Beispiel #1
0
/* Footprint of a blob ----------------------------------------------------- */
void footprint_blob(
    ImageOver &blobprint,         // blob foot_print table
    const struct blobtype &blob,  // blob description
    int   istep,            // number of foot-print samples per one sample
    // on projection plane in u,v directions
    int   normalise)        // set to 1 if you want normalise. Usually
// you may omit it and no normalisation is performed
{
    // Resize output image and redefine the origin of it
    int footmax = CEIL(blob.radius);
    blobprint.init(-footmax, footmax, istep, -footmax, footmax, istep);

    // Run for Imge class indexes
    for (int i = STARTINGY(blobprint()); i <= FINISHINGY(blobprint()); i++)
        for (int j = STARTINGX(blobprint()); j <= FINISHINGX(blobprint()); j++)
        {
            // Compute oversampled index and blob value
            double vi, ui;
            IMG2OVER(blobprint, i, j, vi, ui);
            double r = sqrt(vi * vi + ui * ui);
            IMGPIXEL(blobprint, i, j) = blob_proj(r, blob);
        }

    // Adjust the footprint structure
    if (normalise)
        blobprint() /= blobprint().sum();
}
Beispiel #2
0
	// Show a complex array ---------------------------------------------------
	std::ostream& operator<<(std::ostream& ostrm,
		const MultidimArray< Complex >& v)
	{
		if (v.xdim == 0)
			ostrm << "NULL MultidimArray\n";
		else
			ostrm << std::endl;

		for (int l = 0; l < NSIZE(v); l++)
		{
			if (NSIZE(v)>1) ostrm << "Image No. " << l << std::endl;
			for (int k = STARTINGZ(v); k <= FINISHINGZ(v); k++)
			{
				if (ZSIZE(v) > 1) ostrm << "Slice No. " << k << std::endl;
				for (int i = STARTINGY(v); i <= FINISHINGY(v); i++)
				{
					for (int j = STARTINGX(v); j <= FINISHINGX(v); j++)
						ostrm << "(" << A3D_ELEM(v, k, i, j).real << "," << A3D_ELEM(v, k, i, j).imag << ")" << ' ';
					ostrm << std::endl;
				}
			}
		}

		return ostrm;
	}
Beispiel #3
0
//#define DEBUG
void spatial_Bspline032voxels(const GridVolume &vol_splines,
                              MultidimArray<double> *vol_voxels, int Zdim, int Ydim, int Xdim)
{
    // Resize and set starting corner .......................................
    if (Zdim == 0 || Ydim == 0 || Xdim == 0)
    {
        Matrix1D<double> size = vol_splines.grid(0).highest -
                                vol_splines.grid(0).lowest;
        Matrix1D<double> corner = vol_splines.grid(0).lowest;
        (*vol_voxels).initZeros(CEIL(ZZ(size)), CEIL(YY(size)), CEIL(XX(size)));
        STARTINGX(*vol_voxels) = FLOOR(XX(corner));
        STARTINGY(*vol_voxels) = FLOOR(YY(corner));
        STARTINGZ(*vol_voxels) = FLOOR(ZZ(corner));
    }
    else
    {
        (*vol_voxels).initZeros(Zdim, Ydim, Xdim);
        (*vol_voxels).setXmippOrigin();
    }

    // Convert each subvolume ...............................................
    for (size_t i = 0; i < vol_splines.VolumesNo(); i++)
    {
        spatial_Bspline032voxels_SimpleGrid(vol_splines(i)(), vol_splines.grid(i),
                                            vol_voxels);
#ifdef DEBUG
        std::cout << "Spline grid no " << i << " stats: ";
        vol_splines(i)().printStats();
        std::cout << std::endl;
        std::cout << "So far vol stats: ";
        (*vol_voxels).printStats();
        std::cout << std::endl;
        VolumeXmipp save;
        save() = *vol_voxels;
        save.write((std::string)"PPPvoxels" + integerToString(i));
#endif
    }

    // Now normalise the resulting volume ..................................
    double inorm = 1.0 / sum_spatial_Bspline03_Grid(vol_splines.grid());
    FOR_ALL_ELEMENTS_IN_ARRAY3D(*vol_voxels)
    A3D_ELEM(*vol_voxels, k, i, j) *= inorm;

    // Set voxels outside interest region to minimum value .................
    double R = vol_splines.grid(0).get_interest_radius();
    if (R != -1)
    {
        double R2 = (R - 6) * (R - 6);

