY_ERR_CHECK(  SG_varray__count(pCtx, pva, &count)  );
    VERIFY_COND("count", (1 == count));
    SG_VARRAY_NULLFREE(pCtx, pva);

    VERIFY_ERR_CHECK(  SG_vc_tags__list(pCtx, pRepo, &prb)  );
    VERIFY_ERR_CHECK(  SG_rbtree__count(pCtx, prb, &count)  );
    VERIFY_COND("count", (1 == count));
    SG_RBTREE_NULLFREE(pCtx, prb);

    SG_REPO_NULLFREE(pCtx, pRepo);
    SG_DAGNODE_NULLFREE(pCtx, pdn);
	SG_PATHNAME_NULLFREE(pCtx, pPathWorkingDir);
	SG_PATHNAME_NULLFREE(pCtx, pPathFile);

	return 1;

fail:
	SG_VHASH_NULLFREE(pCtx, pvh);

	SG_PATHNAME_NULLFREE(pCtx, pPathWorkingDir);
	SG_PATHNAME_NULLFREE(pCtx, pPathFile);

	return 0;
}
Beispiel #10
0
void SG_dagfrag__add_dagnode(SG_context * pCtx,
							 SG_dagfrag * pFrag,
							 SG_dagnode** ppdn)
{
	_my_data * pMyDataCached = NULL;
	SG_bool bPresent = SG_FALSE;
    const char* psz_id = NULL;
	SG_dagnode* pdn = NULL;

	SG_NULLARGCHECK_RETURN(pFrag);
	SG_NULLARGCHECK_RETURN(ppdn);

	pdn = *ppdn;

	// if we are extending the fragment, delete the generation-sorted
	// member cache copy.  (see __foreach_member()).  it's either that
	// or update it in parallel as we change the real CACHE and that
	// doesn't seem worth the bother.

	SG_RBTREE_NULLFREE(pCtx, pFrag->m_pRB_GenerationSortedMemberCache);
	pFrag->m_pRB_GenerationSortedMemberCache = NULL;

	// fetch the starting dagnode and compute the generation bounds.
	// first, see if the cache already has info for this dagnode.
	// if not, fetch it from the source and then add it to the cache.

    SG_ERR_CHECK(  SG_dagnode__get_id_ref(pCtx, pdn, &psz_id)  );

#if DEBUG && TRACE_DAGFRAG && 0
	SG_ERR_CHECK(  SG_console(pCtx, SG_CS_STDERR, "Adding [%s] to frag.\r\n", psz_id)  );
	SG_ERR_CHECK(  SG_console__flush(pCtx, SG_CS_STDERR)  );
#endif

	SG_ERR_CHECK(  _cache__lookup(pCtx, pFrag,psz_id,&pMyDataCached,&bPresent)  );

	if (!bPresent)
	{
		// this dagnode was not already present in the cache.
		// add it to the cache directly and set the state.
		// we don't need to go thru the work queue for it.
		//
		// then the add all of its parents.

		SG_ERR_CHECK(  _cache__add__dagnode(pCtx,
											pFrag,
											0,
											pdn,SG_DFS_START_MEMBER,
											&pMyDataCached)  );
		*ppdn = NULL;

		SG_ERR_CHECK(  _add_parents(pCtx, pFrag, pMyDataCached->m_pDagnode)  );
	}
	else
	{
		// the node was already present in the cache, so we have already
		// walked at least part of the graph around it.

		switch (pMyDataCached->m_state)
		{
			case SG_DFS_END_FRINGE:
				if (!pMyDataCached->m_pDagnode)
				{
					pMyDataCached->m_pDagnode = pdn;
					*ppdn = NULL;
				}
				pMyDataCached->m_state = SG_DFS_INTERIOR_MEMBER;
				SG_ERR_CHECK(  _add_parents(pCtx, pFrag, pMyDataCached->m_pDagnode)  );
				break;
			default:
			  break;
/*
				SG_ASSERT_RELEASE_FAIL2(  (0),
					(pCtx,"Invalid state [%d] in DAGFRAG Cache for [%s]",
					pMyDataCached->m_state,psz_id)  );
*/
		}
	}

	// fall through

fail:
	SG_DAGNODE_NULLFREE(pCtx, *ppdn);
}
void SG_sync_remote__request_fragball(
	SG_context* pCtx,
	SG_repo* pRepo,
	const SG_pathname* pFragballDirPathname,
	SG_vhash* pvhRequest,
	char** ppszFragballName)
{
	SG_pathname* pFragballPathname = NULL;
	SG_uint64* paDagNums = NULL;
	SG_string* pstrFragballName = NULL;
	SG_rbtree* prbDagnodes = NULL;
	SG_rbtree_iterator* pit = NULL;
	SG_rev_spec* pRevSpec = NULL;
	SG_stringarray* psaFullHids = NULL;
	SG_rbtree* prbDagnums = NULL;
	SG_dagfrag* pFrag = NULL;
	char* pszRepoId = NULL;
	char* pszAdminId = NULL;
    SG_fragball_writer* pfb = NULL;

	SG_NULLARGCHECK_RETURN(pRepo);
	SG_NULLARGCHECK_RETURN(pFragballDirPathname);

    {
        char buf_filename[SG_TID_MAX_BUFFER_LENGTH];
        SG_ERR_CHECK(  SG_tid__generate(pCtx, buf_filename, sizeof(buf_filename))  );
        SG_ERR_CHECK(  SG_PATHNAME__ALLOC__PATHNAME_SZ(pCtx, &pFragballPathname, pFragballDirPathname, buf_filename)  );
    }

	if (!pvhRequest)
	{
		// Add leaves from every dag to the fragball.
		SG_uint32 count_dagnums;
		SG_uint32 i;

        SG_ERR_CHECK(  SG_fragball_writer__alloc(pCtx, pRepo, pFragballPathname, SG_TRUE, 2, &pfb)  );
		SG_ERR_CHECK(  SG_repo__list_dags(pCtx, pRepo, &count_dagnums, &paDagNums)  );

		for (i=0; i<count_dagnums; i++)
		{
			SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, paDagNums[i], &prbDagnodes)  );
			SG_ERR_CHECK(  SG_fragball__write__dagnodes(pCtx, pfb, paDagNums[i], prbDagnodes)  );
			SG_RBTREE_NULLFREE(pCtx, prbDagnodes);
		}

		SG_ERR_CHECK(  SG_pathname__get_last(pCtx, pFragballPathname, &pstrFragballName)  );
		SG_ERR_CHECK(  SG_STRDUP(pCtx, SG_string__sz(pstrFragballName), ppszFragballName)  );
        SG_ERR_CHECK(  SG_fragball_writer__close(pCtx, pfb)  );
	}
	else
	{
		// Specific dags/nodes were requested. Build that fragball.
		SG_bool found;

#if TRACE_SYNC_REMOTE && 0
		SG_ERR_CHECK(  SG_vhash_debug__dump_to_console__named(pCtx, pvhRequest, "fragball request")  );
#endif

		SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__CLONE, &found)  );
		if (found)
		{
            // SG_SYNC_STATUS_KEY__CLONE_REQUEST is currently ignored
            SG_ERR_CHECK(  SG_repo__fetch_repo__fragball(pCtx, pRepo, 3, pFragballDirPathname, ppszFragballName) );
		}
		else
		{
			// Not a full clone.

            SG_ERR_CHECK(  SG_fragball_writer__alloc(pCtx, pRepo, pFragballPathname, SG_TRUE, 2, &pfb)  );
			SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__SINCE, &found)  );
			if (found)
			{
                SG_vhash* pvh_since = NULL;

                SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__SINCE, &pvh_since)  );

                SG_ERR_CHECK(  _do_since(pCtx, pRepo, pvh_since, pfb)  );
            }

			SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__DAGS, &found)  );
			if (found)
			{
				// Specific Dagnodes were requested. Add just those nodes to our "start from" rbtree.

