Beispiel #1
0
static void
thread_static( StgClosure* p )
{
  const StgInfoTable *info;

  // keep going until we've threaded all the objects on the linked
  // list... 
  while (p != END_OF_STATIC_LIST) {

    info = get_itbl(p);
    switch (info->type) {
      
    case IND_STATIC:
	thread(&((StgInd *)p)->indirectee);
	p = *IND_STATIC_LINK(p);
	continue;
      
    case THUNK_STATIC:
	p = *THUNK_STATIC_LINK(p);
	continue;
    case FUN_STATIC:
	p = *FUN_STATIC_LINK(p);
	continue;
    case CONSTR_STATIC:
	p = *STATIC_LINK(info,p);
	continue;
      
    default:
	barf("thread_static: strange closure %d", (int)(info->type));
    }

  }
}
Beispiel #2
0
/*
  Check the static objects list.
*/
void
checkStaticObjects ( StgClosure* static_objects )
{
  StgClosure *p = static_objects;
  const StgInfoTable *info;

  while (p != END_OF_STATIC_OBJECT_LIST) {
    p = UNTAG_STATIC_LIST_PTR(p);
    checkClosure(p);
    info = get_itbl(p);
    switch (info->type) {
    case IND_STATIC:
      {
        const StgClosure *indirectee;

        indirectee = UNTAG_CONST_CLOSURE(((StgIndStatic *)p)->indirectee);
        ASSERT(LOOKS_LIKE_CLOSURE_PTR(indirectee));
        ASSERT(LOOKS_LIKE_INFO_PTR((StgWord)indirectee->header.info));
        p = *IND_STATIC_LINK((StgClosure *)p);
        break;
      }

    case THUNK_STATIC:
      p = *THUNK_STATIC_LINK((StgClosure *)p);
      break;

    case FUN_STATIC:
      p = *STATIC_LINK(info,(StgClosure *)p);
      break;

    case CONSTR:
    case CONSTR_NOCAF:
    case CONSTR_1_0:
    case CONSTR_2_0:
    case CONSTR_1_1:
      p = *STATIC_LINK(info,(StgClosure *)p);
      break;

    default:
      barf("checkStaticObjetcs: strange closure %p (%s)",
           p, info_type(p));
    }
  }
}
Beispiel #3
0
/*
  Check the static objects list.
*/
void
checkStaticObjects ( StgClosure* static_objects )
{
  StgClosure *p = static_objects;
  StgInfoTable *info;

  while (p != END_OF_STATIC_LIST) {
    checkClosure(p);
    info = get_itbl(p);
    switch (info->type) {
    case IND_STATIC:
      { 
        StgClosure *indirectee = UNTAG_CLOSURE(((StgIndStatic *)p)->indirectee);

	ASSERT(LOOKS_LIKE_CLOSURE_PTR(indirectee));
	ASSERT(LOOKS_LIKE_INFO_PTR((StgWord)indirectee->header.info));
	p = *IND_STATIC_LINK((StgClosure *)p);
	break;
      }

    case THUNK_STATIC:
      p = *THUNK_STATIC_LINK((StgClosure *)p);
      break;

    case FUN_STATIC:
      p = *FUN_STATIC_LINK((StgClosure *)p);
      break;

    case CONSTR_STATIC:
      p = *STATIC_LINK(info,(StgClosure *)p);
      break;

    default:
      barf("checkStaticObjetcs: strange closure %p (%s)", p,
#ifndef HaLVM_TARGET_OS
          info_type(p)
#else    
          "[HaLVM has no info_type()]"
#endif
          );
    }
  }
}
Beispiel #4
0
REGPARM1 GNUC_ATTR_HOT void
evacuate(StgClosure **p)
{
  bdescr *bd = NULL;
  nat gen_no;
  StgClosure *q;
  const StgInfoTable *info;
  StgWord tag;

  q = *p;

loop:
  /* The tag and the pointer are split, to be merged after evacing */
  tag = GET_CLOSURE_TAG(q);
  q = UNTAG_CLOSURE(q);