        // Compute minimum value within sphere
        double min_val = A3D_ELEM(*vol_voxels, 0, 0, 0);
        FOR_ALL_ELEMENTS_IN_ARRAY3D(*vol_voxels)
        if (j*j + i*i + k*k <= R2 - 4)
            min_val = XMIPP_MIN(min_val, A3D_ELEM(*vol_voxels, k, i, j));

        // Substitute minimum value
        R2 = (R - 2) * (R - 2);
        FOR_ALL_ELEMENTS_IN_ARRAY3D(*vol_voxels)
        if (j*j + i*i + k*k >= R2)
            A3D_ELEM(*vol_voxels, k, i, j) = min_val;
    }
Beispiel #4
0
void ProgXrayImport::run()
{
    // Delete output stack if it exists
    fnOut = fnRoot + ".mrc";
    fnOut.deleteFile();

    /* Turn off error handling */
    H5Eset_auto(H5E_DEFAULT, NULL, NULL);

    if (dSource == MISTRAL)
        H5File.openFile(fnInput, H5F_ACC_RDONLY);


    // Reading bad pixels mask
    if ( !fnBPMask.empty() )
    {
        std::cerr << "Reading bad pixels mask from "+fnBPMask << "." << std::endl;
        bpMask.read(fnBPMask);
        if ( (cropSizeX + cropSizeY ) > 0 )
            bpMask().selfWindow(cropSizeY,cropSizeX,
                                (int)(YSIZE(bpMask())-cropSizeY-1),(int)(XSIZE(bpMask())-cropSizeX-1));
        STARTINGX(bpMask()) = STARTINGY(bpMask()) = 0;
    }


    // Setting the image projections list
    switch (dSource)
    {
    case MISTRAL:
        {
            inMD.read(fnInput);
            H5File.getDataset("NXtomo/data/rotation_angle", anglesArray, false);
            H5File.getDataset("NXtomo/instrument/sample/ExpTimes", expTimeArray, false);
            H5File.getDataset("NXtomo/instrument/sample/current", cBeamArray);

            /* In case there is no angles information we set them to to an increasing sequence
             * just to be able to continue importing data */
            if ( anglesArray.size() != inMD.size() )
            {
                reportWarning("Input file does not contains angle information. Default sequence used.");
                anglesArray.resizeNoCopy(inMD.size());
                anglesArray.enumerate();
            }

            // If expTime is empty or only one single value in nexus file then we fill with 1
            if (expTimeArray.size() < 2)
            {
                reportWarning("Input file does not contains tomogram exposition time information.");
                expTimeArray.initConstant(anglesArray.size(), 1.);
            }
            // If current is empty or only one single value in nexus file then we fill with 1
            if (cBeamArray.size() < 2)
            {
                reportWarning("Input file does not contains tomogram current beam information.");
                cBeamArray.initConstant(anglesArray.size(), 1.);
            }
            // Since Alba does not provide slit width, we set to ones
            slitWidthArray.initConstant(anglesArray.size(), 1.);
        }
        break;
    case BESSY:
        {
            size_t objId;

            for (size_t i = tIni; i <= tEnd; ++i)
            {
                objId = inMD.addObject();
                inMD.setValue(MDL_IMAGE, fnInput + formatString("/img%d.spe", i), objId);
            }
            break;
        }
    case GENERIC:
        {
            // Get Darkfield
            std::cerr << "Getting darkfield from "+fnInput << " ..." << std::endl;
            getDarkfield(fnInput, IavgDark);
            if (XSIZE(IavgDark())!=0)
                IavgDark.write(fnRoot+"_darkfield.xmp");


            std::vector<FileName> listDir;
            fnInput.getFiles(listDir);
            size_t objId;

            for (size_t i = 0; i < listDir.size(); ++i)
            {
                if (!listDir[i].hasImageExtension())
                    continue;
                objId = inMD.addObject();
                inMD.setValue(MDL_IMAGE, fnInput+"/"+listDir[i], objId);
            }
        }
        break;
    }

    inMD.findObjects(objIds);
    size_t nIm = inMD.size();

    // Create empty output stack file

    getImageInfo(inMD, imgInfo);


    /* Get the flatfield:: We get the FF after the image list because we need the image size to adapt the FF
     * in case they were already cropped.
     */
    if (!fnFlat.empty())
    {
        std::cout << "Getting flatfield from "+fnFlat << " ..." << std::endl;
        getFlatfield(fnFlat,IavgFlat);
        if ( XSIZE(IavgFlat()) != 0 )
        {
            FileName ffName = fnRoot+"_flatfield_avg.xmp";
            IavgFlat.write(ffName);
            fMD.setValue(MDL_IMAGE, ffName, fMD.addObject());
        }
    }

    createEmptyFile(fnOut, imgInfo.adim.xdim-cropSizeXi-cropSizeXe, imgInfo.adim.ydim-cropSizeYi-cropSizeYe, 1, nIm);