				SG_vhash* pvhDags;
				SG_uint32 count_requested_dagnums;
				SG_uint32 i;
				const SG_variant* pvRevSpecs = NULL;
				SG_vhash* pvhRevSpec = NULL;

				// For each requested dag, get rev spec request.
				SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__DAGS, &pvhDags)  );
				SG_ERR_CHECK(  SG_vhash__count(pCtx, pvhDags, &count_requested_dagnums)  );
				if (count_requested_dagnums)
					SG_ERR_CHECK(  SG_repo__list_dags__rbtree(pCtx, pRepo, &prbDagnums)  );
				for (i=0; i<count_requested_dagnums; i++)
				{
					SG_bool isValidDagnum = SG_FALSE;
					SG_bool bSpecificNodesRequested = SG_FALSE;
					const char* pszRefDagNum = NULL;
					SG_uint64 iDagnum;

					// Get the dag's missing node vhash.
					SG_ERR_CHECK(  SG_vhash__get_nth_pair(pCtx, pvhDags, i, &pszRefDagNum, &pvRevSpecs)  );

					// Verify that requested dagnum exists
					SG_ERR_CHECK(  SG_rbtree__find(pCtx, prbDagnums, pszRefDagNum, &isValidDagnum, NULL)  );
					if (!isValidDagnum)
                        continue;

					SG_ERR_CHECK(  SG_dagnum__from_sz__hex(pCtx, pszRefDagNum, &iDagnum)  );
					
					if (pvRevSpecs && pvRevSpecs->type != SG_VARIANT_TYPE_NULL)
					{
						SG_uint32 countRevSpecs = 0;
						
						SG_ERR_CHECK(  SG_variant__get__vhash(pCtx, pvRevSpecs, &pvhRevSpec)  );
						SG_ERR_CHECK(  SG_rev_spec__from_vash(pCtx, pvhRevSpec, &pRevSpec)  );

						// Process the rev spec for each dag
						SG_ERR_CHECK(  SG_rev_spec__count(pCtx, pRevSpec, &countRevSpecs)  );
						if (countRevSpecs > 0)
						{
							bSpecificNodesRequested = SG_TRUE;

							SG_ERR_CHECK(  SG_rev_spec__get_all__repo(pCtx, pRepo, pRevSpec, SG_TRUE, &psaFullHids, NULL)  );
							SG_ERR_CHECK(  SG_stringarray__to_rbtree_keys(pCtx, psaFullHids, &prbDagnodes)  );
							SG_STRINGARRAY_NULLFREE(pCtx, psaFullHids);
						}
						SG_REV_SPEC_NULLFREE(pCtx, pRevSpec);
					}

					if (!bSpecificNodesRequested)
					{
						// When no specific nodes are in the request, add all leaves.
						SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, iDagnum, &prbDagnodes)  );
					}

					if (prbDagnodes) // can be null when leaves of an empty dag are requested
					{
						// Get the leaves of the other repo, which we need to connect to.
						SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__LEAVES, &found)  );
						if (found)
						{
							SG_vhash* pvhRefAllLeaves;
							SG_vhash* pvhRefDagLeaves;
							SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__LEAVES, &pvhRefAllLeaves)  );
							SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, pszRefDagNum, &found)  );
							{
								SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRefAllLeaves, pszRefDagNum, &pvhRefDagLeaves)  );
								SG_ERR_CHECK(  SG_sync__build_best_guess_dagfrag(pCtx, pRepo, iDagnum, 
									prbDagnodes, pvhRefDagLeaves, &pFrag)  );
							}
						}
						else
						{
							// The other repo's leaves weren't provided: add just the requested nodes, make no attempt to connect.
							SG_ERR_CHECK(  SG_repo__get_repo_id(pCtx, pRepo, &pszRepoId)  );
							SG_ERR_CHECK(  SG_repo__get_admin_id(pCtx, pRepo, &pszAdminId)  );
							SG_ERR_CHECK(  SG_dagfrag__alloc(pCtx, &pFrag, pszRepoId, pszAdminId, iDagnum)  );
							SG_ERR_CHECK(  SG_dagfrag__load_from_repo__simple(pCtx, pFrag, pRepo, prbDagnodes)  );
							SG_NULLFREE(pCtx, pszRepoId);
							SG_NULLFREE(pCtx, pszAdminId);
						}

						SG_ERR_CHECK(  SG_fragball__write__frag(pCtx, pfb, pFrag)  );
						
						SG_RBTREE_NULLFREE(pCtx, prbDagnodes);
						SG_DAGFRAG_NULLFREE(pCtx, pFrag);
					}

				} // dagnum loop
			} // if "dags" exists

			/* Add requested blobs to the fragball */
			SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__BLOBS, &found)  );
			if (found)
			{
				// Blobs were requested.
				SG_vhash* pvhBlobs;
				SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__BLOBS, &pvhBlobs)  );
				SG_ERR_CHECK(  SG_sync__add_blobs_to_fragball(pCtx, pfb, pvhBlobs)  );
			}

			SG_ERR_CHECK(  SG_pathname__get_last(pCtx, pFragballPathname, &pstrFragballName)  );
			SG_ERR_CHECK(  SG_STRDUP(pCtx, SG_string__sz(pstrFragballName), ppszFragballName)  );
		}
        SG_ERR_CHECK(  SG_fragball_writer__close(pCtx, pfb)  );
	}

	/* fallthru */
fail:
	// If we had an error, delete the half-baked fragball.
	if (pFragballPathname && SG_context__has_err(pCtx))
    {
		SG_ERR_IGNORE(  SG_fsobj__remove__pathname(pCtx, pFragballPathname)  );
    }

	SG_PATHNAME_NULLFREE(pCtx, pFragballPathname);
	SG_NULLFREE(pCtx, paDagNums);
	SG_STRING_NULLFREE(pCtx, pstrFragballName);
	SG_RBTREE_NULLFREE(pCtx, prbDagnodes);
	SG_RBTREE_ITERATOR_NULLFREE(pCtx, pit);
	SG_RBTREE_NULLFREE(pCtx, prbDagnums);
	SG_REV_SPEC_NULLFREE(pCtx, pRevSpec);
	SG_STRINGARRAY_NULLFREE(pCtx, psaFullHids);
	SG_DAGFRAG_NULLFREE(pCtx, pFrag);
	SG_NULLFREE(pCtx, pszRepoId);
	SG_NULLFREE(pCtx, pszAdminId);
    SG_FRAGBALL_WRITER_NULLFREE(pCtx, pfb);
}
Beispiel #12
0
void SG_dagfrag__load_from_repo__one(SG_context * pCtx,
									 SG_dagfrag * pFrag,
									 SG_repo* pRepo,
									 const char * szHidStart,
									 SG_int32 nGenerations)
{
	// load a fragment of the dag starting with the given dagnode
	// for nGenerations of parents.
	//
	// we add this portion of the graph to whatevery we already
	// have in our fragment.  this may either augment (give us
	// a larger connected piece) or it may be an independent
	// subset.
	//
	// if nGenerations <= 0, load everything from this starting point
	// back to the NULL/root.
	//
	// generationStart is the generation of the starting dagnode.
	//
	// the starting dagnode *MAY* be in the final start-fringe.
	// normally, it will be.  but if we are called multiple times
	// (and have more than one start point), it may be the case
	// that this node is a parent of one of the other start points.
	//
	// we compute generationEnd as the generation that we will NOT
	// include in the fragment; nodes of that generation will be in
	// the end-fringe.  that is, we include [start...end) like most
	// C++ iterators.

	_my_data * pMyDataCached = NULL;
	SG_dagnode * pDagnodeAllocated = NULL;
	SG_dagnode * pDagnodeStart;
	SG_int32 generationStart, generationEnd;
	SG_bool bPresent = SG_FALSE;
    SG_rbtree* prb_WorkQueue = NULL;

	SG_NULLARGCHECK_RETURN(pFrag);
	SG_NONEMPTYCHECK_RETURN(szHidStart);

	// if we are extending the fragment, delete the generation-sorted
	// member cache copy.  (see __foreach_member()).  it's either that
	// or update it in parallel as we change the real CACHE and that
	// doesn't seem worth the bother.

	SG_RBTREE_NULLFREE(pCtx, pFrag->m_pRB_GenerationSortedMemberCache);
	pFrag->m_pRB_GenerationSortedMemberCache = NULL;

    SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &prb_WorkQueue)  );

	// fetch the starting dagnode and compute the generation bounds.
	// first, see if the cache already has info for this dagnode.
	// if not, fetch it from the source and then add it to the cache.

	SG_ERR_CHECK(  _cache__lookup(pCtx, pFrag,szHidStart,&pMyDataCached,&bPresent)  );
	if (!bPresent)
	{
		if (!pRepo)
			SG_ERR_THROW(  SG_ERR_INVALID_WHILE_FROZEN  );

        SG_ERR_CHECK(  SG_repo__fetch_dagnode(pCtx, pRepo, szHidStart, &pDagnodeAllocated)  );

		pDagnodeStart = pDagnodeAllocated;
	}
	else
	{
		pDagnodeStart = pMyDataCached->m_pDagnode;
	}

	SG_ERR_CHECK(  SG_dagnode__get_generation(pCtx, pDagnodeStart,&generationStart)  );
	SG_ASSERT_RELEASE_FAIL2(  (generationStart > 0),
					  (pCtx,"Invalid generation value [%d] for dagnode [%s]",
					   generationStart,szHidStart)  );
	if ((nGenerations <= 0)  ||  (generationStart <= nGenerations))
		generationEnd = 0;
	else
		generationEnd = generationStart - nGenerations;

	if (!bPresent)
	{
		// this dagnode was not already present in the cache.
		// add it to the cache directly and set the state.
		// we don't need to go thru the work queue for it.
		//
		// then the add all of its parents to the work queue.