  ASSERTM(LOOKS_LIKE_CLOSURE_PTR(q), "invalid closure, info=%p", q->header.info);

  if (!HEAP_ALLOCED_GC(q)) {

      if (!major_gc) return;

      info = get_itbl(q);
      switch (info->type) {

      case THUNK_STATIC:
          if (info->srt_bitmap != 0) {
              evacuate_static_object(THUNK_STATIC_LINK((StgClosure *)q), q);
          }
          return;

      case FUN_STATIC:
          if (info->srt_bitmap != 0) {
              evacuate_static_object(FUN_STATIC_LINK((StgClosure *)q), q);
          }
          return;

      case IND_STATIC:
          /* If q->saved_info != NULL, then it's a revertible CAF - it'll be
           * on the CAF list, so don't do anything with it here (we'll
           * scavenge it later).
           */
          evacuate_static_object(IND_STATIC_LINK((StgClosure *)q), q);
          return;

      case CONSTR_STATIC:
          evacuate_static_object(STATIC_LINK(info,(StgClosure *)q), q);
          return;

      case CONSTR_NOCAF_STATIC:
          /* no need to put these on the static linked list, they don't need
           * to be scavenged.
           */
          return;

      default:
          barf("evacuate(static): strange closure type %d", (int)(info->type));
      }
  }

  bd = Bdescr((P_)q);

  if ((bd->flags & (BF_LARGE | BF_MARKED | BF_EVACUATED)) != 0) {

      // pointer into to-space: just return it.  It might be a pointer
      // into a generation that we aren't collecting (> N), or it
      // might just be a pointer into to-space.  The latter doesn't
      // happen often, but allowing it makes certain things a bit
      // easier; e.g. scavenging an object is idempotent, so it's OK to
      // have an object on the mutable list multiple times.
      if (bd->flags & BF_EVACUATED) {
          // We aren't copying this object, so we have to check
          // whether it is already in the target generation.  (this is
          // the write barrier).
          if (bd->gen_no < gct->evac_gen_no) {
              gct->failed_to_evac = rtsTrue;
              TICK_GC_FAILED_PROMOTION();
          }
          return;
      }

      /* evacuate large objects by re-linking them onto a different list.
       */
      if (bd->flags & BF_LARGE) {
          evacuate_large((P_)q);
          return;
      }

      /* If the object is in a gen that we're compacting, then we
       * need to use an alternative evacuate procedure.
       */
      if (!is_marked((P_)q,bd)) {
          mark((P_)q,bd);
          push_mark_stack((P_)q);
      }
      return;
  }

  gen_no = bd->dest_no;

  info = q->header.info;
  if (IS_FORWARDING_PTR(info))
  {
    /* Already evacuated, just return the forwarding address.
     * HOWEVER: if the requested destination generation (gct->evac_gen) is
     * older than the actual generation (because the object was
     * already evacuated to a younger generation) then we have to
     * set the gct->failed_to_evac flag to indicate that we couldn't
     * manage to promote the object to the desired generation.
     */
    /*
     * Optimisation: the check is fairly expensive, but we can often
     * shortcut it if either the required generation is 0, or the
     * current object (the EVACUATED) is in a high enough generation.
     * We know that an EVACUATED always points to an object in the
     * same or an older generation.  gen is the lowest generation that the
     * current object would be evacuated to, so we only do the full
     * check if gen is too low.
     */
      StgClosure *e = (StgClosure*)UN_FORWARDING_PTR(info);
      *p = TAG_CLOSURE(tag,e);
      if (gen_no < gct->evac_gen_no) {  // optimisation
          if (Bdescr((P_)e)->gen_no < gct->evac_gen_no) {
              gct->failed_to_evac = rtsTrue;
              TICK_GC_FAILED_PROMOTION();
          }
      }
      return;
  }

  switch (INFO_PTR_TO_STRUCT(info)->type) {

  case WHITEHOLE:
      goto loop;

  // For ints and chars of low value, save space by replacing references to
  //    these with closures with references to common, shared ones in the RTS.
  //
  // * Except when compiling into Windows DLLs which don't support cross-package
  //    data references very well.
  //
  case CONSTR_0_1:
  {
#if defined(COMPILING_WINDOWS_DLL)
      copy_tag_nolock(p,info,q,sizeofW(StgHeader)+1,gen_no,tag);
#else
      StgWord w = (StgWord)q->payload[0];
      if (info == Czh_con_info &&
          // unsigned, so always true:  (StgChar)w >= MIN_CHARLIKE &&
          (StgChar)w <= MAX_CHARLIKE) {
          *p =  TAG_CLOSURE(tag,
                            (StgClosure *)CHARLIKE_CLOSURE((StgChar)w)
                           );
      }
      else if (info == Izh_con_info &&
          (StgInt)w >= MIN_INTLIKE && (StgInt)w <= MAX_INTLIKE) {
          *p = TAG_CLOSURE(tag,
                             (StgClosure *)INTLIKE_CLOSURE((StgInt)w)
                             );
      }
      else {
          copy_tag_nolock(p,info,q,sizeofW(StgHeader)+1,gen_no,tag);
      }
#endif
      return;
  }

