Beispiel #1
0
void
SVGA3DUtil_InitFullscreen(uint32 cid,     // IN
                          uint32 width,   // IN
                          uint32 height)  // IN
{
   SVGA3dRenderState *rs;

   gFullscreen.screen.x = 0;
   gFullscreen.screen.y = 0;
   gFullscreen.screen.w = width;
   gFullscreen.screen.h = height;

   Intr_Init();
   Intr_SetFaultHandlers(SVGA_DefaultFaultHandler);

   SVGA_Init();
   SVGA_SetMode(width, height, 32);
   VMBackdoor_MouseInit(TRUE);
   SVGA3D_Init();

   gFullscreen.colorImage.sid = SVGA3DUtil_DefineSurface2D(width, height,
                                                           SVGA3D_X8R8G8B8);

   gFullscreen.depthImage.sid = SVGA3DUtil_DefineSurface2D(width, height,
                                                           SVGA3D_Z_D16);

   SVGA3D_DefineContext(cid);

   SVGA3D_SetRenderTarget(cid, SVGA3D_RT_COLOR0, &gFullscreen.colorImage);
   SVGA3D_SetRenderTarget(cid, SVGA3D_RT_DEPTH, &gFullscreen.depthImage);

   SVGA3D_SetViewport(cid, &gFullscreen.screen);
   SVGA3D_SetZRange(cid, 0.0f, 1.0f);

   /*
    * The device defaults to flat shading, but to retain compatibility
    * across OpenGL and Direct3D it may be much slower in this
    * mode. Usually we don't want flat shading, so go ahead and switch
    * into smooth shading mode.
    *
    * Note that this is a per-context render state.
    *
    * XXX: There is also a bug in VMware Workstation 6.5.2 which shows
    *      up if you're in flat shading mode and you're using a drawing
    *      command which does not include an SVGA3dVertexDivisor array.
    *      Avoiding flat shading is one workaround, another is to include
    *      a dummy SVGA3dVertexDivisor array on every draw.
    */

   SVGA3D_BeginSetRenderState(cid, &rs, 1);
   {
      rs[0].state     = SVGA3D_RS_SHADEMODE;
      rs[0].uintValue = SVGA3D_SHADEMODE_SMOOTH;
   }
   SVGA_FIFOCommitAll();
}
Beispiel #2
0
void
setupFrame(void)
{
   static Matrix world;
   static Matrix view;
   SVGA3dTextureState *ts;
   SVGA3dRenderState *rs;

   Matrix_Copy(view, gIdentityMatrix);
   Matrix_Translate(view, 0, 0, 3);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_VIEW, view);

   Matrix_Copy(world, gIdentityMatrix);
   Matrix_RotateX(world, -60.0 * PI_OVER_180);
   Matrix_RotateY(world, gFPS.frame * 0.01f);

   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_WORLD, world);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_PROJECTION, perspectiveMat);

   SVGA3D_BeginSetRenderState(CID, &rs, 4);
   {
      rs[0].state     = SVGA3D_RS_BLENDENABLE;
      rs[0].uintValue = FALSE;

      rs[1].state     = SVGA3D_RS_ZENABLE;
      rs[1].uintValue = TRUE;

      rs[2].state     = SVGA3D_RS_ZWRITEENABLE;
      rs[2].uintValue = TRUE;

      rs[3].state     = SVGA3D_RS_ZFUNC;
      rs[3].uintValue = SVGA3D_CMP_LESS;
   }
   SVGA_FIFOCommitAll();

   SVGA3D_BeginSetTextureState(CID, &ts, 4);
   {
      ts[0].stage = 0;
      ts[0].name  = SVGA3D_TS_BIND_TEXTURE;
      ts[0].value = SVGA3D_INVALID_ID;

      ts[1].stage = 0;
      ts[1].name  = SVGA3D_TS_COLOROP;
      ts[1].value = SVGA3D_TC_SELECTARG1;

      ts[2].stage = 0;
      ts[2].name  = SVGA3D_TS_COLORARG1;
      ts[2].value = SVGA3D_TA_DIFFUSE;

      ts[3].stage = 0;
      ts[3].name  = SVGA3D_TS_ALPHAARG1;
      ts[3].value = SVGA3D_TA_DIFFUSE;
   }
   SVGA_FIFOCommitAll();
}
Beispiel #3
0
/* Setup any hardware state which will be constant through the life of
 * a context.
 */
enum pipe_error svga_emit_initial_state( struct svga_context *svga )
{
   if (svga_have_vgpu10(svga)) {
      SVGA3dRasterizerStateId id = util_bitmask_add(svga->rast_object_id_bm);
      enum pipe_error ret;