		SG_ERR_CHECK(  _cache__add__dagnode(pCtx,
											pFrag,
											generationStart,
											pDagnodeAllocated,SG_DFS_START_MEMBER,
											&pMyDataCached)  );
		pDagnodeAllocated = NULL;

		SG_ERR_CHECK(  _add_parents_to_work_queue(pCtx, pMyDataCached->m_pDagnode,prb_WorkQueue)  );
	}
	else
	{
		// the node was already present in the cache, so we have already
		// walked at least part of the graph around it.

		switch (pMyDataCached->m_state)
		{
		default:
		//case SG_DFS_UNKNOWN:
			SG_ASSERT_RELEASE_FAIL2(  (0),
							  (pCtx,"Invalid state [%d] in DAGFRAG Cache for [%s]",
							   pMyDataCached->m_state,szHidStart)  );

		case SG_DFS_INTERIOR_MEMBER:				// already in fragment
		case SG_DFS_START_MEMBER:	// already in fragment, duplicated leaf?
			if (generationEnd < pMyDataCached->m_genDagnode)
			{
				// they've expanded the bounds of the fragment since we
				// last visited this dagnode.  keep this dagnode in the
				// fragment and revisit the ancestors in case any were
				// put in the end-fringe that should now be included.
				//
				// we leave the state as INCLUDE or INCLUDE_AND_START
				// because a duplicate start point should remain a
				// start point.

				SG_ERR_CHECK(  _add_parents_to_work_queue(pCtx, pMyDataCached->m_pDagnode,prb_WorkQueue)  );
			}
			else
			{
				// the current end-generation requested is >= the previous
				// end-generation, then we've completely explored this dagnode
				// already.  that is, a complete walk from this node for nGenerations
				// would not reveal any new information.
			}
			break;

		case SG_DFS_END_FRINGE:
			{
				// they want to start at a dagnode that we put in the
				// end-fringe.  this can happen if they need to expand
				// the bounds of the fragment to include older ancestors.
				//
				// we do not mark this as a start node because someone
				// else already has it as a parent.

				pMyDataCached->m_state = SG_DFS_INTERIOR_MEMBER;
				SG_ERR_CHECK(  _add_parents_to_work_queue(pCtx, pMyDataCached->m_pDagnode,prb_WorkQueue)  );
			}
			break;
		}
	}

	// we optionally put the parents of the current node into the work queue.
	//
	// service the work queue until it is empty.  this allows us to walk the graph without
	// recursion.  that is, as we decide what to do with a node, we add the parents
	// to the queue.  we then iterate thru the work queue until we have dealt with
	// everything -- that is, until all parents have been properly placed.
	//
	// we cannot use a standard iterator to drive this loop because we
	// modify the queue.

	while (1)
	{
		_process_work_queue_item(pCtx, pFrag,prb_WorkQueue,generationEnd,pRepo);
		if (!SG_context__has_err(pCtx))
			break;							// we processed everything in the queue and are done

		if (!SG_context__err_equals(pCtx,SG_ERR_RESTART_FOREACH))
			SG_ERR_RETHROW;

		SG_context__err_reset(pCtx);		// queue changed, restart iteration
	}

	SG_RBTREE_NULLFREE(pCtx, prb_WorkQueue);

	/*
	** we have loaded a piece of the dag (starting with the given start node
	** and tracing all parent edges back n generations).  we leave with everything
	** in our progress queues so that other start nodes can be added to the
	** fragment.  this allows the processing of subsequent start nodes to
	** override some of the decisions that we made.  for example:
	**
	**           Q_15
	**             |
	**             |
	**           Z_16
	**           /  \
	**          /    \
	**      Y_17      A_17
	**          \    /   \
	**           \  /     \
	**           B_18     C_18
	**             |
	**             |
	**           D_19
	**             |
	**             |
	**           E_20
	**
	** if we started with the leaf E_20 and requested 3 generations, we would have:
	**     start_set := { E }
	**     include_set := { B, D, E }
	**     end_set := { Y, A }
	**
	** after a subsequent call with the leaf C_18 and 3 generations, we would have:
	**     start_set := { C, E }
	**     include_set := { Z, A, B, C, D, E }
	**     end_set := { Q, Y }
	**
	*/

	return;

fail:
	SG_RBTREE_NULLFREE(pCtx, prb_WorkQueue);
	SG_DAGNODE_NULLFREE(pCtx, pDagnodeAllocated);
}
Beispiel #13
0
void SG_workingdir__create_and_get(
	SG_context* pCtx,
	const char* pszDescriptorName,
	const SG_pathname* pPathDirPutTopLevelDirInHere,
	SG_bool bCreateDrawer,
    const char* psz_spec_hid_cs_baseline
	)
{
	SG_repo* pRepo = NULL;
	SG_rbtree* pIdsetLeaves = NULL;
	SG_uint32 count_leaves = 0;
	SG_changeset* pcs = NULL;
	const char* pszidUserSuperRoot = NULL;
	SG_bool b = SG_FALSE;
    char* psz_hid_cs_baseline = NULL;
	SG_pendingtree * pPendingTree = NULL;
	SG_vhash * pvhTimestamps = NULL;

	/*
	 * Fetch the descriptor by its given name and use it to connect to
	 * the repo.
	 */
	SG_ERR_CHECK(  SG_repo__open_repo_instance(pCtx, pszDescriptorName, &pRepo)  );


	if (psz_spec_hid_cs_baseline)
	{
		SG_ERR_CHECK(  SG_strdup(pCtx, psz_spec_hid_cs_baseline, &psz_hid_cs_baseline)  );
	}
	else
    {
        const char* psz_hid = NULL;
        /*
         * If you do not specify a hid to be the baseline, then this routine
         * currently only works if there is exactly one leaf in the repo.
         */
        SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo,SG_DAGNUM__VERSION_CONTROL,&pIdsetLeaves)  );
        SG_ERR_CHECK(  SG_rbtree__count(pCtx, pIdsetLeaves, &count_leaves)  );

		if (count_leaves != 1)
			SG_ERR_THROW(  SG_ERR_MULTIPLE_HEADS_FROM_DAGNODE  );

        SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, NULL, pIdsetLeaves, &b, &psz_hid, NULL)  );

        SG_ERR_CHECK(  SG_STRDUP(pCtx, psz_hid, &psz_hid_cs_baseline)  );
    }

	/*
	 * Load the desired changeset from the repo so we can look up the
	 * id of its user root directory
	 */
	SG_ERR_CHECK(  SG_changeset__load_from_repo(pCtx, pRepo, psz_hid_cs_baseline, &pcs)  );
	SG_ERR_CHECK(  SG_changeset__get_root(pCtx, pcs, &pszidUserSuperRoot)  );

	if (bCreateDrawer)
	{
		SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvhTimestamps)  );

		// Retrieve everything into the WD and capture the timestamps on the files that we create.
		SG_ERR_CHECK(  sg_workingdir__do_get_dir__top(pCtx, pRepo, pPathDirPutTopLevelDirInHere, pszidUserSuperRoot, pvhTimestamps)  );

		// this creates "repo.json" with the repo-descriptor.
		SG_ERR_CHECK(  SG_workingdir__set_mapping(pCtx, pPathDirPutTopLevelDirInHere, pszDescriptorName, NULL)  );

		// this creates an empty "wd.json" file (which doesn't know anything).
		SG_ERR_CHECK(  SG_PENDINGTREE__ALLOC(pCtx, pPathDirPutTopLevelDirInHere, SG_TRUE, &pPendingTree)  );

		// force set the initial parents to the current changeset.
		SG_ERR_CHECK(  SG_pendingtree__set_single_wd_parent(pCtx, pPendingTree, psz_hid_cs_baseline)  );

		// force initialize the timestamp cache to the list that we just built; this should
		// be the only timestamps in the cache since we just populated the WD.
		SG_ERR_CHECK(  SG_pendingtree__set_wd_timestamp_cache(pCtx, pPendingTree, &pvhTimestamps)  );	// this steals our vhash

		SG_ERR_CHECK(  SG_pendingtree__save(pCtx, pPendingTree)  );
	}
	else
	{
		// Retrieve everything into the WD but do not create .sgdrawer or record timestamps.
		// This is more like an EXPORT operation.
		SG_ERR_CHECK(  sg_workingdir__do_get_dir__top(pCtx, pRepo, pPathDirPutTopLevelDirInHere, pszidUserSuperRoot, NULL)  );
	}


fail:
	SG_VHASH_NULLFREE(pCtx, pvhTimestamps);
    SG_NULLFREE(pCtx, psz_hid_cs_baseline);
	SG_CHANGESET_NULLFREE(pCtx, pcs);
	SG_RBTREE_NULLFREE(pCtx, pIdsetLeaves);
	SG_REPO_NULLFREE(pCtx, pRepo);
	SG_PENDINGTREE_NULLFREE(pCtx, pPendingTree);
}
static void _do_since(
	SG_context* pCtx,
	SG_repo* pRepo,
    SG_vhash* pvh_since,
    SG_fragball_writer* pfb
    )
{
    SG_uint32 count_dagnums = 0;
    SG_uint32 i_dagnum = 0;
    SG_ihash* pih_new = NULL;
    SG_rbtree* prb = NULL;
    SG_vhash* pvh_blobs = NULL;
    SG_changeset* pcs = NULL;

    SG_NULLARGCHECK_RETURN(pRepo);
    SG_NULLARGCHECK_RETURN(pvh_since);
    SG_NULLARGCHECK_RETURN(pfb);

    // TODO do we need to deal with dags which are present here but not in pvh_since?

