Beispiel #1
0
/*--------------------------------------------------------------------------*/
static radio_result_t
set_value(radio_param_t param, radio_value_t value)
{
  switch(param) {
  case RADIO_PARAM_POWER_MODE:
    if(value == RADIO_POWER_MODE_ON) {
      stm32w_radio_on();
      return RADIO_RESULT_OK;
    }
    if(value == RADIO_POWER_MODE_OFF) {
      stm32w_radio_off();
      return RADIO_RESULT_OK;
    }
    return RADIO_RESULT_INVALID_VALUE;
  case RADIO_PARAM_CHANNEL:
    if(value < ST_MIN_802_15_4_CHANNEL_NUMBER ||
       value > ST_MAX_802_15_4_CHANNEL_NUMBER) {
      return RADIO_RESULT_INVALID_VALUE;
    }
    if(ST_RadioSetChannel(value) != ST_SUCCESS) {
      return RADIO_RESULT_ERROR;
    }
    return RADIO_RESULT_OK;
  case RADIO_PARAM_PAN_ID:
    ST_RadioSetPanId(value & 0xffff);
    return RADIO_RESULT_OK;
  case RADIO_PARAM_16BIT_ADDR:
    ST_RadioSetNodeId(value & 0xffff);
    return RADIO_RESULT_OK;
  case RADIO_PARAM_RX_MODE:
    if(value & ~(RADIO_RX_MODE_ADDRESS_FILTER |
                 RADIO_RX_MODE_AUTOACK)) {
      return RADIO_RESULT_INVALID_VALUE;
    }
    ST_RadioEnableAddressFiltering((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0);
    ST_RadioEnableAutoAck((value & RADIO_RX_MODE_AUTOACK) != 0);
    return RADIO_RESULT_OK;
  case RADIO_PARAM_TXPOWER:
    if(value < MIN_RADIO_POWER || value > MAX_RADIO_POWER) {
      return RADIO_RESULT_INVALID_VALUE;
    }
    if(ST_RadioSetPower((int8_t)value) != ST_SUCCESS) {
      return RADIO_RESULT_INVALID_VALUE;
    }
    return RADIO_RESULT_OK;
  case RADIO_PARAM_CCA_THRESHOLD:
    ST_RadioSetEdCcaThreshold((int8_t)value);
    return RADIO_RESULT_OK;
  default:
    return RADIO_RESULT_NOT_SUPPORTED;
  }
}
Beispiel #2
0
/*---------------------------------------------------------------------------*/
int
main(void)
{
  
  /*
   * Initalize hardware.
   */
  halInit();
  clock_init();
  
  uart1_init(115200);
  
  /* Led initialization */
  leds_init();
    
  INTERRUPTS_ON(); 

  PRINTF("\r\nStarting ");
  PRINTF(CONTIKI_VERSION_STRING);
  PRINTF(" on %s\r\n", boardDescription->name); 
  boardPrintStringDescription();
  PRINTF("\r\n"); 


  /*
   * Initialize Contiki and our processes.
   */
  
  process_init();
  
#if WITH_SERIAL_LINE_INPUT
  uart1_set_input(serial_line_input_byte);
  serial_line_init();
#endif
  /* rtimer and ctimer should be initialized before radio duty cycling
     layers */
  rtimer_init();
  /* etimer_process should be initialized before ctimer */
  process_start(&etimer_process, NULL);  
  ctimer_init();

  netstack_init();

  set_rime_addr();

  printf("%s %s, channel check rate %lu Hz\n",
         NETSTACK_MAC.name, NETSTACK_RDC.name,
         CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1:
                                  NETSTACK_RDC.channel_check_interval()));
  printf("802.15.4 PAN ID 0x%x, EUI-%d:",
      IEEE802154_CONF_PANID, UIP_CONF_LL_802154?64:16);
  uip_debug_lladdr_print(&linkaddr_node_addr);
  printf(", radio channel %u\n", RF_CHANNEL);

  procinit_init();

  energest_init();
  ENERGEST_ON(ENERGEST_TYPE_CPU);

  /* Set the Clear Channel Assessment (CCA) threshold of the
     radio. The CCA threshold is used both for sending packets and for
     waking up ContikiMAC nodes. If the CCA threshold is too high,
     ContikiMAC will not wake up from neighbor transmissions. If the
     CCA threshold is too low, transmissions will be too restrictive
     and no packets will be sent. DEFAULT_RADIO_CCA_THRESHOLD is
     defined in this file. */
  ST_RadioSetEdCcaThreshold(DEFAULT_RADIO_CCA_THRESHOLD);
  
  autostart_start(autostart_processes);
#if UIP_CONF_IPV6
  printf("Tentative link-local IPv6 address ");
  {
    uip_ds6_addr_t *lladdr;
    int i;
    lladdr = uip_ds6_get_link_local(-1);
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:", lladdr->ipaddr.u8[i * 2],
             lladdr->ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
  }


  if(!UIP_CONF_IPV6_RPL) {
    uip_ipaddr_t ipaddr;
    int i;
    uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);
    uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
    uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
    printf("Tentative global IPv6 address ");
    for(i = 0; i < 7; ++i) {
      printf("%02x%02x:",
             ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
    }
    printf("%02x%02x\n",
           ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
  }
#endif /* UIP_CONF_IPV6 */
  
  watchdog_start();
  
  while(1) {
    
    int r;    
    
    do {
      /* Reset watchdog. */
      watchdog_periodic();
      r = process_run();
    } while(r > 0);
    
    
    
    ENERGEST_OFF(ENERGEST_TYPE_CPU);
    /* watchdog_stop(); */
    ENERGEST_ON(ENERGEST_TYPE_LPM);
    /* Go to idle mode. */
    halSleepWithOptions(SLEEPMODE_IDLE,0);
    /* We are awake. */
    /* watchdog_start(); */
    ENERGEST_OFF(ENERGEST_TYPE_LPM);
    ENERGEST_ON(ENERGEST_TYPE_CPU);  
    
  }
  
}