mlib_status mlib_AffineEdges(mlib_affine_param *param, const mlib_image *dst, const mlib_image *src, void *buff_lcl, mlib_s32 buff_size, mlib_s32 kw, mlib_s32 kh, mlib_s32 kw1, mlib_s32 kh1, mlib_edge edge, const mlib_d64 *mtx, mlib_s32 shiftx, mlib_s32 shifty) { mlib_u8 *buff = buff_lcl; mlib_u8 **lineAddr = param->lineAddr; mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight, srcYStride, dstYStride; mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts, bsize0, bsize1 = 0; mlib_u8 *srcData, *dstData; mlib_u8 *paddings; void *warp_tbl = NULL; mlib_s32 yStart = 0, yFinish = -1, dX, dY; mlib_d64 xClip, yClip, wClip, hClip; mlib_d64 delta = 0.; mlib_d64 minX, minY, maxX, maxY; mlib_d64 coords[4][2]; mlib_d64 a = mtx[0], b = mtx[1], tx = mtx[2], c = mtx[3], d = mtx[4], ty = mtx[5]; mlib_d64 a2, b2, tx2, c2, d2, ty2; mlib_d64 dx, dy, div; mlib_s32 sdx, sdy; mlib_d64 dTop; mlib_d64 val0; mlib_s32 top, bot; mlib_s32 topIdx, max_xsize = 0; mlib_s32 i, j, t; srcData = mlib_ImageGetData(src); dstData = mlib_ImageGetData(dst); srcWidth = mlib_ImageGetWidth(src); srcHeight = mlib_ImageGetHeight(src); dstWidth = mlib_ImageGetWidth(dst); dstHeight = mlib_ImageGetHeight(dst); srcYStride = mlib_ImageGetStride(src); dstYStride = mlib_ImageGetStride(dst); paddings = mlib_ImageGetPaddings(src); if (srcWidth >= (1 << 15) || srcHeight >= (1 << 15)) { return MLIB_FAILURE; } div = a * d - b * c; if (div == 0.0) { return MLIB_FAILURE; } bsize0 = (dstHeight * sizeof(mlib_s32) + 7) & ~7; if (lineAddr == NULL) { bsize1 = ((srcHeight + 4 * kh) * sizeof(mlib_u8 *) + 7) & ~7; } param->buff_malloc = NULL; if ((4 * bsize0 + bsize1) > buff_size) { buff = param->buff_malloc = mlib_malloc(4 * bsize0 + bsize1); if (buff == NULL) return MLIB_FAILURE; } leftEdges = (mlib_s32 *) (buff); rightEdges = (mlib_s32 *) (buff += bsize0); xStarts = (mlib_s32 *) (buff += bsize0); yStarts = (mlib_s32 *) (buff += bsize0); if (lineAddr == NULL) { mlib_u8 *srcLinePtr = srcData; lineAddr = (mlib_u8 **) (buff += bsize0); for (i = 0; i < 2 * kh; i++) lineAddr[i] = srcLinePtr; lineAddr += 2 * kh; for (i = 0; i < srcHeight - 1; i++) { lineAddr[i] = srcLinePtr; srcLinePtr += srcYStride; } for (i = srcHeight - 1; i < srcHeight + 2 * kh; i++) lineAddr[i] = srcLinePtr; } if ((mlib_s32) edge < 0) { /* process edges */ minX = 0; minY = 0; maxX = srcWidth; maxY = srcHeight; } else { if (kw > 1) delta = -0.5; /* for MLIB_NEAREST filter delta = 0. */ minX = (kw1 - delta); minY = (kh1 - delta); maxX = srcWidth - ((kw - 1) - (kw1 - delta)); maxY = srcHeight - ((kh - 1) - (kh1 - delta)); if (edge == MLIB_EDGE_SRC_PADDED) { if (minX < paddings[0]) minX = paddings[0]; if (minY < paddings[1]) minY = paddings[1]; if (maxX > (srcWidth - paddings[2])) maxX = srcWidth - paddings[2]; if (maxY > (srcHeight - paddings[3])) maxY = srcHeight - paddings[3]; } } xClip = minX; yClip = minY; wClip = maxX; hClip = maxY; /* * STORE_PARAM(param, src); * STORE_PARAM(param, dst); */ param->src = (void *)src; param->dst = (void *)dst; STORE_PARAM(param, lineAddr); STORE_PARAM(param, dstData); STORE_PARAM(param, srcYStride); STORE_PARAM(param, dstYStride); STORE_PARAM(param, leftEdges); STORE_PARAM(param, rightEdges); STORE_PARAM(param, xStarts); STORE_PARAM(param, yStarts); STORE_PARAM(param, max_xsize); STORE_PARAM(param, yStart); STORE_PARAM(param, yFinish); STORE_PARAM(param, warp_tbl); if ((xClip >= wClip) || (yClip >= hClip)) { return MLIB_SUCCESS; } a2 = d; b2 = -b; tx2 = (-d * tx + b * ty); c2 = -c; d2 = a; ty2 = (c * tx - a * ty); dx = a2; dy = c2; tx -= 0.5; ty -= 0.5; coords[0][0] = xClip * a + yClip * b + tx; coords[0][1] = xClip * c + yClip * d + ty; coords[2][0] = wClip * a + hClip * b + tx; coords[2][1] = wClip * c + hClip * d + ty; if (div > 0) { coords[1][0] = wClip * a + yClip * b + tx; coords[1][1] = wClip * c + yClip * d + ty; coords[3][0] = xClip * a + hClip * b + tx; coords[3][1] = xClip * c + hClip * d + ty; } else { coords[3][0] = wClip * a + yClip * b + tx; coords[3][1] = wClip * c + yClip * d + ty; coords[1][0] = xClip * a + hClip * b + tx; coords[1][1] = xClip * c + hClip * d + ty; } topIdx = 0; for (i = 1; i < 4; i++) { if (coords[i][1] < coords[topIdx][1]) topIdx = i; } dTop = coords[topIdx][1]; val0 = dTop; SAT32(top); bot = -1; if (top >= dstHeight) { return MLIB_SUCCESS; } if (dTop >= 0.0) { mlib_d64 xLeft, xRight, x; mlib_s32 nextIdx; if (dTop == top) { xLeft = coords[topIdx][0]; xRight = coords[topIdx][0]; nextIdx = (topIdx + 1) & 0x3; if (dTop == coords[nextIdx][1]) { x = coords[nextIdx][0]; xLeft = (xLeft <= x) ? xLeft : x; xRight = (xRight >= x) ? xRight : x; } nextIdx = (topIdx - 1) & 0x3; if (dTop == coords[nextIdx][1]) { x = coords[nextIdx][0]; xLeft = (xLeft <= x) ? xLeft : x; xRight = (xRight >= x) ? xRight : x; } val0 = xLeft; SAT32(t); leftEdges[top] = (t >= xLeft) ? t : ++t; if (xLeft >= MLIB_S32_MAX) leftEdges[top] = MLIB_S32_MAX; val0 = xRight; SAT32(rightEdges[top]); } else top++; } else top = 0; for (i = 0; i < 2; i++) { mlib_d64 dY1 = coords[(topIdx - i) & 0x3][1]; mlib_d64 dX1 = coords[(topIdx - i) & 0x3][0]; mlib_d64 dY2 = coords[(topIdx - i - 1) & 0x3][1]; mlib_d64 dX2 = coords[(topIdx - i - 1) & 0x3][0]; mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1); mlib_s32 y1; mlib_s32 y2; if (dY1 == dY2) continue; if (dY1 < 0.0) y1 = 0; else { val0 = dY1 + 1; SAT32(y1); } val0 = dY2; SAT32(y2); if (y2 >= dstHeight) y2 = (mlib_s32) (dstHeight - 1); x += slope * (y1 - dY1); #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = y1; j <= y2; j++) { val0 = x; SAT32(t); leftEdges[j] = (t >= x) ? t : ++t; if (x >= MLIB_S32_MAX) leftEdges[j] = MLIB_S32_MAX; x += slope; } } for (i = 0; i < 2; i++) { mlib_d64 dY1 = coords[(topIdx + i) & 0x3][1]; mlib_d64 dX1 = coords[(topIdx + i) & 0x3][0]; mlib_d64 dY2 = coords[(topIdx + i + 1) & 0x3][1]; mlib_d64 dX2 = coords[(topIdx + i + 1) & 0x3][0]; mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1); mlib_s32 y1; mlib_s32 y2; if (dY1 == dY2) continue; if (dY1 < 0.0) y1 = 0; else { val0 = dY1 + 1; SAT32(y1); } val0 = dY2; SAT32(y2); if (y2 >= dstHeight) y2 = (mlib_s32) (dstHeight - 1); x += slope * (y1 - dY1); #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (j = y1; j <= y2; j++) { val0 = x; SAT32(rightEdges[j]); x += slope; } bot = y2; } { mlib_d64 dxCl = xClip * div; mlib_d64 dyCl = yClip * div; mlib_d64 dwCl = wClip * div; mlib_d64 dhCl = hClip * div; mlib_s32 xCl = (mlib_s32) (xClip + delta); mlib_s32 yCl = (mlib_s32) (yClip + delta); mlib_s32 wCl = (mlib_s32) (wClip + delta); mlib_s32 hCl = (mlib_s32) (hClip + delta); /* * mlib_s32 xCl = (mlib_s32)(xClip + delta); * mlib_s32 yCl = (mlib_s32)(yClip + delta); * mlib_s32 wCl = (mlib_s32)(wClip); * mlib_s32 hCl = (mlib_s32)(hClip); */ if (edge == MLIB_EDGE_SRC_PADDED) { xCl = kw1; yCl = kh1; wCl = (mlib_s32) (srcWidth - ((kw - 1) - kw1)); hCl = (mlib_s32) (srcHeight - ((kh - 1) - kh1)); } div = 1.0 / div; sdx = (mlib_s32) (a2 * div * (1 << shiftx)); sdy = (mlib_s32) (c2 * div * (1 << shifty)); if (div > 0) { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = top; i <= bot; i++) { mlib_s32 xLeft = leftEdges[i]; mlib_s32 xRight = rightEdges[i]; mlib_s32 xs, ys, x_e, y_e, x_s, y_s; mlib_d64 dxs, dys, dxe, dye; mlib_d64 xl, ii, xr; xLeft = (xLeft < 0) ? 