    SG_ERR_CHECK(  SG_vhash__count(pCtx, pvh_since, &count_dagnums)  );
    for (i_dagnum=0; i_dagnum<count_dagnums; i_dagnum++)
    {
        const char* psz_dagnum = NULL;
        SG_varray* pva_nodes = NULL;
        SG_uint64 dagnum = 0;

        SG_ERR_CHECK(  SG_vhash__get_nth_pair__varray(pCtx, pvh_since, i_dagnum, &psz_dagnum, &pva_nodes)  );

        SG_ERR_CHECK(  SG_dagnum__from_sz__hex(pCtx, psz_dagnum, &dagnum)  );

        SG_ERR_CHECK(  SG_repo__find_new_dagnodes_since(pCtx, pRepo, dagnum, pva_nodes, &pih_new)  );

        if (pih_new)
        {
            SG_uint32 count = 0;

            SG_ERR_CHECK(  SG_ihash__count(pCtx, pih_new, &count)  );

            if (count)
            {
                SG_uint32 i = 0;

                SG_ERR_CHECK(  SG_rbtree__alloc(pCtx, &prb)  );
                SG_ERR_CHECK(  SG_vhash__alloc(pCtx, &pvh_blobs)  );

                for (i=0; i<count; i++)
                {
                    const char* psz_node = NULL;

                    SG_ERR_CHECK(  SG_ihash__get_nth_pair(pCtx, pih_new, i, &psz_node, NULL)  );
                    SG_ERR_CHECK(  SG_rbtree__add(pCtx, prb, psz_node)  );
                    SG_ERR_CHECK(  SG_vhash__add__null(pCtx, pvh_blobs, psz_node)  );
                    SG_ERR_CHECK(  SG_changeset__load_from_repo(pCtx, pRepo, psz_node, &pcs)  );
                    SG_ERR_CHECK(  _add_necessary_blobs(pCtx, pcs, pvh_blobs)  );
                    SG_CHANGESET_NULLFREE(pCtx, pcs);
                }

                // put all these new nodes in the frag
                SG_ERR_CHECK(  SG_fragball__write__dagnodes(pCtx, pfb, dagnum, prb)  );

                // and the blobs
				SG_ERR_CHECK(  SG_sync__add_blobs_to_fragball(pCtx, pfb, pvh_blobs)  );

                SG_VHASH_NULLFREE(pCtx, pvh_blobs);
                SG_RBTREE_NULLFREE(pCtx, prb);
            }
            SG_IHASH_NULLFREE(pCtx, pih_new);
        }
    }

fail:
    SG_CHANGESET_NULLFREE(pCtx, pcs);
    SG_VHASH_NULLFREE(pCtx, pvh_blobs);
    SG_RBTREE_NULLFREE(pCtx, prb);
    SG_IHASH_NULLFREE(pCtx, pih_new);
}
void SG_dagquery__find_new_since_common(
	SG_context * pCtx,
	SG_repo * pRepo,
	SG_uint64 dagnum,
	const char * pszOldNodeHid,
	const char * pszNewNodeHid,
	SG_stringarray ** ppResults
	)
{
	_fnsc_work_queue_t workQueue = {NULL, 0, 0, 0, NULL};
	SG_uint32 i;
	SG_dagnode * pDagnode = NULL;
	SG_stringarray * pResults = NULL;
	
	SG_ASSERT(pCtx!=NULL);
	SG_NULLARGCHECK(pRepo);
	SG_NONEMPTYCHECK(pszOldNodeHid);
	SG_NONEMPTYCHECK(pszNewNodeHid);
	SG_NULLARGCHECK(ppResults);
	
	SG_ERR_CHECK(  SG_allocN(pCtx, _FNSC_WORK_QUEUE_INIT_LENGTH, workQueue.p)  );
	workQueue.allocatedLength = _FNSC_WORK_QUEUE_INIT_LENGTH;
	SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &workQueue.pRevnoCache)  );
	
	SG_ERR_CHECK(  _fnsc_work_queue__insert(pCtx, &workQueue, pszOldNodeHid, dagnum, pRepo, _ANCESTOR_OF_OLD)  );
	SG_ERR_CHECK(  _fnsc_work_queue__insert(pCtx, &workQueue, pszNewNodeHid, dagnum, pRepo, _ANCESTOR_OF_NEW)  );
	
	SG_ERR_CHECK(  SG_STRINGARRAY__ALLOC(pCtx, &pResults, 32)  );
	while(workQueue.numAncestorsOfNewOnTheQueue > 0)
	{
		const char * pszHidRef = NULL;
		SG_byte isAncestorOf = 0;
		
		SG_ERR_CHECK(  _fnsc_work_queue__pop(pCtx, &workQueue, &pDagnode, &pszHidRef, &isAncestorOf)  );
		if (isAncestorOf==_ANCESTOR_OF_NEW)
			SG_ERR_CHECK(  SG_stringarray__add(pCtx, pResults, pszHidRef)  );
		
		{
			SG_uint32 count_parents = 0;
			const char** parents = NULL;
			SG_ERR_CHECK(  SG_dagnode__get_parents__ref(pCtx, pDagnode, &count_parents, &parents)  );
			for(i=0; i<count_parents; ++i)
				SG_ERR_CHECK(  _fnsc_work_queue__insert(pCtx, &workQueue, parents[i], dagnum, pRepo, isAncestorOf)  );
		}
		
		SG_DAGNODE_NULLFREE(pCtx, pDagnode);
	}
	
	for(i=0; i<workQueue.length; ++i)
		SG_DAGNODE_NULLFREE(pCtx, workQueue.p[i].pDagnode);
	SG_NULLFREE(pCtx, workQueue.p);
	SG_RBTREE_NULLFREE(pCtx, workQueue.pRevnoCache);
	
	*ppResults = pResults;

	return;
fail:
	for(i=0; i<workQueue.length; ++i)
		SG_DAGNODE_NULLFREE(pCtx, workQueue.p[i].pDagnode);
	SG_NULLFREE(pCtx, workQueue.p);
	SG_RBTREE_NULLFREE(pCtx, workQueue.pRevnoCache);

	SG_DAGNODE_NULLFREE(pCtx, pDagnode);

	SG_STRINGARRAY_NULLFREE(pCtx, pResults);
}
void SG_dagquery__highest_revno_common_ancestor(
	SG_context * pCtx,
	SG_repo * pRepo,
	SG_uint64 dagnum,
	const SG_stringarray * pInputNodeHids,
	char ** ppOutputNodeHid
	)
{
	const char * const * paszInputNodeHids = NULL;
	SG_uint32 countInputNodes = 0;
	SG_repo_fetch_dagnodes_handle * pDagnodeFetcher = NULL;
	_hrca_work_queue_t workQueue = {NULL, 0, 0, NULL};
	SG_uint32 i;
	SG_dagnode * pDagnode = NULL;
	const char * pszHidRef = NULL;
	SG_bitvector * pIsAncestorOf = NULL;
	SG_uint32 countIsAncestorOf = 0;

	SG_ASSERT(pCtx!=NULL);
	SG_NULLARGCHECK(pRepo);
	SG_NULLARGCHECK(pInputNodeHids);
	SG_ERR_CHECK(  SG_stringarray__sz_array_and_count(pCtx, pInputNodeHids, &paszInputNodeHids, &countInputNodes)  );
	SG_ARGCHECK(countInputNodes>0, pInputNodeHids);
	SG_NULLARGCHECK(ppOutputNodeHid);

	SG_ERR_CHECK(  SG_repo__fetch_dagnodes__begin(pCtx, pRepo, dagnum, &pDagnodeFetcher)  );

	SG_ERR_CHECK(  SG_allocN(pCtx, _HRCA_WORK_QUEUE_INIT_LENGTH, workQueue.p)  );
	workQueue.allocatedLength = _HRCA_WORK_QUEUE_INIT_LENGTH;
	SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &workQueue.pRevnoCache)  );

	SG_ERR_CHECK(  SG_BITVECTOR__ALLOC(pCtx, &pIsAncestorOf, countInputNodes)  );
	for(i=0; i<countInputNodes; ++i)
	{
		SG_ERR_CHECK(  SG_bitvector__zero(pCtx, pIsAncestorOf)  );
		SG_ERR_CHECK(  SG_bitvector__set_bit(pCtx, pIsAncestorOf, i, SG_TRUE)  );
		SG_ERR_CHECK(  _hrca_work_queue__insert(pCtx, &workQueue, paszInputNodeHids[i], pRepo, pDagnodeFetcher, pIsAncestorOf)  );
	}
	SG_BITVECTOR_NULLFREE(pCtx, pIsAncestorOf);

	SG_ERR_CHECK(  _hrca_work_queue__pop(pCtx, &workQueue, &pDagnode, &pszHidRef, &pIsAncestorOf)  );
	SG_ERR_CHECK(  SG_bitvector__count_set_bits(pCtx, pIsAncestorOf, &countIsAncestorOf)  );
	while(countIsAncestorOf < countInputNodes)
	{
		SG_uint32 count_parents = 0;
		const char** parents = NULL;
		SG_ERR_CHECK(  SG_dagnode__get_parents__ref(pCtx, pDagnode, &count_parents, &parents)  );
		for(i=0; i<count_parents; ++i)
			SG_ERR_CHECK(  _hrca_work_queue__insert(pCtx, &workQueue, parents[i], pRepo, pDagnodeFetcher, pIsAncestorOf)  );
		