  case FUN_0_1:
  case FUN_1_0:
  case CONSTR_1_0:
      copy_tag_nolock(p,info,q,sizeofW(StgHeader)+1,gen_no,tag);
      return;

  case THUNK_1_0:
  case THUNK_0_1:
      copy(p,info,q,sizeofW(StgThunk)+1,gen_no);
      return;

  case THUNK_1_1:
  case THUNK_2_0:
  case THUNK_0_2:
#ifdef NO_PROMOTE_THUNKS
#error bitrotted
#endif
    copy(p,info,q,sizeofW(StgThunk)+2,gen_no);
    return;

  case FUN_1_1:
  case FUN_2_0:
  case FUN_0_2:
  case CONSTR_1_1:
  case CONSTR_2_0:
      copy_tag_nolock(p,info,q,sizeofW(StgHeader)+2,gen_no,tag);
      return;

  case CONSTR_0_2:
      copy_tag_nolock(p,info,q,sizeofW(StgHeader)+2,gen_no,tag);
      return;

  case THUNK:
      copy(p,info,q,thunk_sizeW_fromITBL(INFO_PTR_TO_STRUCT(info)),gen_no);
      return;

  case FUN:
  case CONSTR:
      copy_tag_nolock(p,info,q,sizeW_fromITBL(INFO_PTR_TO_STRUCT(info)),gen_no,tag);
      return;

  case BLACKHOLE:
  {
      StgClosure *r;
      const StgInfoTable *i;
      r = ((StgInd*)q)->indirectee;
      if (GET_CLOSURE_TAG(r) == 0) {
          i = r->header.info;
          if (IS_FORWARDING_PTR(i)) {
              r = (StgClosure *)UN_FORWARDING_PTR(i);
              i = r->header.info;
          }
          if (i == &stg_TSO_info
              || i == &stg_WHITEHOLE_info
              || i == &stg_BLOCKING_QUEUE_CLEAN_info
              || i == &stg_BLOCKING_QUEUE_DIRTY_info) {
              copy(p,info,q,sizeofW(StgInd),gen_no);
              return;
          }
          ASSERT(i != &stg_IND_info);
      }
      q = r;
      *p = r;
      goto loop;
  }

  case MUT_VAR_CLEAN:
  case MUT_VAR_DIRTY:
  case MVAR_CLEAN:
  case MVAR_DIRTY:
  case TVAR:
  case BLOCKING_QUEUE:
  case WEAK:
  case PRIM:
  case MUT_PRIM:
      copy(p,info,q,sizeW_fromITBL(INFO_PTR_TO_STRUCT(info)),gen_no);
      return;

  case BCO:
      copy(p,info,q,bco_sizeW((StgBCO *)q),gen_no);
      return;

  case THUNK_SELECTOR:
      eval_thunk_selector(p, (StgSelector *)q, rtsTrue);
      return;

  case IND:
    // follow chains of indirections, don't evacuate them
    q = ((StgInd*)q)->indirectee;
    *p = q;
    goto loop;

  case RET_BCO:
  case RET_SMALL:
  case RET_BIG:
  case UPDATE_FRAME:
  case UNDERFLOW_FRAME:
  case STOP_FRAME:
  case CATCH_FRAME:
  case CATCH_STM_FRAME:
  case CATCH_RETRY_FRAME:
  case ATOMICALLY_FRAME:
    // shouldn't see these
    barf("evacuate: stack frame at %p\n", q);

  case PAP:
      copy(p,info,q,pap_sizeW((StgPAP*)q),gen_no);
      return;

  case AP:
      copy(p,info,q,ap_sizeW((StgAP*)q),gen_no);
      return;

  case AP_STACK:
      copy(p,info,q,ap_stack_sizeW((StgAP_STACK*)q),gen_no);
      return;

  case ARR_WORDS:
      // just copy the block
      copy(p,info,q,arr_words_sizeW((StgArrBytes *)q),gen_no);
      return;

  case MUT_ARR_PTRS_CLEAN:
  case MUT_ARR_PTRS_DIRTY:
  case MUT_ARR_PTRS_FROZEN:
  case MUT_ARR_PTRS_FROZEN0:
      // just copy the block
      copy(p,info,q,mut_arr_ptrs_sizeW((StgMutArrPtrs *)q),gen_no);
      return;

  case SMALL_MUT_ARR_PTRS_CLEAN:
  case SMALL_MUT_ARR_PTRS_DIRTY:
  case SMALL_MUT_ARR_PTRS_FROZEN:
  case SMALL_MUT_ARR_PTRS_FROZEN0:
      // just copy the block
      copy(p,info,q,small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs *)q),gen_no);
      return;

  case TSO:
      copy(p,info,q,sizeofW(StgTSO),gen_no);
      return;

  case STACK:
    {
      StgStack *stack = (StgStack *)q;