    // Process images
    td = new ThreadTaskDistributor(nIm, XMIPP_MAX(1, nIm/30));
    tm = new ThreadManager(thrNum, this);
    std::cerr << "Getting data from " << fnInput << " ...\n";
    init_progress_bar(nIm);
    tm->run(runThread);
    progress_bar(nIm);

    // Write Metadata and angles
    MetaData MDSorted;
    MDSorted.sort(outMD,MDL_ANGLE_TILT);
    MDSorted.write("tomo@"+fnRoot + ".xmd");
    if ( fMD.size() > 0 )
        fMD.write("flatfield@"+fnRoot + ".xmd", MD_APPEND);

    // We also reference initial and final images at 0 degrees for Mistral tomograms
    if ( dSource == MISTRAL )
    {
        fMD.clear();
        FileName degree0Fn = "NXtomo/instrument/sample/0_degrees_initial_image";
        if ( H5File.checkDataset(degree0Fn.c_str()))
            fMD.setValue(MDL_IMAGE, degree0Fn + "@" + fnInput, fMD.addObject());
        degree0Fn = "NXtomo/instrument/sample/0_degrees_final_image";
        if ( H5File.checkDataset(degree0Fn.c_str()))
            fMD.setValue(MDL_IMAGE, degree0Fn + "@" + fnInput, fMD.addObject());
        if ( fMD.size() > 0 )
            fMD.write("degree0@"+fnRoot + ".xmd", MD_APPEND);
    }

    // Write tlt file for IMOD
    std::ofstream fhTlt;
    fhTlt.open((fnRoot+".tlt").c_str());
    if (!fhTlt)
        REPORT_ERROR(ERR_IO_NOWRITE,fnRoot+".tlt");
    FOR_ALL_OBJECTS_IN_METADATA(MDSorted)
    {
        double tilt;
        MDSorted.getValue(MDL_ANGLE_TILT,tilt,__iter.objId);
        fhTlt << tilt << std::endl;
    }
    fhTlt.close();
    delete td;
    delete tm;
}
Beispiel #5
0
void Projector::rotate3D(MultidimArray<Complex > &f3d, Matrix2D<DOUBLE> &A, bool inv)
{
	DOUBLE fx, fy, fz, xp, yp, zp;
	int x0, x1, y0, y1, z0, z1, y, z, y2, z2, r2;
	bool is_neg_x;
	Complex d000, d010, d100, d110, d001, d011, d101, d111, dx00, dx10, dxy0, dx01, dx11, dxy1;
	Matrix2D<DOUBLE> Ainv;

    // f3d should already be in the right size (ori_size,orihalfdim)
    // AND the points outside max_r should already be zero...
    // f3d.initZeros();
	// Use the inverse matrix
    if (inv)
    	Ainv = A;
    else
    	Ainv = A.transpose();

    // The f3d image may be smaller than r_max, in that case also make sure not to fill the corners!
    int my_r_max = XMIPP_MIN(r_max, XSIZE(f3d) - 1);

    // Go from the 3D rotated coordinates to the original map coordinates
    Ainv *= (DOUBLE)padding_factor;  // take scaling into account directly
    int max_r2 = my_r_max * my_r_max;
    int min_r2_nn = r_min_nn * r_min_nn;
#ifdef DEBUG
    std::cerr << " XSIZE(f3d)= "<< XSIZE(f3d) << std::endl;
    std::cerr << " YSIZE(f3d)= "<< YSIZE(f3d) << std::endl;
    std::cerr << " XSIZE(data)= "<< XSIZE(data) << std::endl;
    std::cerr << " YSIZE(data)= "<< YSIZE(data) << std::endl;
    std::cerr << " STARTINGX(data)= "<< STARTINGX(data) << std::endl;
    std::cerr << " STARTINGY(data)= "<< STARTINGY(data) << std::endl;
    std::cerr << " STARTINGZ(data)= "<< STARTINGZ(data) << std::endl;
    std::cerr << " max_r= "<< r_max << std::endl;
    std::cerr << " Ainv= " << Ainv << std::endl;
#endif
	for (int k=0; k < ZSIZE(f3d); k++)
	{
		// Don't search beyond square with side max_r
		if (k <= my_r_max)
		{
			z = k;
		}
		else if (k >= ZSIZE(f3d) - my_r_max)
		{
			z = k - ZSIZE(f3d);
		}
		else
			continue;
		z2 = z * z;