		SG_DAGNODE_NULLFREE(pCtx, pDagnode);
		SG_BITVECTOR_NULLFREE(pCtx, pIsAncestorOf);

		SG_ERR_CHECK(  _hrca_work_queue__pop(pCtx, &workQueue, &pDagnode, &pszHidRef, &pIsAncestorOf)  );
		SG_ERR_CHECK(  SG_bitvector__count_set_bits(pCtx, pIsAncestorOf, &countIsAncestorOf)  );
	}

	SG_ERR_CHECK(  SG_strdup(pCtx, pszHidRef, ppOutputNodeHid)  );

	SG_DAGNODE_NULLFREE(pCtx, pDagnode);
	SG_BITVECTOR_NULLFREE(pCtx, pIsAncestorOf);

	for(i=0; i<workQueue.length; ++i)
	{
		SG_DAGNODE_NULLFREE(pCtx, workQueue.p[i].pDagnode);
		SG_BITVECTOR_NULLFREE(pCtx, workQueue.p[i].pIsAncestorOf);
	}
	SG_NULLFREE(pCtx, workQueue.p);
	SG_RBTREE_NULLFREE(pCtx, workQueue.pRevnoCache);

	SG_ERR_CHECK(  SG_repo__fetch_dagnodes__end(pCtx, pRepo, &pDagnodeFetcher)  );

	return;
fail:
	for(i=0; i<workQueue.length; ++i)
	{
		SG_DAGNODE_NULLFREE(pCtx, workQueue.p[i].pDagnode);
		SG_BITVECTOR_NULLFREE(pCtx, workQueue.p[i].pIsAncestorOf);
	}
	SG_NULLFREE(pCtx, workQueue.p);
	SG_RBTREE_NULLFREE(pCtx, workQueue.pRevnoCache);

	SG_DAGNODE_NULLFREE(pCtx, pDagnode);
	SG_BITVECTOR_NULLFREE(pCtx, pIsAncestorOf);

	if(pDagnodeFetcher!=NULL)
	{
		SG_ERR_IGNORE(  SG_repo__fetch_dagnodes__end(pCtx, pRepo, &pDagnodeFetcher)  );
	}
}
Beispiel #17
0
void SG_repo__pack__vcdiff(SG_context* pCtx, SG_repo * pRepo)
{
	SG_rbtree* prb_leaves = NULL;
	SG_uint32 count_leaves = 0;
    const char* psz_hid_cs = NULL;
    SG_rbtree* prb_blobs = NULL;
    SG_bool b;
    SG_rbtree_iterator* pit = NULL;
    SG_rbtree_iterator* pit_for_gid = NULL;
    SG_bool b_for_gid;
    const char* psz_hid_ref = NULL;
    const char* psz_hid_blob = NULL;
    const char* psz_gid = NULL;
    SG_rbtree* prb = NULL;
    const char* psz_gen = NULL;
	SG_repo_tx_handle* pTx;

    SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo,SG_DAGNUM__VERSION_CONTROL,&prb_leaves)  );
    SG_ERR_CHECK(  SG_rbtree__count(pCtx, prb_leaves, &count_leaves)  );

    SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, NULL, prb_leaves, &b, &psz_hid_cs, NULL)  );

    SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &prb_blobs)  );

    SG_ERR_CHECK(  sg_pack__do_changeset(pCtx, pRepo, psz_hid_cs, prb_blobs)  );

    SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pit, prb_blobs, &b, &psz_gid, (void**) &prb)  );
    while (b)
    {
        SG_uint32 count_for_gid = 0;
        SG_ERR_CHECK(  SG_rbtree__count(pCtx, prb, &count_for_gid)  );
        if (count_for_gid > 1)
        {
            psz_hid_ref = NULL;
            SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pit_for_gid, prb, &b_for_gid, &psz_gen, (void**) &psz_hid_blob)  );
            while (b_for_gid)
            {
				// Not a lot of thought went into doing each of these in its own repo tx.  Consider alternatives.
				SG_ERR_CHECK(  SG_repo__begin_tx(pCtx, pRepo, &pTx)  );

				if (psz_hid_ref)
                {
                    SG_ERR_CHECK(  SG_repo__change_blob_encoding(pCtx, pRepo, pTx, psz_hid_blob, SG_BLOBENCODING__VCDIFF, psz_hid_ref, NULL, NULL, NULL, NULL)  );
                    // TODO be tolerant here of SG_ERR_REPO_BUSY
                }
                else
                {
                    psz_hid_ref = psz_hid_blob;

                    SG_ERR_CHECK(  SG_repo__change_blob_encoding(pCtx, pRepo, pTx, psz_hid_ref, SG_BLOBENCODING__FULL, NULL, NULL, NULL, NULL, NULL)  );
                    // TODO be tolerant here of SG_ERR_REPO_BUSY
                }

				SG_ERR_CHECK(  SG_repo__commit_tx(pCtx, pRepo, &pTx)  );

                SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pit_for_gid, &b_for_gid, &psz_gen, (void**) &psz_hid_blob)  );
            }
            SG_RBTREE_ITERATOR_NULLFREE(pCtx, pit_for_gid);
            psz_hid_ref = NULL;
        }
        SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pit, &b, &psz_gid, (void**) &prb)  );
    }
    SG_RBTREE_ITERATOR_NULLFREE(pCtx, pit);

	SG_RBTREE_NULLFREE_WITH_ASSOC(pCtx, prb_blobs, _sg_repo__free_rbtree);

    SG_RBTREE_NULLFREE(pCtx, prb_leaves);

    return;

fail:
    return;
}
Beispiel #18
0
static void _advise_after_update(SG_context * pCtx,
								 SG_option_state * pOptSt,
								 SG_pathname * pPathCwd,
								 const char * pszBaselineBeforeUpdate)
{
	SG_pendingtree * pPendingTree = NULL;
	SG_repo * pRepo;
	char * pszBaselineAfterUpdate = NULL;
	SG_rbtree * prbLeaves = NULL;
	SG_uint32 nrLeaves;
	SG_bool bUpdateChangedBaseline;

	// re-open pendingtree to get the now-current baseline (we have to do
	// this in a new instance because the UPDATE saves the pendingtree which
	// frees all of the interesting stuff).

	SG_ERR_CHECK(  SG_PENDINGTREE__ALLOC(pCtx, pPathCwd, pOptSt->bIgnoreWarnings, &pPendingTree)  );
	SG_ERR_CHECK(  SG_pendingtree__get_repo(pCtx, pPendingTree, &pRepo)  );

	SG_ERR_CHECK(  _get_baseline(pCtx, pPendingTree, &pszBaselineAfterUpdate)  );

	// see if the update actually changed the baseline.

	bUpdateChangedBaseline = (strcmp(pszBaselineBeforeUpdate, pszBaselineAfterUpdate) != 0);

	// get the list of all heads/leaves.
	//
	// TODO 2010/06/30 Revisit this when we have NAMED BRANCHES because we
	// TODO            want to filter this list for things within their BRANCH.

	SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx,pRepo,SG_DAGNUM__VERSION_CONTROL,&prbLeaves)  );
#if defined(DEBUG)
	{
		SG_bool bFound = SG_FALSE;
		SG_ERR_CHECK(  SG_rbtree__find(pCtx, prbLeaves, pszBaselineAfterUpdate, &bFound, NULL)  );
		SG_ASSERT(  (bFound)  );
	}
#endif	
	SG_ERR_CHECK(  SG_rbtree__count(pCtx, prbLeaves, &nrLeaves)  );

	if (nrLeaves > 1)
	{
		if (bUpdateChangedBaseline)
		{
			SG_ERR_IGNORE(  SG_console(pCtx, SG_CS_STDOUT,
									   "Baseline updated to descendant head, but there are multiple heads; consider merging.\n")  );
		}
		else
		{
			SG_ERR_IGNORE(  SG_console(pCtx, SG_CS_STDOUT,
									   "Baseline already at head, but there are multiple heads; consider merging.\n")  );
		}
	}
	else
	{
		if (bUpdateChangedBaseline)
		{
			SG_ERR_IGNORE(  SG_console(pCtx, SG_CS_STDOUT,
									   "Baseline updated to head.\n")  );
		}
		else
		{
			SG_ERR_IGNORE(  SG_console(pCtx, SG_CS_STDOUT,
									   "Baseline already at head.\n")  );
		}
	}

fail:
	SG_PENDINGTREE_NULLFREE(pCtx, pPendingTree);
	SG_RBTREE_NULLFREE(pCtx, prbLeaves);
	SG_NULLFREE(pCtx, pszBaselineAfterUpdate);
}
void SG_dagquery__find_descendant_heads(SG_context * pCtx,
										SG_repo * pRepo,
                                        SG_uint64 iDagNum,
										const char * pszHidStart,
										SG_bool bStopIfMultiple,
										SG_dagquery_find_head_status * pdqfhs,
										SG_rbtree ** pprbHeads)
{
	SG_rbtree * prbLeaves = NULL;
	SG_rbtree * prbHeadsFound = NULL;
	SG_rbtree_iterator * pIter = NULL;
	const char * pszKey_k = NULL;
	SG_bool b;
	SG_dagquery_find_head_status dqfhs;
	SG_dagquery_relationship dqRel;
	SG_uint32 nrFound;

	SG_NULLARGCHECK_RETURN(pRepo);
	SG_NONEMPTYCHECK_RETURN(pszHidStart);
	SG_NULLARGCHECK_RETURN(pdqfhs);
	SG_NULLARGCHECK_RETURN(pprbHeads);

	SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &prbHeadsFound)  );

	// fetch a list of all of the LEAVES in the DAG.
	// this rbtree only contains keys; no assoc values.

	SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, iDagNum, &prbLeaves)  );

	// if the starting point is a leaf, then we are done (we don't care how many
	// other leaves are in the rbtree because none will be a child of ours because
	// we are a leaf).

	SG_ERR_CHECK(  SG_rbtree__find(pCtx, prbLeaves, pszHidStart, &b, NULL)  );
	if (b)
	{
		SG_ERR_CHECK(  SG_rbtree__add(pCtx, prbHeadsFound, pszHidStart)  );

		dqfhs = SG_DAGQUERY_FIND_HEAD_STATUS__IS_LEAF;
		goto done;
	}

	// inspect each leaf and qualify it; put the ones that pass
	// into the list of actual heads.

	nrFound = 0;
	SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pIter, prbLeaves, &b, &pszKey_k, NULL)  );
	while (b)
	{
		// is head[k] a descendant of start?
		SG_ERR_CHECK(  SG_dagquery__how_are_dagnodes_related(pCtx, pRepo, iDagNum, pszKey_k, pszHidStart,
															 SG_FALSE, // we care about descendants, so don't skip
															 SG_TRUE,  // we don't care about ancestors, so skip them
															 &dqRel)  );

		if (dqRel == SG_DAGQUERY_RELATIONSHIP__DESCENDANT)
		{
			nrFound++;

			if (bStopIfMultiple && (nrFound > 1))
			{
				// they wanted a unique answer and we've found too many answers
				// (which they won't be able to use anyway) so just stop and
				// return the status.  (we delete prbHeadsFound because it is
				// incomplete and so that they won't be tempted to use it.)

				SG_RBTREE_NULLFREE(pCtx, prbHeadsFound);
				dqfhs = SG_DAGQUERY_FIND_HEAD_STATUS__MULTIPLE;
				goto done;
			}

			SG_ERR_CHECK(  SG_rbtree__add(pCtx, prbHeadsFound, pszKey_k)  );
		}

		SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pIter, &b, &pszKey_k, NULL)  );
	}

	switch (nrFound)
	{
	case 0:
		// this should NEVER happen.  we should always be able to find a
		// leaf/head for a node.
		//
		// TODO the only case where this might happen is if named branches
		// TODO cause the leaf to be disqualified.  so i'm going to THROW
		// TODO here rather than ASSERT.

		SG_ERR_THROW2(  SG_ERR_DAG_NOT_CONSISTENT,
						(pCtx, "Could not find head/leaf for changeset [%s]", pszHidStart)  );
		break;

	case 1:
		dqfhs = SG_DAGQUERY_FIND_HEAD_STATUS__UNIQUE;
		break;

	default:
		dqfhs = SG_DAGQUERY_FIND_HEAD_STATUS__MULTIPLE;
		break;
	}

done:
	*pprbHeads = prbHeadsFound;
	prbHeadsFound = NULL;

	*pdqfhs = dqfhs;

fail:
	SG_RBTREE_NULLFREE(pCtx, prbLeaves);
	SG_RBTREE_NULLFREE(pCtx, prbHeadsFound);
	SG_RBTREE_ITERATOR_NULLFREE(pCtx, pIter);
}
void SG_repo__db__calc_delta(
        SG_context * pCtx,
        SG_repo* pRepo,
        SG_uint64 dagnum,
        const char* psz_csid_from,
        const char* psz_csid_to,
        SG_uint32 flags,
        SG_vhash** ppvh_add,
        SG_vhash** ppvh_remove
        )
{
    SG_dagnode* pdn_from = NULL;
    SG_dagnode* pdn_to = NULL;
    SG_int32 gen_from = -1;
    SG_int32 gen_to = -1;
    SG_varray* pva_direct_backward_path = NULL;
    SG_varray* pva_direct_forward_path = NULL;
    SG_vhash* pvh_add = NULL;
    SG_vhash* pvh_remove = NULL;
    SG_rbtree* prb_temp = NULL;
    SG_daglca* plca = NULL;
    char* psz_csid_ancestor = NULL;

    SG_NULLARGCHECK_RETURN(psz_csid_from);
    SG_NULLARGCHECK_RETURN(psz_csid_to);
    SG_NULLARGCHECK_RETURN(pRepo);
    SG_NULLARGCHECK_RETURN(ppvh_add);
    SG_NULLARGCHECK_RETURN(ppvh_remove);

    SG_ERR_CHECK(  SG_repo__fetch_dagnode(pCtx, pRepo, dagnum, psz_csid_from, &pdn_from)  );
    SG_ERR_CHECK(  SG_dagnode__get_generation(pCtx, pdn_from, &gen_from)  );
    SG_ERR_CHECK(  SG_repo__fetch_dagnode(pCtx, pRepo, dagnum, psz_csid_to, &pdn_to)  );
    SG_ERR_CHECK(  SG_dagnode__get_generation(pCtx, pdn_to, &gen_to)  );

    if (gen_from > gen_to)
    {
        SG_ERR_CHECK(  SG_repo__dag__find_direct_backward_path(
                    pCtx,
                    pRepo,
                    dagnum,
                    psz_csid_from,
                    psz_csid_to,
                    &pva_direct_backward_path
                    )  );
        if (pva_direct_backward_path)
        {
            SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvh_add)  );
            SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvh_remove)  );
            SG_ERR_CHECK(  SG_db__make_delta_from_path(
                        pCtx,
                        pRepo,
                        dagnum,
                        pva_direct_backward_path,
                        flags,
                        pvh_add,
                        pvh_remove
                        )  );
        }
    }
    else if (gen_from < gen_to)
    {
        SG_ERR_CHECK(  SG_repo__dag__find_direct_backward_path(
                    pCtx,
                    pRepo,
                    dagnum,
                    psz_csid_to,
                    psz_csid_from,
                    &pva_direct_forward_path
                    )  );
        if (pva_direct_forward_path)
        {
            SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvh_add)  );
            SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvh_remove)  );
            SG_ERR_CHECK(  SG_db__make_delta_from_path(
                        pCtx,
                        pRepo,
                        dagnum,
                        pva_direct_forward_path,
                        flags,
                        pvh_remove,
                        pvh_add
                        )  );
        }
    }

    if (!pvh_add && !pvh_remove)
    {
        SG_ERR_CHECK(  SG_RBTREE__ALLOC(pCtx, &prb_temp)  );
        SG_ERR_CHECK(  SG_rbtree__add(pCtx,prb_temp,psz_csid_from)  );
        SG_ERR_CHECK(  SG_rbtree__add(pCtx,prb_temp,psz_csid_to)  );
        SG_ERR_CHECK(  SG_repo__get_dag_lca(pCtx,pRepo,dagnum,prb_temp,&plca)  );
        {
            const char* psz_hid = NULL;
            SG_daglca_node_type node_type = 0;
            SG_int32 gen = -1;

            SG_ERR_CHECK(  SG_daglca__iterator__first(pCtx,
                                                      NULL,
                                                      plca,
                                                      SG_FALSE,
                                                      &psz_hid,
                                                      &node_type,
                                                      &gen,
                                                      NULL)  );
            SG_ERR_CHECK(  SG_STRDUP(pCtx, psz_hid, &psz_csid_ancestor)  );
        }

        SG_ERR_CHECK(  SG_repo__dag__find_direct_backward_path(
                    pCtx,
                    pRepo,
                    dagnum,
                    psz_csid_from,
                    psz_csid_ancestor,
                    &pva_direct_backward_path
                    )  );
        SG_ERR_CHECK(  SG_repo__dag__find_direct_backward_path(
                    pCtx,
                    pRepo,
                    dagnum,
                    psz_csid_to,
                    psz_csid_ancestor,
                    &pva_direct_forward_path
                    )  );
        SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvh_add)  );
        SG_ERR_CHECK(  SG_VHASH__ALLOC(pCtx, &pvh_remove)  );
        SG_ERR_CHECK(  SG_db__make_delta_from_path(
                    pCtx,
                    pRepo,
                    dagnum,
                    pva_direct_backward_path,
                    flags,
                    pvh_add,
                    pvh_remove
                    )  );
        SG_ERR_CHECK(  SG_db__make_delta_from_path(
                    pCtx,
                    pRepo,
                    dagnum,
                    pva_direct_forward_path,
                    flags,
                    pvh_remove,
                    pvh_add
                    )  );
    }

    *ppvh_add = pvh_add;
    pvh_add = NULL;