0 : xLeft; xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight; xl = xLeft + 0.5; ii = i + 0.5; xr = xRight + 0.5; dxs = xl * a2 + ii * b2 + tx2; dys = xl * c2 + ii * d2 + ty2; if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) { dxs += dx; dys += dy; xLeft++; if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) xRight = -1; } dxe = xr * a2 + ii * b2 + tx2; dye = xr * c2 + ii * d2 + ty2; if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) { dxe -= dx; dye -= dy; xRight--; if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) xRight = -1; } xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx)); x_s = xs >> shiftx; ys = (mlib_s32) ((dys * div + delta) * (1 << shifty)); y_s = ys >> shifty; if (x_s < xCl) xs = (xCl << shiftx); else if (x_s >= wCl) xs = ((wCl << shiftx) - 1); if (y_s < yCl) ys = (yCl << shifty); else if (y_s >= hCl) ys = ((hCl << shifty) - 1); if (xRight >= xLeft) { x_e = ((xRight - xLeft) * sdx + xs) >> shiftx; y_e = ((xRight - xLeft) * sdy + ys) >> shifty; if ((x_e < xCl) || (x_e >= wCl)) { if (sdx > 0) sdx -= 1; else sdx += 1; } if ((y_e < yCl) || (y_e >= hCl)) { if (sdy > 0) sdy -= 1; else sdy += 1; } } leftEdges[i] = xLeft; rightEdges[i] = xRight; xStarts[i] = xs; yStarts[i] = ys; if ((xRight - xLeft + 1) > max_xsize) max_xsize = (xRight - xLeft + 1); } } else { #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = top; i <= bot; i++) {
mlib_status mlib_ImageGridWarp_alltypes( mlib_image *dst, const mlib_image *src, const mlib_f32 *xWarpPos, const mlib_f32 *yWarpPos, mlib_d64 postShiftX, mlib_d64 postShiftY, mlib_s32 xStart, mlib_s32 xStep, mlib_s32 xNumCells, mlib_s32 yStart, mlib_s32 yStep, mlib_s32 yNumCells, mlib_filter filter, mlib_edge edge) { mlib_affine_param param[1]; mlib_status res = MLIB_SUCCESS; mlib_type type; mlib_s32 nchan; mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight; mlib_s32 srcYStride, dstYStride; mlib_s32 *warp_tbl, sArr[5 + 2 * BUFF_SIZE], t_ind = 0; mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts; mlib_s32 leArr[BUFF_SIZE], reArr[BUFF_SIZE], xsArr[BUFF_SIZE], ysArr[BUFF_SIZE]; mlib_u8 *laArr[BUFF_SIZE + 4], **lineAddr, *memBuffer = NULL; mlib_u8 *srcLinePtr; mlib_u8 *srcData, *dstData_beg, *dstData; mlib_u8 *paddings; mlib_s32 align; mlib_s32 xFirst, xLast, xSkip, xRest; mlib_s32 yFirst, yLast, ySkip, yRest; mlib_d64 minX, minY, maxX, maxY; mlib_s32 xBeg, xEnd; mlib_s32 yBeg, yEnd; mlib_s32 yskip, xskip, yrest, xrest; mlib_s32 x, y, cx, cy; mlib_d64 px0, py0, px1, py1, px3, py3; mlib_d64 dx0, dx1, dy0, dy1, cx0, cx1, cy0, cy1, dx, dy, cx2, cy2, cx3, cy3; mlib_d64 delta_x, delta_y; mlib_d64 xs, ys; mlib_d64 xNum, yNum; mlib_d64 xStep1 = 1.0 / xStep, yStep1 = 1.0 / yStep; mlib_s32 is_clip, is_clip1, is_clip2, is_clip3, is_clip4; mlib_d64 tE, tL, tmp_x0, tmp_y0, tmp_dx, tmp_dy, num, denom, t; mlib_d64 d_rdx, d_rdy, x0, y0, x1, y1, offset; mlib_s32 shift_left, shift_right, max_xsize; mlib_s32 i; /* check for obvious errors */ MLIB_IMAGE_TYPE_EQUAL(src, dst); MLIB_IMAGE_CHAN_EQUAL(src, dst); if (xNumCells == 0 || yNumCells == 0) return (MLIB_SUCCESS); if (xWarpPos == NULL || yWarpPos == NULL) return (MLIB_FAILURE); if (edge != MLIB_EDGE_DST_NO_WRITE && edge != MLIB_EDGE_SRC_PADDED) return (MLIB_FAILURE); if (xNumCells < 0 || yNumCells <= 0 || xStep <= 0 || yStep <= 0) return (MLIB_FAILURE); srcData = mlib_ImageGetData(src); dstData_beg = mlib_ImageGetData(dst); type = mlib_ImageGetType(dst); nchan = mlib_ImageGetChannels(dst); srcWidth = mlib_ImageGetWidth(src); srcHeight = mlib_ImageGetHeight(src); dstWidth = mlib_ImageGetWidth(dst); dstHeight = mlib_ImageGetHeight(dst); srcYStride = mlib_ImageGetStride(src); dstYStride = mlib_ImageGetStride(dst); paddings = mlib_ImageGetPaddings(src); if (srcWidth >= (1 << 15) || srcHeight >= (1 << 15)) { return (MLIB_FAILURE); } if (xStart >= dstWidth || ((xStart + xStep * xNumCells) <= 0) || yStart >= dstHeight || ((yStart + yStep * yNumCells) <= 0)) return (MLIB_SUCCESS); if (srcHeight < BUFF_SIZE && dstHeight < BUFF_SIZE) { lineAddr = laArr; leftEdges = leArr; rightEdges = reArr; xStarts = xsArr; yStarts = ysArr; warp_tbl = sArr; } else { memBuffer = __mlib_malloc((6 * dstHeight + 8) * sizeof (mlib_s32) + (srcHeight + 4) * sizeof (mlib_u8 *)); if (memBuffer == NULL) return (MLIB_FAILURE); leftEdges = (mlib_s32 *)(memBuffer); rightEdges = (mlib_s32 *)(memBuffer + dstHeight * sizeof (mlib_s32)); xStarts = (mlib_s32 *)(memBuffer + 2 * dstHeight * sizeof (mlib_s32)); yStarts = (mlib_s32 *)(memBuffer + 3 * dstHeight * sizeof (mlib_s32)); warp_tbl = (mlib_s32 *)(memBuffer + 4 * dstHeight * sizeof (mlib_s32)); lineAddr = (mlib_u8 **)(memBuffer + (6 * dstHeight + 8) * sizeof (mlib_s32)); } for (xFirst = 0; ; xFirst++) { if ((xStart + xFirst * xStep + xStep - 1) >= 0) break; } for (yFirst = 0; ; yFirst++) { if ((yStart + yFirst * yStep + yStep - 1) >= 0) break; } for (xLast = xNumCells - 1; xLast >= xFirst; xLast--) { if ((xStart + xLast * xStep) <= (dstWidth - 1)) break; } for (yLast = yNumCells - 1; yLast >= yFirst; yLast--) { if ((yStart + yLast * yStep) <= (dstHeight - 1)) break; } if ((xStart + xFirst * xStep) < 0) xSkip = -(xStart + xFirst * xStep); else xSkip = 0; if ((yStart + yFirst * yStep) < 0) ySkip = -(yStart + yFirst * yStep); else ySkip = 0; if ((xStart + xLast * xStep + xStep) > (dstWidth)) xRest = (xStart + xLast * xStep + xStep) - (dstWidth); else xRest = 0; if ((yStart + yLast * yStep + yStep) > (dstHeight)) yRest = (yStart + yLast * yStep + yStep) - (dstHeight); else yRest = 0; srcLinePtr = (mlib_u8 *)srcData; lineAddr += 2; for (i = -2; i < srcHeight + 2; i++) { lineAddr[i] = srcLinePtr + i * srcYStride; } if (type == MLIB_BYTE) t_ind = 0; else if (type == MLIB_SHORT) t_ind = 1; else if (type == MLIB_INT) t_ind = 2; else if (type == MLIB_USHORT) t_ind = 3; else if (type == MLIB_FLOAT) t_ind = 4; else if (type == MLIB_DOUBLE) t_ind = 5; if (filter == MLIB_NEAREST) { if (t_ind >= 3) /* correct types USHORT, FLOAT, DOUBLE; new values: 1, 2, 3 */ t_ind -= 2; /* two channels as one channel of next type */ align = (mlib_s32)dstData_beg | (mlib_s32)srcData | dstYStride | srcYStride; #ifndef i386 /* do not perform the copying by mlib_d64 data type for x86 */ while (((nchan | (align >> t_ind)) & 1) == 0 && t_ind < 3) #else /* i386 ( do not perform the copying by mlib_d64 data type for x86 ) */ while (((nchan | (align >> t_ind)) & 1) == 0 && t_ind < 2) #endif /* i386 ( do not perform the copying by mlib_d64 data type for x86 ) */ { nchan >>= 1; t_ind++; } } switch (filter) { case MLIB_NEAREST: minX = 0; minY = 0; maxX = srcWidth; maxY = srcHeight; offset = 0; break; case MLIB_BILINEAR: minX = 0.5; minY = 0.5; maxX = srcWidth - 0.5; maxY = srcHeight - 0.5; offset = 0.5; break; case MLIB_BICUBIC: case MLIB_BICUBIC2: minX = 1.5; minY = 1.5; maxX = srcWidth - 1.5; maxY = srcHeight - 1.5; offset = 0.5; break; default: if (memBuffer != NULL) { __mlib_free(memBuffer); } return (MLIB_FAILURE); } if (edge == MLIB_EDGE_SRC_PADDED) { if (minX < paddings[0]) minX = paddings[0]; if (minY < paddings[1]) minY = paddings[1]; if (maxX > (srcWidth - paddings[2])) maxX = srcWidth - paddings[2]; if (maxY > (srcHeight - paddings[3])) maxY = srcHeight - paddings[3]; } if ((minX >= maxX) || (minY >= maxY)) { if (memBuffer != NULL) { __mlib_free(memBuffer); } return (MLIB_SUCCESS); } /* * STORE_PARAM(param, src); */ param->src = (void *)src; STORE_PARAM(param, dst); STORE_PARAM(param, lineAddr); STORE_PARAM(param, leftEdges); STORE_PARAM(param, rightEdges); STORE_PARAM(param, xStarts); STORE_PARAM(param, yStarts); STORE_PARAM(param, srcYStride); STORE_PARAM(param, dstYStride); STORE_PARAM(param, warp_tbl); STORE_PARAM(param, filter); for (y = yFirst, cy = yStart + yFirst * yStep; y <= yLast; y++, cy += yStep) { yskip = (y == yFirst) ? ySkip : 0; yrest = (y == yLast) ? yRest : 0; yBeg = cy + yskip; yEnd = cy + (yStep - 1) - yrest; yNum = yEnd - yBeg; ys = yskip + 0.5; INIT_GRID_ROW(xFirst, y); for (x = xFirst, cx = xStart + xFirst * xStep; x <= xLast; x++, cx += xStep) { xskip = (x == xFirst) ? xSkip : 0; xrest = (x == xLast) ? xRest : 0; xBeg = cx + xskip; xEnd = cx + (xStep - 1) - xrest; xNum = xEnd - xBeg; xs = xskip + 0.5; INCR_GRID_ROW(x, y, xs, ys); max_xsize = 0; if (IS_CELL_CLIP()) { for (i = yBeg; i <= yEnd; i++) { tE = 0; tL = xNum; tmp_x0 = cx0 + (i - yBeg) * dx0; tmp_y0 = cy0 + (i - yBeg) * dy0; tmp_dx = dx + (i - yBeg) * delta_x; tmp_dy = dy + (i - yBeg) * delta_y; if (tmp_dx) { d_rdx = 1.0 / tmp_dx; MLIB_CLIP(d_rdx, -tmp_x0 + minX); MLIB_CLIP(-d_rdx, tmp_x0 - maxX); } else if ((tmp_x0 < minX) || (tmp_x0 >= maxX)) { leftEdges[i] = 1; rightEdges[i] = 0; continue; } if (tmp_dy) { d_rdy = 1.0 / tmp_dy; MLIB_CLIP(d_rdy, -tmp_y0 + minY); MLIB_CLIP(-d_rdy, tmp_y0 - maxY); } else if ((tmp_y0 < minY) || (tmp_y0 >= maxY)) { leftEdges[i] = 1; rightEdges[i] = 0; continue; } if (tE > tL) { leftEdges[i] = 1; rightEdges[i] = 0; continue; } shift_left = (mlib_s32)tE; if ((mlib_d64)shift_left != tE) shift_left++; shift_right = (mlib_s32)tL; if ((mlib_d64)shift_right != tL) shift_right++; x0 = tmp_x0 + shift_left * tmp_dx; x1 = tmp_x0 + shift_right * tmp_dx; if (tmp_dx >= 0) { if (x0 < minX) shift_left++; if (x1 >= maxX) shift_right--; } else { if (x0 >= maxX) shift_left++; if (x1 < minX) shift_right--; } y0 = tmp_y0 + shift_left * tmp_dy; y1 = tmp_y0 + shift_right * tmp_dy; if (tmp_dy >= 0) { if (y0 < minY) shift_left++; if (y1 >= maxY) shift_right--; } else { if (y0 >= maxY) shift_left++; if (y1 < minY) shift_right--; } x0 = tmp_x0 + shift_left * tmp_dx; y0 = tmp_y0 + shift_left * tmp_dy; leftEdges[i] = xBeg + shift_left; rightEdges[i] = xBeg + shift_right; if ((shift_right - shift_left + 1) > max_xsize) max_xsize = (shift_right - shift_left + 1); xStarts[i] = (mlib_s32)((x0 - offset) * MLIB_PREC); yStarts[i] = (mlib_s32)((y0 - offset) * MLIB_PREC); warp_tbl[2 * i] = (mlib_s32)(tmp_dx * MLIB_PREC); warp_tbl[2 * i + 1] = (mlib_s32)(tmp_dy * MLIB_PREC); } } else { if ((xEnd - xBeg + 1) > max_xsize) max_xsize = (xEnd - xBeg + 1); #ifdef __SUNPRO_C #pragma pipeloop(0) #endif /* __SUNPRO_C */ for (i = yBeg; i <= yEnd; i++) { tmp_x0 = cx0 + (i - yBeg) * dx0; tmp_y0 = cy0 + (i - yBeg) * dy0; tmp_dx = dx + (i - yBeg) * delta_x; tmp_dy = dy + (i - yBeg) * delta_y; leftEdges[i] = xBeg; rightEdges[i] = xEnd; xStarts[i] = (mlib_s32)((tmp_x0 - offset) * MLIB_PREC); yStarts[i] = (mlib_s32)((tmp_y0 - offset) * MLIB_PREC); warp_tbl[2 * i] = (mlib_s32)(tmp_dx * MLIB_PREC); warp_tbl[2 * i + 1] = (mlib_s32)(tmp_dy * MLIB_PREC); } } if (max_xsize > 0) { mlib_s32 yStart = yBeg; mlib_s32 yFinish = yEnd; dstData = dstData_beg + (yBeg - 1) * dstYStride; STORE_PARAM(param, dstData); STORE_PARAM(param, yStart); STORE_PARAM(param, yFinish); STORE_PARAM(param, max_xsize); switch (filter) { case MLIB_NEAREST: res = mlib_AffineFunArr_nn[4 * t_ind + (nchan - 1)] (param); break; case MLIB_BILINEAR: res = mlib_AffineFunArr_bl[4 * t_ind + (nchan - 1)] (param); break; case MLIB_BICUBIC: case MLIB_BICUBIC2: res = mlib_AffineFunArr_bc[4 * t_ind + (nchan - 1)] (param); break; } if (res != MLIB_SUCCESS) { if (memBuffer != NULL) __mlib_free(memBuffer); return (res); } } } } if (memBuffer != NULL) { __mlib_free(memBuffer); } return (MLIB_SUCCESS); }
mlib_status mlib_ImageAffine_alltypes(mlib_image *dst, const mlib_image *src, const mlib_d64 *mtx, mlib_filter filter, mlib_edge edge, const void *colormap) { mlib_affine_param param[1]; mlib_status res; mlib_type type; mlib_s32 nchan, t_ind, kw, kw1; mlib_addr align; mlib_d64 buff_lcl[BUFF_SIZE / 8]; mlib_u8 **lineAddr = NULL; /* check for obvious errors */ MLIB_IMAGE_TYPE_EQUAL(src, dst); MLIB_IMAGE_CHAN_EQUAL(src, dst); type = mlib_ImageGetType(dst); nchan = mlib_ImageGetChannels(dst); switch (filter) { case MLIB_NEAREST: kw = 1; kw1 = 0; break; case MLIB_BILINEAR: kw = 2; kw1 = 0; break; case MLIB_BICUBIC: case MLIB_BICUBIC2: kw = 4; kw1 = 1; break; default: return MLIB_FAILURE; } STORE_PARAM(param, lineAddr); STORE_PARAM(param, filter); res = mlib_AffineEdges(param, dst, src, buff_lcl, BUFF_SIZE, kw, kw, kw1, kw1, edge, mtx, MLIB_SHIFT, MLIB_SHIFT); if (res != MLIB_SUCCESS) return res; lineAddr = param->lineAddr; if (type == MLIB_BYTE) t_ind = 0; else if (type == MLIB_SHORT) t_ind = 1; else if (type == MLIB_INT) t_ind = 2; else if (type == MLIB_USHORT) t_ind = 3; else if (type == MLIB_FLOAT) t_ind = 4; else if (type == MLIB_DOUBLE) t_ind = 5; if (colormap != NULL && filter != MLIB_NEAREST) { if (t_ind != 0 && t_ind != 1) return MLIB_FAILURE; if (mlib_ImageGetLutType(colormap) == MLIB_SHORT) t_ind += 2; t_ind = 2 * t_ind; if (mlib_ImageGetLutChannels(colormap) == 4) t_ind++; } if (type == MLIB_BIT) { mlib_s32 s_bitoff = mlib_ImageGetBitOffset(src); mlib_s32 d_bitoff = mlib_ImageGetBitOffset(dst); if (nchan != 1 || filter != MLIB_NEAREST) return MLIB_FAILURE; mlib_ImageAffine_bit_1ch_nn(param, s_bitoff, d_bitoff); } else { switch (filter) { case MLIB_NEAREST: if (t_ind >= 3) t_ind -= 2; /* correct types USHORT, FLOAT, DOUBLE; new values: 1, 2, 3 */ /* two channels as one channel of next type */ align = (mlib_addr) (param->dstData) | (mlib_addr) lineAddr[0]; align |= param->dstYStride | param->srcYStride; while (((nchan | (align >> t_ind)) & 1) == 0 && t_ind < MAX_T_IND) { nchan >>= 1; t_ind++; } res = mlib_AffineFunArr_nn[4 * t_ind + (nchan - 1)] (param); break; case MLIB_BILINEAR: if (colormap != NULL) { res = mlib_AffineFunArr_bl_i[t_ind] (param, colormap); } else { res = mlib_AffineFunArr_bl[4 * t_ind + (nchan - 1)] (param); } break; case MLIB_BICUBIC: case MLIB_BICUBIC2: if (colormap != NULL) { res = mlib_AffineFunArr_bc_i[t_ind] (param, colormap); } else { res = mlib_AffineFunArr_bc[4 * t_ind + (nchan - 1)] (param); } break; } if (res != MLIB_SUCCESS) { if (param->buff_malloc != NULL) mlib_free(param->buff_malloc); return res; } } if (edge == MLIB_EDGE_SRC_PADDED) edge = MLIB_EDGE_DST_NO_WRITE; if (filter != MLIB_NEAREST && edge != MLIB_EDGE_DST_NO_WRITE) { mlib_affine_param param_e[1]; mlib_d64 buff_lcl1[BUFF_SIZE / 8]; STORE_PARAM(param_e, lineAddr); STORE_PARAM(param_e, filter); res = mlib_AffineEdges(param_e, dst, src, buff_lcl1, BUFF_SIZE, kw, kw, kw1, kw1, -1, mtx, MLIB_SHIFT, MLIB_SHIFT); if (res != MLIB_SUCCESS) { if (param->buff_malloc != NULL) mlib_free(param->buff_malloc); return res; } switch (edge) { case MLIB_EDGE_DST_FILL_ZERO: mlib_ImageAffineEdgeZero(param, param_e, colormap); break; case MLIB_EDGE_OP_NEAREST: mlib_ImageAffineEdgeNearest(param, param_e); break; case MLIB_EDGE_SRC_EXTEND: if (filter == MLIB_BILINEAR) { res = mlib_ImageAffineEdgeExtend_BL(param, param_e, colormap); } else { res = mlib_ImageAffineEdgeExtend_BC(param, param_e, colormap); } break; } if (param_e->buff_malloc != NULL) mlib_free(param_e->buff_malloc); } if (param->buff_malloc != NULL) mlib_free(param->buff_malloc); return res; }
mlib_status __mlib_ImageZoomTranslateTableBlend( mlib_image *dst, const mlib_image *src, mlib_d64 zoomx, mlib_d64 zoomy, mlib_d64 tx, mlib_d64 ty, const void *table, mlib_edge edge, mlib_blend blend, mlib_s32 cmask) { mlib_affine_param param[1]; mlib_affine_param *cur_param; mlib_zoom_workspace ws[1]; mlib_d64 buff_lcl[BUFF_SIZE / 8]; mlib_type type; mlib_u8 *srcData, *dstData; mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight; mlib_s32 srcStride, dstStride, schan, dchan; mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts; mlib_s32 *p_x_ind = NULL, *x_ind, *x_tab = NULL, xpos; mlib_u8 **lineAddr = NULL; mlib_s32 kw, kh, kw1, kh1; mlib_status res = MLIB_SUCCESS; fun_type_nw fun_nw = NULL; mlib_interp_table *tbl = (mlib_interp_table *) table; mlib_d64 mtx[6], dxs, tmp_dxs, div; mlib_s32 i, x_shift, y_shift; mlib_s32 affine = 0, yStart; mlib_s32 xLeft_e, xRight_e, xLeft, xRight, dx; mtx[0] = zoomx; mtx[1] = 0; mtx[2] = tx; mtx[3] = 0; mtx[4] = zoomy; mtx[5] = ty; ws->zoomx = zoomx; ws->zoomy = zoomy; /* check for obvious errors */ MLIB_IMAGE_CHECK(src); MLIB_IMAGE_CHECK(dst); MLIB_IMAGE_TYPE_EQUAL(src, dst); MLIB_IMAGE_HAVE_TYPE(src, MLIB_BYTE); if (zoomx <= 0 || zoomy <= 0) return (MLIB_OUTOFRANGE); if (mlib_ImageGetWidth(src) >= (1 << 15) || mlib_ImageGetHeight(src) >= (1 << 15)) { return (MLIB_FAILURE); } MLIB_IMAGE_GET_ALL_PARAMS(src, type, schan, srcWidth, srcHeight, srcStride, srcData); MLIB_IMAGE_GET_ALL_PARAMS(dst, type, dchan, dstWidth, dstHeight, dstStride, dstData); if ((schan == 4 || dchan == 4) && cmask != 1 && cmask != 8) return (MLIB_OUTOFRANGE); if (schan < 3 || schan > 4 || dchan < 3 || dchan > 4) { return (MLIB_FAILURE); } if ((blend == MLIB_BLEND_GTK_SRC) && (schan == 3) && (dchan == 3)) return __mlib_ImageZoomTranslateTable(dst, src, zoomx, zoomy, tx, ty, table, edge); kw = tbl->width; kh = tbl->height; kw1 = tbl->leftPadding; kh1 = tbl->topPadding; x_shift = INT_BITS - mlib_ilogb(srcWidth + kw); y_shift = INT_BITS - mlib_ilogb(srcHeight + kh); ws->type = type; ws->srcData = srcData; ws->dstData = dstData; ws->srcWidth = srcWidth; ws->srcHeight = srcHeight; ws->srcStride = srcStride; ws->dstStride = dstStride; ws->nchan = schan; ws->dchan = dchan; ws->blend = blend; ws->alpha_shift = 1; ws->edge = edge; ws->x_shift = x_shift; ws->y_shift = y_shift; ws->x_move = (kw1 << x_shift); ws->y_move = (kh1 << y_shift); if (cmask == 1) ws->alpha_shift = -3; /* VIS version