		for (int i=0; i < YSIZE(f3d); i++)
		{
			// Don't search beyond square with side max_r
			if (i <= my_r_max)
			{
				y = i;
			}
			else if (i >= YSIZE(f3d) - my_r_max)
			{
				y = i - YSIZE(f3d);
			}
			else
				continue;
			y2 = y * y;

			for (int x=0; x <= my_r_max; x++)
			{
				// Only include points with radius < max_r (exclude points outside circle in square)
				r2 = x * x + y2 + z2;
				if (r2 > max_r2)
					continue;

				// Get logical coordinates in the 3D map
				xp = Ainv(0,0) * x + Ainv(0,1) * y + Ainv(0,2) * z;
				yp = Ainv(1,0) * x + Ainv(1,1) * y + Ainv(1,2) * z;
				zp = Ainv(2,0) * x + Ainv(2,1) * y + Ainv(2,2) * z;

				if (interpolator == TRILINEAR || r2 < min_r2_nn)
				{
					// Only asymmetric half is stored
					if (xp < 0)
					{
						// Get complex conjugated hermitian symmetry pair
						xp = -xp;
						yp = -yp;
						zp = -zp;
						is_neg_x = true;
					}
					else
					{
						is_neg_x = false;
					}

					// Trilinear interpolation (with physical coords)
					// Subtract STARTINGY to accelerate access to data (STARTINGX=0)
					// In that way use DIRECT_A3D_ELEM, rather than A3D_ELEM
					x0 = FLOOR(xp);
					fx = xp - x0;
					x1 = x0 + 1;

					y0 = FLOOR(yp);
					fy = yp - y0;
					y0 -=  STARTINGY(data);
					y1 = y0 + 1;

					z0 = FLOOR(zp);
					fz = zp - z0;
					z0 -=  STARTINGZ(data);
					z1 = z0 + 1;

					// Matrix access can be accelerated through pre-calculation of z0*xydim etc.
					d000 = DIRECT_A3D_ELEM(data, z0, y0, x0);
					d001 = DIRECT_A3D_ELEM(data, z0, y0, x1);
					d010 = DIRECT_A3D_ELEM(data, z0, y1, x0);
					d011 = DIRECT_A3D_ELEM(data, z0, y1, x1);
					d100 = DIRECT_A3D_ELEM(data, z1, y0, x0);
					d101 = DIRECT_A3D_ELEM(data, z1, y0, x1);
					d110 = DIRECT_A3D_ELEM(data, z1, y1, x0);
					d111 = DIRECT_A3D_ELEM(data, z1, y1, x1);

					// Set the interpolated value in the 2D output array
					// interpolate in x
#ifndef FLOAT_PRECISION
                    __m256d __fx = _mm256_set1_pd(fx);
                    __m256d __interpx1 = LIN_INTERP_AVX(_mm256_setr_pd(d000.real, d000.imag, d100.real, d100.imag),
                                                        _mm256_setr_pd(d001.real, d001.imag, d101.real, d101.imag),
                                                        __fx);
                    __m256d __interpx2 = LIN_INTERP_AVX(_mm256_setr_pd(d010.real, d010.imag, d110.real, d110.imag),
                                                        _mm256_setr_pd(d011.real, d011.imag, d111.real, d111.imag),
                                                        __fx);

                    // interpolate in y
                    __m256d __fy = _mm256_set1_pd(fy);
                    __m256d __interpy = LIN_INTERP_AVX(__interpx1, __interpx2, __fy);
#else
                    __m128 __fx = _mm_set1_ps(fx);
                    __m128 __interpx1 = LIN_INTERP_AVX(_mm_setr_ps(d000.real, d000.imag, d100.real, d100.imag),
                                                       _mm_setr_ps(d001.real, d001.imag, d101.real, d101.imag),
                                                       __fx);
                    __m128 __interpx2 = LIN_INTERP_AVX(_mm_setr_ps(d010.real, d010.imag, d110.real, d110.imag),
                                                       _mm_setr_ps(d011.real, d011.imag, d111.real, d111.imag),
                                                       __fx);

                    // interpolate in y
                    __m128 __fy = _mm_set1_ps(fy);
                    __m128 __interpy = LIN_INTERP_AVX(__interpx1, __interpx2, __fy);
#endif

                    Complex* interpy = (Complex*)&__interpy;