    *ppvh_remove = pvh_remove;
    pvh_remove = NULL;

fail:
    SG_NULLFREE(pCtx, psz_csid_ancestor);
    SG_RBTREE_NULLFREE(pCtx, prb_temp);
    SG_DAGLCA_NULLFREE(pCtx, plca);
    SG_VHASH_NULLFREE(pCtx, pvh_add);
    SG_VHASH_NULLFREE(pCtx, pvh_remove);
    SG_VARRAY_NULLFREE(pCtx, pva_direct_backward_path);
    SG_VARRAY_NULLFREE(pCtx, pva_direct_forward_path);
    SG_DAGNODE_NULLFREE(pCtx, pdn_from);
    SG_DAGNODE_NULLFREE(pCtx, pdn_to);
}
Beispiel #21
0
/**
 * Compare all the nodes of a single DAG in two repos.
 */
static void _compare_one_dag(SG_context* pCtx,
							 SG_repo* pRepo1,
							 SG_repo* pRepo2,
							 SG_uint32 iDagNum,
							 SG_bool* pbIdentical)
{
	SG_bool bFinalResult = SG_FALSE;
	SG_rbtree* prbRepo1Leaves = NULL;
	SG_rbtree* prbRepo2Leaves = NULL;
	SG_uint32 iRepo1LeafCount, iRepo2LeafCount;
	SG_rbtree_iterator* pIterator = NULL;
	const char* pszId = NULL;
	SG_dagnode* pRepo1Dagnode = NULL;
	SG_dagnode* pRepo2Dagnode = NULL;
	SG_bool bFoundRepo1Leaf = SG_FALSE;
	SG_bool bFoundRepo2Leaf = SG_FALSE;
	SG_bool bDagnodesEqual = SG_FALSE;

	SG_NULLARGCHECK_RETURN(pRepo1);
	SG_NULLARGCHECK_RETURN(pRepo2);
	SG_NULLARGCHECK_RETURN(pbIdentical);

	SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo1, iDagNum, &prbRepo1Leaves)  );
	SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo2, iDagNum, &prbRepo2Leaves)  );

	SG_ERR_CHECK(  SG_rbtree__count(pCtx, prbRepo1Leaves, &iRepo1LeafCount)  );
	SG_ERR_CHECK(  SG_rbtree__count(pCtx, prbRepo2Leaves, &iRepo2LeafCount)  );

	if (iRepo1LeafCount != iRepo2LeafCount)
	{
#if TRACE_SYNC
		SG_ERR_CHECK(  SG_console(pCtx, SG_CS_STDERR, "leaf count differs\n")  );
#endif
		goto Different;
	}

	SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pIterator, prbRepo1Leaves, &bFoundRepo1Leaf, &pszId, NULL)  );
	while (bFoundRepo1Leaf)
	{
		SG_ERR_CHECK(  SG_rbtree__find(pCtx, prbRepo2Leaves, pszId, &bFoundRepo2Leaf, NULL)  );
		if (!bFoundRepo2Leaf)
		{
#if TRACE_SYNC && 0
			SG_ERR_CHECK(  SG_console(pCtx, SG_CS_STDERR, "couldn't locate leaf\r\n")  );
			SG_ERR_CHECK(  SG_console(pCtx, SG_CS_STDERR, "Repo 1 leaves:\r\n")  );
			SG_ERR_CHECK(  SG_rbtree_debug__dump_keys_to_console(pCtx, prbRepo1Leaves) );
			SG_ERR_CHECK(  SG_console(pCtx, SG_CS_STDERR, "Repo 2 leaves:\r\n")  );
			SG_ERR_CHECK(  SG_rbtree_debug__dump_keys_to_console(pCtx, prbRepo2Leaves) );
			SG_ERR_CHECK(  SG_console__flush(pCtx, SG_CS_STDERR)  );
#endif
			goto Different;
		}

		SG_ERR_CHECK(  SG_repo__fetch_dagnode(pCtx, pRepo1, pszId, &pRepo1Dagnode)  );
		SG_ERR_CHECK(  SG_repo__fetch_dagnode(pCtx, pRepo2, pszId, &pRepo2Dagnode)  );

		SG_ERR_CHECK(  _compare_dagnodes(pCtx, pRepo1, pRepo1Dagnode, pRepo2, pRepo2Dagnode, &bDagnodesEqual)  );

		SG_DAGNODE_NULLFREE(pCtx, pRepo1Dagnode);
		SG_DAGNODE_NULLFREE(pCtx, pRepo2Dagnode);

		if (!bDagnodesEqual)
			goto Different;

		SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pIterator, &bFoundRepo1Leaf, &pszId, NULL)  );
	}

	bFinalResult = SG_TRUE;

Different:
	*pbIdentical = bFinalResult;

	// fall through
fail:
	SG_RBTREE_NULLFREE(pCtx, prbRepo1Leaves);
	SG_RBTREE_NULLFREE(pCtx, prbRepo2Leaves);
	SG_RBTREE_ITERATOR_NULLFREE(pCtx, pIterator);
}
Beispiel #22
0
void SG_server__pull_request_fragball(SG_context* pCtx,
									  SG_repo* pRepo,
									  SG_vhash* pvhRequest,
									  const SG_pathname* pFragballDirPathname,
									  char** ppszFragballName,
									  SG_vhash** ppvhStatus)
{
	SG_pathname* pFragballPathname = NULL;
	SG_uint32* paDagNums = NULL;
    SG_rbtree* prbDagnodes = NULL;
	SG_string* pstrFragballName = NULL;
	char* pszRevFullHid = NULL;
	SG_rbtree_iterator* pit = NULL;
	SG_uint32* repoDagnums = NULL;

	SG_NULLARGCHECK_RETURN(pRepo);
	SG_NULLARGCHECK_RETURN(pFragballDirPathname);
	SG_NULLARGCHECK_RETURN(ppvhStatus);

#if TRACE_SERVER
	SG_ERR_CHECK(  SG_vhash_debug__dump_to_console__named(pCtx, pvhRequest, "pull fragball request")  );
#endif

	SG_ERR_CHECK(  SG_fragball__create(pCtx, pFragballDirPathname, &pFragballPathname)  );

	if (!pvhRequest)
	{
		// Add leaves from every dag to the fragball.
		SG_uint32 count_dagnums;
		SG_uint32 i;
		SG_ERR_CHECK(  SG_repo__list_dags(pCtx, pRepo, &count_dagnums, &paDagNums)  );

		for (i=0; i<count_dagnums; i++)
		{
			SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, paDagNums[i], &prbDagnodes)  );
			SG_ERR_CHECK(  SG_fragball__append__dagnodes(pCtx, pFragballPathname, pRepo, paDagNums[i], prbDagnodes)  );
			SG_RBTREE_NULLFREE(pCtx, prbDagnodes);
		}

		SG_ERR_CHECK(  SG_pathname__get_last(pCtx, pFragballPathname, &pstrFragballName)  );
		SG_ERR_CHECK(  SG_STRDUP(pCtx, SG_string__sz(pstrFragballName), ppszFragballName)  );
	}
	else
	{
		// Build the requested fragball.
		SG_bool found;

		SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__CLONE, &found)  );
		if (found)
		{
			// Full clone requested.
			SG_ERR_CHECK(  SG_repo__fetch_repo__fragball(pCtx, pRepo, pFragballDirPathname, ppszFragballName) );
		}
		else
		{
			// Not a full clone.

			SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__DAGS, &found)  );
			if (found)
			{
				// Dagnodes were requested.

				SG_uint32 generations = 0;
				SG_vhash* pvhDags;
				SG_uint32 count_requested_dagnums;
				SG_uint32 count_repo_dagnums = 0;
				SG_uint32 i;
				const char* pszDagNum = NULL;
				const SG_variant* pvRequestedNodes = NULL;
				SG_vhash* pvhRequestedNodes = NULL;
				const char* pszHidRequestedDagnode = NULL;

				// Were additional generations requested?
				SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__GENERATIONS, &found)  );
				if (found)
					SG_ERR_CHECK(  SG_vhash__get__uint32(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__GENERATIONS, &generations)  );

				SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__DAGS, &pvhDags)  );
				SG_ERR_CHECK(  SG_vhash__count(pCtx, pvhDags, &count_requested_dagnums)  );
				if (count_requested_dagnums)
					SG_ERR_CHECK(  SG_repo__list_dags(pCtx, pRepo, &count_repo_dagnums, &repoDagnums)  );

				// For each requested dag, get the requested nodes.
				for (i=0; i<count_requested_dagnums; i++)
				{
					SG_uint32 iMissingNodeCount;
					SG_uint32 iDagnum;
					SG_uint32 j;
					SG_bool isValidDagnum = SG_FALSE;
					SG_bool bSpecificNodesRequested = SG_FALSE;

					// Get the dag's missing node vhash.
					SG_ERR_CHECK(  SG_vhash__get_nth_pair(pCtx, pvhDags, i, &pszDagNum, &pvRequestedNodes)  );
					SG_ERR_CHECK(  SG_dagnum__from_sz__decimal(pCtx, pszDagNum, &iDagnum)  );