      /* To evacuate a small STACK, we need to adjust the stack pointer
       */
      {
          StgStack *new_stack;
          StgPtr r, s;
          rtsBool mine;

          mine = copyPart(p,(StgClosure *)stack, stack_sizeW(stack),
                          sizeofW(StgStack), gen_no);
          if (mine) {
              new_stack = (StgStack *)*p;
              move_STACK(stack, new_stack);
              for (r = stack->sp, s = new_stack->sp;
                   r < stack->stack + stack->stack_size;) {
                  *s++ = *r++;
              }
          }
          return;
      }
    }

  case TREC_CHUNK:
      copy(p,info,q,sizeofW(StgTRecChunk),gen_no);
      return;

  default:
    barf("evacuate: strange closure type %d", (int)(INFO_PTR_TO_STRUCT(info)->type));
  }

  barf("evacuate");
}
Beispiel #5
0
//
// Check whether we can unload any object code.  This is called at the
// appropriate point during a GC, where all the heap data is nice and
// packed together and we have a linked list of the static objects.
//
// The check involves a complete heap traversal, but you only pay for
// this (a) when you have called unloadObj(), and (b) at a major GC,
// which is much more expensive than the traversal we're doing here.
//
void checkUnload (StgClosure *static_objects)
{
  nat g, n;
  HashTable *addrs;
  StgClosure* p;
  const StgInfoTable *info;
  ObjectCode *oc, *prev, *next;
  gen_workspace *ws;
  StgClosure* link;

  if (unloaded_objects == NULL) return;

  ACQUIRE_LOCK(&linker_unloaded_mutex);

  // Mark every unloadable object as unreferenced initially
  for (oc = unloaded_objects; oc; oc = oc->next) {
      IF_DEBUG(linker, debugBelch("Checking whether to unload %" PATH_FMT "\n",
                                  oc->fileName));
      oc->referenced = rtsFalse;
  }

  addrs = allocHashTable();

  for (p = static_objects; p != END_OF_STATIC_OBJECT_LIST; p = link) {
      p = UNTAG_STATIC_LIST_PTR(p);
      checkAddress(addrs, p);
      info = get_itbl(p);
      link = *STATIC_LINK(info, p);
  }

  // CAFs on revertible_caf_list are not on static_objects
  for (p = (StgClosure*)revertible_caf_list;
       p != END_OF_CAF_LIST;
       p = ((StgIndStatic *)p)->static_link) {
      p = UNTAG_STATIC_LIST_PTR(p);
      checkAddress(addrs, p);
  }

  for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
      searchHeapBlocks (addrs, generations[g].blocks);
      searchHeapBlocks (addrs, generations[g].large_objects);

      for (n = 0; n < n_capabilities; n++) {
          ws = &gc_threads[n]->gens[g];
          searchHeapBlocks(addrs, ws->todo_bd);
          searchHeapBlocks(addrs, ws->part_list);
          searchHeapBlocks(addrs, ws->scavd_list);
      }
  }

#ifdef PROFILING
  /* Traverse the cost centre tree, calling checkAddress on each CCS/CC */
  searchCostCentres(addrs, CCS_MAIN);

  /* Also check each cost centre in the CC_LIST */
  CostCentre *cc;
  for (cc = CC_LIST; cc != NULL; cc = cc->link) {
      checkAddress(addrs, cc);
  }
#endif /* PROFILING */

  // Look through the unloadable objects, and any object that is still
  // marked as unreferenced can be physically unloaded, because we
  // have no references to it.
  prev = NULL;
  for (oc = unloaded_objects; oc; oc = next) {
      next = oc->next;
      if (oc->referenced == 0) {
          if (prev == NULL) {
              unloaded_objects = oc->next;
          } else {
              prev->next = oc->next;
          }
          IF_DEBUG(linker, debugBelch("Unloading object file %" PATH_FMT "\n",
                                      oc->fileName));
          freeObjectCode(oc);
      } else {
          IF_DEBUG(linker, debugBelch("Object file still in use: %"
                                      PATH_FMT "\n", oc->fileName));
          prev = oc;
      }
  }

  freeHashTable(addrs, NULL);