					//interpolate in z
					DIRECT_A3D_ELEM(f3d, k, i, x) = LIN_INTERP(fz, interpy[0], interpy[1]);

					// Take complex conjugated for half with negative x
					if (is_neg_x)
						DIRECT_A3D_ELEM(f3d, k, i, x) = conj(DIRECT_A3D_ELEM(f3d, k, i, x));

				} // endif TRILINEAR
				else if (interpolator == NEAREST_NEIGHBOUR )
				{
					x0 = ROUND(xp);
					y0 = ROUND(yp);
					z0 = ROUND(zp);

					if (x0 < 0)
						DIRECT_A3D_ELEM(f3d, k, i, x) = conj(A3D_ELEM(data, -z0, -y0, -x0));
					else
						DIRECT_A3D_ELEM(f3d, k, i, x) = A3D_ELEM(data, z0, y0, x0);

				} // endif NEAREST_NEIGHBOUR
				else
					REPORT_ERROR("Unrecognized interpolator in Projector::project");
			} // endif x-loop
		} // endif y-loop
	} // endif z-loop
}
Beispiel #6
0
void FourierProjector::project(double rot, double tilt, double psi, const MultidimArray<double> *ctf)
{
    double freqy, freqx;
    std::complex< double > f;
    Euler_angles2matrix(rot,tilt,psi,E);

    projectionFourier.initZeros();
    double maxFreq2=maxFrequency*maxFrequency;
    int Xdim=(int)XSIZE(VfourierRealCoefs);
    int Ydim=(int)YSIZE(VfourierRealCoefs);
    int Zdim=(int)ZSIZE(VfourierRealCoefs);

    for (size_t i=0; i<YSIZE(projectionFourier); ++i)
    {
        FFT_IDX2DIGFREQ(i,volumeSize,freqy);
        double freqy2=freqy*freqy;

        double freqYvol_X=MAT_ELEM(E,1,0)*freqy;
        double freqYvol_Y=MAT_ELEM(E,1,1)*freqy;
        double freqYvol_Z=MAT_ELEM(E,1,2)*freqy;
        for (size_t j=0; j<XSIZE(projectionFourier); ++j)
        {
            // The frequency of pairs (i,j) in 2D
            FFT_IDX2DIGFREQ(j,volumeSize,freqx);

            // Do not consider pixels with high frequency
            if ((freqy2+freqx*freqx)>maxFreq2)
                continue;

            // Compute corresponding frequency in the volume
            double freqvol_X=freqYvol_X+MAT_ELEM(E,0,0)*freqx;
            double freqvol_Y=freqYvol_Y+MAT_ELEM(E,0,1)*freqx;
            double freqvol_Z=freqYvol_Z+MAT_ELEM(E,0,2)*freqx;

            double c,d;
            if (BSplineDeg==0)
            {
                // 0 order interpolation
                // Compute corresponding index in the volume
                int kVolume=(int)round(freqvol_Z*volumePaddedSize);
                int iVolume=(int)round(freqvol_Y*volumePaddedSize);
                int jVolume=(int)round(freqvol_X*volumePaddedSize);
                c = A3D_ELEM(VfourierRealCoefs,kVolume,iVolume,jVolume);
                d = A3D_ELEM(VfourierImagCoefs,kVolume,iVolume,jVolume);
            }
            else if (BSplineDeg==1)
            {
                // B-spline linear interpolation
                double kVolume=freqvol_Z*volumePaddedSize;
                double iVolume=freqvol_Y*volumePaddedSize;
                double jVolume=freqvol_X*volumePaddedSize;
                c=VfourierRealCoefs.interpolatedElement3D(jVolume,iVolume,kVolume);
                d=VfourierImagCoefs.interpolatedElement3D(jVolume,iVolume,kVolume);
            }
            else
            {
                // B-spline cubic interpolation
                double kVolume=freqvol_Z*volumePaddedSize;
                double iVolume=freqvol_Y*volumePaddedSize;
                double jVolume=freqvol_X*volumePaddedSize;

                // Commented for speed-up, the corresponding code is below
                // c=VfourierRealCoefs.interpolatedElementBSpline3D(jVolume,iVolume,kVolume);
                // d=VfourierImagCoefs.interpolatedElementBSpline3D(jVolume,iVolume,kVolume);

                // The code below is a replicate for speed reasons of interpolatedElementBSpline3D
                double z=kVolume;
                double y=iVolume;
                double x=jVolume;