of non NULL */ fun_nw = mlib_ImageZoomTranslate_GetFunc(ws, table); if (fun_nw == NULL) { fun_nw = mlib_ImageZoomTranslateTableBlend_8nw; } /* NULL */ STORE_PARAM(param, affine); STORE_PARAM(param, lineAddr); param->buff_malloc = NULL; /* process internal pixels */ res = mlib_AffineEdges(param, dst, src, buff_lcl, BUFF_SIZE, kw, kh, kw1, kh1, edge, mtx, x_shift, y_shift); if (res != MLIB_SUCCESS) return (res); ws->yStart = param->yStart; ws->yFinish = param->yFinish; ws->max_xsize = param->max_xsize; ws->dx = param->dX; ws->dy = param->dY; LOAD_PARAM(param, lineAddr); LOAD_PARAM(param, leftEdges); LOAD_PARAM(param, rightEdges); LOAD_PARAM(param, xStarts); LOAD_PARAM(param, yStarts); if (edge == MLIB_EDGE_SRC_EXTEND) ws->y_move += (1 << (y_shift - 1)); if ((ws->max_xsize) > 0) { /* RTC */ yStarts[(ws->yFinish) + 1] = 0; res = fun_nw(param->dstData, lineAddr, leftEdges, rightEdges, xStarts, yStarts, ws, tbl); if (res != MLIB_SUCCESS) { if (param->buff_malloc != NULL) __mlib_free(param->buff_malloc); return (res); } } /* process edge pixels */ if (edge != MLIB_EDGE_DST_NO_WRITE && edge != MLIB_EDGE_SRC_PADDED) { mlib_affine_param param_e[1]; param_e->buff_malloc = NULL; if (edge == MLIB_EDGE_DST_FILL_ZERO || edge == MLIB_EDGE_OP_NEAREST) { x_shift = 16; y_shift = 16; } STORE_PARAM(param_e, lineAddr); if (edge != MLIB_EDGE_SRC_EXTEND_INDEF) { res = mlib_AffineEdges(param_e, dst, src, NULL, 0, kw, kh, kw1, kh1, -1, mtx, x_shift, y_shift); } if (res == MLIB_SUCCESS) switch (edge) { case MLIB_EDGE_DST_FILL_ZERO: mlib_ImageZoomTranslateTableBlendEdgeZero (param, param_e, dchan, schan, ws->alpha_shift, blend); break; case MLIB_EDGE_OP_NEAREST: mlib_ImageZoomTranslateTableBlendEdgeNearest (param, param_e, dchan, schan, ws->alpha_shift, blend); break; case MLIB_EDGE_SRC_EXTEND: case MLIB_EDGE_SRC_EXTEND_INDEF: ws->x_shift = x_shift; ws->x_move += (1 << (x_shift - 1)); if (edge == MLIB_EDGE_SRC_EXTEND) { ws->yStart = param_e->yStart; ws->yFinish = param_e->yFinish; yStart = ws->yStart; ws->dx = param_e->dX; xLeft_e = param_e->leftEdges[yStart]; xRight_e = param_e->rightEdges[yStart]; cur_param = param_e; } else { cur_param = param; ws->yStart = param->yStart; yStart = ws->yStart; xLeft_e = 0; xRight_e = dstWidth - 1; } xLeft = param->leftEdges[param->yStart]; xRight = param->rightEdges[param->yStart]; if ((xLeft > xRight) || (param->yStart > param->yFinish)) { xLeft = xRight_e + 1; xRight = xRight_e; } if (((xRight_e - xLeft_e + 1) > 0) && (ws->yStart <= ws->yFinish)) { CREATE_X_IND(); LOAD_PARAM(cur_param, lineAddr); LOAD_PARAM(cur_param, leftEdges); LOAD_PARAM(cur_param, xStarts); LOAD_PARAM(cur_param, yStarts); /* RTC */ yStarts[(ws->yFinish) + 1] = 0; if (edge == MLIB_EDGE_SRC_EXTEND) { CREATE_X_EXT() } ws->max_xsize = xLeft - xLeft_e; if ((ws->max_xsize) > 0) { if (edge != MLIB_EDGE_SRC_EXTEND) { CREATE_X(xLeft_e, xLeft - 1); } leftEdges[0] = ws->max_xsize; leftEdges[1] = xLeft_e; res = FUNCNAME_EXT (cur_param->dstData, lineAddr, x_ind, leftEdges, x_tab, xStarts, yStarts, ws, tbl); } ws->max_xsize = xRight_e - xRight; if ((ws->max_xsize) > 0) { mlib_s32 shift = 0; if (edge != MLIB_EDGE_SRC_EXTEND) { CREATE_X(xRight + 1, xRight_e); } else { shift = xRight + 1 - xLeft_e; } leftEdges[0] = ws->max_xsize; leftEdges[1] = xRight + 1; res = FUNCNAME_EXT (cur_param->dstData, lineAddr, x_ind, leftEdges, x_tab + shift, xStarts, yStarts, ws, tbl); } __mlib_free(p_x_ind); if (x_tab != NULL) __mlib_free(x_tab); } break; default: res = MLIB_FAILURE; break; }