					// Verify that requested dagnum exists
					for (j = 0; j < count_repo_dagnums; j++)
					{
						if (repoDagnums[j] == iDagnum)
						{
							isValidDagnum = SG_TRUE;
							break;
						}
					}
					if (!isValidDagnum)
					{
						char buf[SG_DAGNUM__BUF_MAX__NAME];
						SG_ERR_CHECK(  SG_dagnum__to_name(pCtx, iDagnum, buf, sizeof(buf))  );
						SG_ERR_THROW2(SG_ERR_NO_SUCH_DAG, (pCtx, "%s", buf));
					}

					if (pvRequestedNodes)
					{
						SG_ERR_CHECK(  SG_variant__get__vhash(pCtx, pvRequestedNodes, &pvhRequestedNodes)  );

						// Get each node listed for the dag
						SG_ERR_CHECK(  SG_vhash__count(pCtx, pvhRequestedNodes, &iMissingNodeCount)  );
						if (iMissingNodeCount > 0)
						{
							SG_uint32 j;
							const SG_variant* pvVal;

							bSpecificNodesRequested = SG_TRUE;

							SG_ERR_CHECK(  SG_RBTREE__ALLOC__PARAMS(pCtx, &prbDagnodes, iMissingNodeCount, NULL)  );
							for (j=0; j<iMissingNodeCount; j++)
							{
								SG_ERR_CHECK(  SG_vhash__get_nth_pair(pCtx, pvhRequestedNodes, j, &pszHidRequestedDagnode, &pvVal)  );

								if (pvVal)
								{
									const char* pszVal;
									SG_ERR_CHECK(  SG_variant__get__sz(pCtx, pvVal, &pszVal)  );
									if (pszVal)
									{
										if (0 == strcmp(pszVal, SG_SYNC_REQUEST_VALUE_HID_PREFIX))
										{
											SG_ERR_CHECK(  SG_repo__hidlookup__dagnode(pCtx, pRepo, iDagnum, pszHidRequestedDagnode, &pszRevFullHid)  );
											pszHidRequestedDagnode = pszRevFullHid;
										}
										else if (0 == strcmp(pszVal, SG_SYNC_REQUEST_VALUE_TAG))
										{
											SG_ERR_CHECK(  SG_vc_tags__lookup__tag(pCtx, pRepo, pszHidRequestedDagnode, &pszRevFullHid)  );
											if (!pszRevFullHid)
												SG_ERR_THROW(SG_ERR_TAG_NOT_FOUND);
											pszHidRequestedDagnode = pszRevFullHid;
										}
										else
											SG_ERR_THROW(SG_ERR_PULL_INVALID_FRAGBALL_REQUEST);
									}
								}
								
								SG_ERR_CHECK(  SG_rbtree__update(pCtx, prbDagnodes, pszHidRequestedDagnode)  );
								// Get additional dagnode generations, if requested.
								SG_ERR_CHECK(  SG_sync__add_n_generations(pCtx, pRepo, pszHidRequestedDagnode, prbDagnodes, generations)  );
								SG_NULLFREE(pCtx, pszRevFullHid);
							}
						}
					}

					if (!bSpecificNodesRequested)
					{
						// When no specific nodes are in the request, add all leaves.
						SG_ERR_CHECK(  SG_repo__fetch_dag_leaves(pCtx, pRepo, iDagnum, &prbDagnodes)  );

						// Get additional dagnode generations, if requested.
						if (generations)
						{
							SG_bool found;
							const char* hid;
							
							SG_ERR_CHECK(  SG_rbtree__iterator__first(pCtx, &pit, prbDagnodes, &found, &hid, NULL)  );
							while (found)
							{
								SG_ERR_CHECK(  SG_sync__add_n_generations(pCtx, pRepo, hid, prbDagnodes, generations)  );
								SG_ERR_CHECK(  SG_rbtree__iterator__next(pCtx, pit, &found, &hid, NULL)  );
							}
						}
					}

					if (prbDagnodes) // can be null when leaves of an empty dag are requested
					{
						SG_ERR_CHECK(  SG_fragball__append__dagnodes(pCtx, pFragballPathname, pRepo, iDagnum, prbDagnodes)  );
						SG_RBTREE_NULLFREE(pCtx, prbDagnodes);
					}

				} // dagnum loop
			} // if "dags" exists

			/* Add requested blobs to the fragball */
			SG_ERR_CHECK(  SG_vhash__has(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__BLOBS, &found)  );
			if (found)
			{
				// Blobs were requested.
				SG_vhash* pvhBlobs;
				SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvhRequest, SG_SYNC_STATUS_KEY__BLOBS, &pvhBlobs)  );
				SG_ERR_CHECK(  SG_sync__add_blobs_to_fragball(pCtx, pRepo, pFragballPathname, pvhBlobs)  );
			}

			SG_ERR_CHECK(  SG_pathname__get_last(pCtx, pFragballPathname, &pstrFragballName)  );
			SG_ERR_CHECK(  SG_STRDUP(pCtx, SG_string__sz(pstrFragballName), ppszFragballName)  );
		}
	}
	
	/* fallthru */
fail:
	// If we had an error, delete the half-baked fragball.
	if (pFragballPathname && SG_context__has_err(pCtx))
		SG_ERR_IGNORE(  SG_fsobj__remove__pathname(pCtx, pFragballPathname)  );

	SG_PATHNAME_NULLFREE(pCtx, pFragballPathname);
	SG_NULLFREE(pCtx, paDagNums);
	SG_RBTREE_NULLFREE(pCtx, prbDagnodes);
	SG_STRING_NULLFREE(pCtx, pstrFragballName);
	SG_NULLFREE(pCtx, pszRevFullHid);
	SG_RBTREE_ITERATOR_NULLFREE(pCtx, pit);
	SG_NULLFREE(pCtx, repoDagnums);
}
Beispiel #23
0
void sg_pack__do_changeset(SG_context* pCtx, SG_repo* pRepo, const char* psz_hid_cs, SG_rbtree* prb_blobs)
{
	SG_changeset* pcs = NULL;
    SG_int32 gen = 0;
    SG_uint32 count_blobs = 0;
    SG_uint32 count_parents = 0;
    SG_varray* pva_parents = NULL;
    SG_uint32 i;
    SG_rbtree* prb_new = NULL;
	const char* psz_hid_root_treenode = NULL;
    const char* psz_key = NULL;
    SG_vhash* pvh_lbl = NULL;
    SG_vhash* pvh_blobs = NULL;

	SG_ERR_CHECK(  SG_changeset__load_from_repo(pCtx, pRepo, psz_hid_cs, &pcs)  );
	SG_ERR_CHECK(  SG_changeset__get_root(pCtx, pcs, &psz_hid_root_treenode)  );
    SG_ERR_CHECK(  SG_changeset__get_generation(pCtx, pcs, &gen)  );

    SG_ERR_CHECK(  SG_RBTREE__ALLOC__PARAMS(pCtx, &prb_new, count_blobs, NULL)  );

    SG_ERR_CHECK(  SG_changeset__get_list_of_bloblists(pCtx, pcs, &pvh_lbl)  );

    /* add all the tree user file blobs */
    SG_ERR_CHECK(  SG_changeset__get_bloblist_name(pCtx, SG_BLOB_REFTYPE__TREEUSERFILE, &psz_key)  );
    SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvh_lbl, psz_key, &pvh_blobs)  );
    SG_ERR_CHECK(  SG_vhash__count(pCtx, pvh_blobs, &count_blobs)  );
    /* now write all the blobs */
    for (i=0; i<count_blobs; i++)
    {
        const char* psz_hid = NULL;

        SG_ERR_CHECK(  SG_vhash__get_nth_pair(pCtx, pvh_blobs, i, &psz_hid, NULL)  );
        SG_ERR_CHECK(  SG_rbtree__add(pCtx, prb_new, psz_hid)  );
    }

    /* and the treenode blobs */
    SG_ERR_CHECK(  SG_changeset__get_bloblist_name(pCtx, SG_BLOB_REFTYPE__TREENODE, &psz_key)  );
    SG_ERR_CHECK(  SG_vhash__get__vhash(pCtx, pvh_lbl, psz_key, &pvh_blobs)  );
    SG_ERR_CHECK(  SG_vhash__count(pCtx, pvh_blobs, &count_blobs)  );
    /* now write all the blobs */
    for (i=0; i<count_blobs; i++)
    {
        const char* psz_hid = NULL;

        SG_ERR_CHECK(  SG_rbtree__add(pCtx, prb_new, psz_hid)  );
    }

    SG_ERR_CHECK(  sg_pack__do_get_dir__top(pCtx, pRepo, gen, psz_hid_root_treenode, prb_blobs, prb_new)  );

    SG_RBTREE_NULLFREE(pCtx, prb_new);

    SG_ERR_CHECK(  SG_changeset__get_parents(pCtx, pcs, &pva_parents)  );
    if (pva_parents)
    {
        SG_ERR_CHECK(  SG_varray__count(pCtx, pva_parents, &count_parents)  );
        for (i=0; i<count_parents; i++)
        {
            const char* psz_hid = NULL;

            SG_ERR_CHECK(  SG_varray__get__sz(pCtx, pva_parents, i, &psz_hid)  );

            SG_ERR_CHECK(  sg_pack__do_changeset(pCtx, pRepo, psz_hid, prb_blobs)  );
        }
    }

    SG_CHANGESET_NULLFREE(pCtx, pcs);

    return;

fail:
    SG_RBTREE_NULLFREE(pCtx, prb_new);
}