                // Logical to physical
                z -= STARTINGZ(VfourierRealCoefs);
                y -= STARTINGY(VfourierRealCoefs);
                x -= STARTINGX(VfourierRealCoefs);

                int l1 = (int)ceil(x - 2);
                int l2 = l1 + 3;

                int m1 = (int)ceil(y - 2);
                int m2 = m1 + 3;

                int n1 = (int)ceil(z - 2);
                int n2 = n1 + 3;

                c = d = 0.0;
                double aux;
                for (int nn = n1; nn <= n2; nn++)
                {
                    int equivalent_nn=nn;
                    if      (nn<0)
                        equivalent_nn=-nn-1;
                    else if (nn>=Zdim)
                        equivalent_nn=2*Zdim-nn-1;
                    double yxsumRe = 0.0, yxsumIm = 0.0;
                    for (int m = m1; m <= m2; m++)
                    {
                        int equivalent_m=m;
                        if      (m<0)
                            equivalent_m=-m-1;
                        else if (m>=Ydim)
                            equivalent_m=2*Ydim-m-1;
                        double xsumRe = 0.0, xsumIm = 0.0;
                        for (int l = l1; l <= l2; l++)
                        {
                            double xminusl = x - (double) l;
                            int equivalent_l=l;
                            if      (l<0)
                                equivalent_l=-l-1;
                            else if (l>=Xdim)
                                equivalent_l=2*Xdim-l-1;
                            double CoeffRe = (double) DIRECT_A3D_ELEM(VfourierRealCoefs,equivalent_nn,equivalent_m,equivalent_l);
                            double CoeffIm = (double) DIRECT_A3D_ELEM(VfourierImagCoefs,equivalent_nn,equivalent_m,equivalent_l);
                            BSPLINE03(aux,xminusl);
                            xsumRe += CoeffRe * aux;
                            xsumIm += CoeffIm * aux;
                        }

                        double yminusm = y - (double) m;
                        BSPLINE03(aux,yminusm);
						yxsumRe += xsumRe * aux;
						yxsumIm += xsumIm * aux;
                    }

                    double zminusn = z - (double) nn;
                    BSPLINE03(aux,zminusn);
					c += yxsumRe * aux;
					d += yxsumIm * aux;
                }
            }

            // Phase shift to move the origin of the image to the corner
            double a=DIRECT_A2D_ELEM(phaseShiftImgA,i,j);
            double b=DIRECT_A2D_ELEM(phaseShiftImgB,i,j);
            if (ctf!=NULL)
            {
            	double ctfij=DIRECT_A2D_ELEM(*ctf,i,j);
            	a*=ctfij;
            	b*=ctfij;
            }

            // Multiply Fourier coefficient in volume times phase shift
            double ac = a * c;
            double bd = b * d;
            double ab_cd = (a + b) * (c + d);

            // And store the multiplication
            double *ptrI_ij=(double *)&DIRECT_A2D_ELEM(projectionFourier,i,j);
            *ptrI_ij = ac - bd;
            *(ptrI_ij+1) = ab_cd - ac - bd;
        }
    }
    transformer2D.inverseFourierTransform();
}
Beispiel #7
0
void FourierProjector::produceSideInfo()
{
    // Zero padding
    MultidimArray<double> Vpadded;
    int paddedDim=(int)(paddingFactor*volumeSize);
    // JMRT: TODO: I think it is a very poor design to modify the volume passed
    // in the construct, it will be padded anyway, so new memory should be allocated
    volume->window(Vpadded,FIRST_XMIPP_INDEX(paddedDim),FIRST_XMIPP_INDEX(paddedDim),FIRST_XMIPP_INDEX(paddedDim),
                   LAST_XMIPP_INDEX(paddedDim),LAST_XMIPP_INDEX(paddedDim),LAST_XMIPP_INDEX(paddedDim));
    volume->clear();
    // Make Fourier transform, shift the volume origin to the volume center and center it
    MultidimArray< std::complex<double> > Vfourier;
    FourierTransformer transformer3D;
    transformer3D.completeFourierTransform(Vpadded,Vfourier);
    ShiftFFT(Vfourier, FIRST_XMIPP_INDEX(XSIZE(Vpadded)), FIRST_XMIPP_INDEX(YSIZE(Vpadded)), FIRST_XMIPP_INDEX(ZSIZE(Vpadded)));
    CenterFFT(Vfourier,true);
    Vfourier.setXmippOrigin();