  RELEASE_LOCK(&linker_unloaded_mutex);
}
Beispiel #6
0
//
// Check whether we can unload any object code.  This is called at the
// appropriate point during a GC, where all the heap data is nice and
// packed together and we have a linked list of the static objects.
//
// The check involves a complete heap traversal, but you only pay for
// this (a) when you have called unloadObj(), and (b) at a major GC,
// which is much more expensive than the traversal we're doing here.
//
void checkUnload (StgClosure *static_objects)
{
  nat g, n;
  HashTable *addrs;
  StgClosure* p;
  const StgInfoTable *info;
  ObjectCode *oc, *prev, *next;
  gen_workspace *ws;
  StgClosure* link;

  if (unloaded_objects == NULL) return;

  // Mark every unloadable object as unreferenced initially
  for (oc = unloaded_objects; oc; oc = oc->next) {
      IF_DEBUG(linker, debugBelch("Checking whether to unload %" PATH_FMT "\n",
                                  oc->fileName));
      oc->referenced = rtsFalse;
  }

  addrs = allocHashTable();

  for (p = static_objects; p != END_OF_STATIC_LIST; p = link) {
      checkAddress(addrs, p);
      info = get_itbl(p);
      link = *STATIC_LINK(info, p);
  }

  for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
      searchHeapBlocks (addrs, generations[g].blocks);
      searchHeapBlocks (addrs, generations[g].large_objects);

      for (n = 0; n < n_capabilities; n++) {
          ws = &gc_threads[n]->gens[g];
          searchHeapBlocks(addrs, ws->todo_bd);
          searchHeapBlocks(addrs, ws->part_list);
          searchHeapBlocks(addrs, ws->scavd_list);
      }
  }

  // Look through the unloadable objects, and any object that is still
  // marked as unreferenced can be physically unloaded, because we
  // have no references to it.
  prev = NULL;
  for (oc = unloaded_objects; oc; prev = oc, oc = next) {
      next = oc->next;
      if (oc->referenced == 0) {
          if (prev == NULL) {
              unloaded_objects = oc->next;
          } else {
              prev->next = oc->next;
          }
          IF_DEBUG(linker, debugBelch("Unloading object file %" PATH_FMT "\n",
                                      oc->fileName));
          freeObjectCode(oc);
      } else {
          IF_DEBUG(linker, debugBelch("Object file still in use: %"
                                      PATH_FMT "\n", oc->fileName));
      }
  }

  freeHashTable(addrs, NULL);
}
Beispiel #7
0
static void
scavenge_static(void)
{
  StgClosure* p;
  const StgInfoTable *info;

  debugTrace(DEBUG_gc, "scavenging static objects");

  /* Always evacuate straight to the oldest generation for static
   * objects */
  gct->evac_gen_no = oldest_gen->no;

  /* keep going until we've scavenged all the objects on the linked
     list... */

  while (1) {
      
    /* get the next static object from the list.  Remember, there might
     * be more stuff on this list after each evacuation...
     * (static_objects is a global)
     */
    p = gct->static_objects;
    if (p == END_OF_STATIC_LIST) {
    	  break;
    }
    
    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
    info = get_itbl(p);
    /*
    	if (info->type==RBH)
    	info = REVERT_INFOPTR(info); // if it's an RBH, look at the orig closure
    */
    // make sure the info pointer is into text space 
    
    /* Take this object *off* the static_objects list,
     * and put it on the scavenged_static_objects list.
     */
    gct->static_objects = *STATIC_LINK(info,p);
    *STATIC_LINK(info,p) = gct->scavenged_static_objects;
    gct->scavenged_static_objects = p;
    
    switch (info -> type) {
      
    case IND_STATIC:
      {
	StgInd *ind = (StgInd *)p;
	evacuate(&ind->indirectee);

	/* might fail to evacuate it, in which case we have to pop it
	 * back on the mutable list of the oldest generation.  We
	 * leave it *on* the scavenged_static_objects list, though,
	 * in case we visit this object again.
	 */
	if (gct->failed_to_evac) {
	  gct->failed_to_evac = rtsFalse;
	  recordMutableGen_GC((StgClosure *)p,oldest_gen->no);
	}
	break;
      }
      
    case THUNK_STATIC:
      scavenge_thunk_srt(info);
      break;

    case FUN_STATIC:
      scavenge_fun_srt(info);
      break;
      
    case CONSTR_STATIC:
      {	
	StgPtr q, next;
	
	next = (P_)p->payload + info->layout.payload.ptrs;
	// evacuate the pointers 
	for (q = (P_)p->payload; q < next; q++) {
	    evacuate((StgClosure **)q);
	}
	break;
      }
      
    default:
      barf("scavenge_static: strange closure %d", (int)(info->type));
    }

    ASSERT(gct->failed_to_evac == rtsFalse);
  }
}