    // Compensate for the Fourier normalization factor
    double K=(double)(XSIZE(Vpadded)*XSIZE(Vpadded)*XSIZE(Vpadded))/(double)(volumeSize*volumeSize);
    FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY(Vfourier)
    DIRECT_MULTIDIM_ELEM(Vfourier,n)*=K;
    Vpadded.clear();
    // Compute Bspline coefficients
    if (BSplineDeg==3)
    {
        MultidimArray< double > VfourierRealAux, VfourierImagAux;
        Complex2RealImag(Vfourier, VfourierRealAux, VfourierImagAux);
        Vfourier.clear();
        produceSplineCoefficients(BSPLINE3,VfourierRealCoefs,VfourierRealAux);

        // Release memory as soon as you can
        VfourierRealAux.clear();

        // Remove all those coefficients we are sure we will not use during the projections
        volumePaddedSize=XSIZE(VfourierRealCoefs);
        int idxMax=maxFrequency*XSIZE(VfourierRealCoefs)+10; // +10 is a safety guard
        idxMax=std::min(FINISHINGX(VfourierRealCoefs),idxMax);
        int idxMin=std::max(-idxMax,STARTINGX(VfourierRealCoefs));
        VfourierRealCoefs.selfWindow(idxMin,idxMin,idxMin,idxMax,idxMax,idxMax);

        produceSplineCoefficients(BSPLINE3,VfourierImagCoefs,VfourierImagAux);
        VfourierImagAux.clear();
        VfourierImagCoefs.selfWindow(idxMin,idxMin,idxMin,idxMax,idxMax,idxMax);
    }
    else
        Complex2RealImag(Vfourier, VfourierRealCoefs, VfourierImagCoefs);

    // Allocate memory for the 2D Fourier transform
    projection().initZeros(volumeSize,volumeSize);
    projection().setXmippOrigin();
    transformer2D.FourierTransform(projection(),projectionFourier,false);

    // Calculate phase shift terms
    phaseShiftImgA.initZeros(projectionFourier);
    phaseShiftImgB.initZeros(projectionFourier);
    double shift=-FIRST_XMIPP_INDEX(volumeSize);
    double xxshift = -2 * PI * shift / volumeSize;
    for (size_t i=0; i<YSIZE(projectionFourier); ++i)
    {
        double phasey=(double)(i) * xxshift;
        for (size_t j=0; j<XSIZE(projectionFourier); ++j)
        {
            // Phase shift to move the origin of the image to the corner
            double dotp = (double)(j) * xxshift + phasey;
            sincos(dotp,&DIRECT_A2D_ELEM(phaseShiftImgB,i,j),&DIRECT_A2D_ELEM(phaseShiftImgA,i,j));
        }
    }
}
Beispiel #8
0
void PolyZernikes::zernikePols(const Matrix1D<int> coef, MultidimArray<double> & im, MultidimArray<bool> & ROI, int verbose)
{

    this->create(coef);

    int polOrder=(int)ZERNIKE_ORDER(coef.size());
    int numZer = coef.size();

    int xdim = XSIZE(im);
    int ydim = YSIZE(im);

    im.setXmippOrigin();

    Matrix2D<double> polValue(polOrder,polOrder);
    double iMaxDim2 = 2./std::max(xdim,ydim);

    double temp = 0;
    FOR_ALL_ELEMENTS_IN_ARRAY2D(im)
    {
        if (A2D_ELEM(ROI,i,j))
        {
            //For one i we swap the different j
            double y=i*iMaxDim2;
            double x=j*iMaxDim2;

            //polValue = [ 0    y   y2    y3   ...
            //             x   xy  xy2    xy3  ...
            //             x2  x2y x2y2   x2y3 ]
            //dMij(polValue,py,px) py es fila, px es columna
            for (int py = 0; py < polOrder; ++py)
            {
                double ypy=std::pow(y,py);
                for (int px = 0; px < polOrder; ++px)
                    dMij(polValue,px,py) = ypy*std::pow(x,px);
            }

            Matrix2D<int> *fMat;
            //We generate the representation of the Zernike polynomials

            for (int k=0; k < numZer; ++k)
            {
                fMat = &fMatV[k];

                if ( (dMij(*fMat,0,0) == 0) && MAT_SIZE(*fMat) == 1 )
                    continue;

                for (size_t px = 0; px < (*fMat).Xdim(); ++px)
                    for (size_t py = 0; py < (*fMat).Ydim(); ++py)
                        temp += dMij(*fMat,py,px)*dMij(polValue,py,px)*VEC_ELEM(coef,k);
            }

            A2D_ELEM(im,i,j) = temp;
            temp = 0;
        }
    }

    STARTINGX(im)=STARTINGY(im)=0;

    if (verbose == 1)
    {
        Image<double> save;
        save()=im;
        save.write("PPP1.xmp");
    }
}
// Evaluate plane ----------------------------------------------------------
double evaluatePlane(double rot, double tilt,
                     const MultidimArray<double> *V, const MultidimArray<double> *Vmag,
                     double maxFreq, double planeWidth, int direction,
                     MultidimArray<double> *Vdraw=NULL,
                     bool setPos=false, double rotPos=0, double tiltPos=0)
{
    if (rot<0 || rot>360 || tilt<-90 || tilt>90)
        return 0;

    Matrix2D<double> E, Einv;
    Euler_angles2matrix(rot,tilt,0,E);
    Einv=E.transpose();

    if (setPos)
    {
        Matrix2D<double> Epos;
        Euler_angles2matrix(rotPos,tiltPos,0,Epos);
        double angle=acos(E(2,0)*Epos(2,0)+E(2,1)*Epos(2,1)+E(2,2)*Epos(2,2));
        angle=RAD2DEG(angle);
        if (fabs(angle)<20 || fabs(180-angle)<20)
            return 0;
    }

    size_t N=XMIPP_MAX(XSIZE(*Vmag),YSIZE(*Vmag)/2);
    N=XMIPP_MAX(N,ZSIZE(*Vmag)/2);
    double df=0.5/N;
    Matrix1D<double> freq(3), freqp(3);
    Matrix1D<int> idx(3);
    double sumNeg=0, sumPos=0;
    int Nneg=0, Npos=0;
    double maxFreq2=maxFreq*maxFreq;
    int iPlaneWidth=(int)ceil(planeWidth);
    for (double ix=0; ix<=N; ix++)
    {
        XX(freq)=ix*df;
        double fx2=XX(freq)*XX(freq);
        if (fx2>maxFreq2)
            continue;
        for (double iy=-(int)N; iy<=N; iy++)
        {
            YY(freq)=iy*df;
            double fx2fy2=fx2+YY(freq)*YY(freq);
            if (fx2fy2>maxFreq2)
                continue;
            for (int iz=-iPlaneWidth; iz<=iPlaneWidth; iz++)
            {
                if (iz==0 || ix==0 || iy==0)
                    continue;

                // Frequency in the coordinate system of the plane
                ZZ(freq)=iz*df;

                // Frequency in the coordinate system of the volume
                SPEED_UP_temps012;
                M3x3_BY_V3x1(freqp,Einv,freq);
                bool inverted=false;
                if (XX(freqp)<0)
                {
                    XX(freqp)=-XX(freqp);
                    YY(freqp)=-YY(freqp);
                    ZZ(freqp)=-ZZ(freqp);
                    inverted=true;
                }

                // Get the corresponding index
                DIGFREQ2FFT_IDX(ZZ(freqp), ZSIZE(*V), ZZ(idx));
                DIGFREQ2FFT_IDX(YY(freqp), YSIZE(*V), YY(idx));
                DIGFREQ2FFT_IDX(XX(freqp), XSIZE(*V), XX(idx));
                if (XX(idx) < STARTINGX(*Vmag) || XX(idx) > FINISHINGX(*Vmag) ||
                    YY(idx) < STARTINGY(*Vmag) || YY(idx) > FINISHINGY(*Vmag) ||
                    ZZ(idx) < STARTINGZ(*Vmag) || ZZ(idx) > FINISHINGZ(*Vmag))
                    continue;

                // Make the corresponding sums
                bool negativeSum;
                if (direction==1)
                    negativeSum=iz<0;
                else
                    negativeSum=iz>0;
                double val=A3D_ELEM(*Vmag,ZZ(idx),YY(idx),XX(idx));
                if ((negativeSum && !inverted) || (!negativeSum && inverted)) // XOR
                {
                    sumNeg+=val;
                    Nneg++;
                    if (Vdraw!=NULL)
                        (*Vdraw)(idx)=2*direction*val;
                }
                else
                {
                    sumPos+=val;
                    Npos++;
                    if (Vdraw!=NULL)
                        (*Vdraw)(idx)=1.0/2.0*direction*val;
                }
            }
        }
    }
    if (fabs(Nneg-Npos)/(0.5*(Nneg+Npos))>0.5)
        // If there is a difference of more than 50%
        return 1e38;
    if (Nneg!=0)
        sumNeg/=Nneg;
    else
        return 1e38;
    if (Npos!=0)
        sumPos/=Npos;
    else
        return 1e38;

    return -(sumPos-sumNeg);
}