      /* XXX preliminary code */
      ret = SVGA3D_vgpu10_DefineRasterizerState(svga->swc,
                                             id,
                                             SVGA3D_FILLMODE_FILL,
                                             SVGA3D_CULL_NONE,
                                             1, /* frontCounterClockwise */
                                             0, /* depthBias */
                                             0.0f, /* depthBiasClamp */
                                             0.0f, /* slopeScaledDepthBiasClamp */
                                             0, /* depthClampEnable */
                                             0, /* scissorEnable */
                                             0, /* multisampleEnable */
                                             0, /* aalineEnable */
                                             1.0f, /* lineWidth */
                                             0, /* lineStippleEnable */
                                             0, /* lineStippleFactor */
                                             0, /* lineStipplePattern */
                                             0); /* provokingVertexLast */


      assert(ret == PIPE_OK);

      ret = SVGA3D_vgpu10_SetRasterizerState(svga->swc, id);
      return ret;
   }
   else {
      SVGA3dRenderState *rs;
      unsigned count = 0;
      const unsigned COUNT = 2;
      enum pipe_error ret;

      ret = SVGA3D_BeginSetRenderState( svga->swc, &rs, COUNT );
      if (ret != PIPE_OK)
         return ret;

      /* Always use D3D style coordinate space as this is the only one
       * which is implemented on all backends.
       */
      EMIT_RS(rs, count, SVGA3D_RS_COORDINATETYPE,
              SVGA3D_COORDINATE_LEFTHANDED );
      EMIT_RS(rs, count, SVGA3D_RS_FRONTWINDING, SVGA3D_FRONTWINDING_CW );

      assert( COUNT == count );
      SVGA_FIFOCommitAll( svga->swc );

      return PIPE_OK;
   }
}
/* Setup any hardware state which will be constant through the life of
 * a context.
 */
enum pipe_error svga_emit_initial_state( struct svga_context *svga )
{
   SVGA3dRenderState *rs;
   unsigned count = 0;
   const unsigned COUNT = 2;
   enum pipe_error ret;

   ret = SVGA3D_BeginSetRenderState( svga->swc, &rs, COUNT );
   if (ret != PIPE_OK)
      return ret;

   /* Always use D3D style coordinate space as this is the only one
    * which is implemented on all backends.
    */
   EMIT_RS(rs, count, SVGA3D_RS_COORDINATETYPE, SVGA3D_COORDINATE_LEFTHANDED );
   EMIT_RS(rs, count, SVGA3D_RS_FRONTWINDING, SVGA3D_FRONTWINDING_CW );
   
   assert( COUNT == count );
   SVGA_FIFOCommitAll( svga->swc );

   return PIPE_OK;
}
Beispiel #5
0
/* Compare old and new render states and emit differences between them
 * to hardware.  Simplest implementation would be to emit the whole of
 * the "to" state.
 */
static enum pipe_error
emit_rss(struct svga_context *svga, unsigned dirty)
{
   struct svga_screen *screen = svga_screen(svga->pipe.screen);
   struct rs_queue queue;
   float point_size_min;

   queue.rs_count = 0;

   if (dirty & SVGA_NEW_BLEND) {
      const struct svga_blend_state *curr = svga->curr.blend;

      EMIT_RS( svga, curr->rt[0].writemask, COLORWRITEENABLE, fail );
      EMIT_RS( svga, curr->rt[0].blend_enable, BLENDENABLE, fail );

      if (curr->rt[0].blend_enable) {
         EMIT_RS( svga, curr->rt[0].srcblend, SRCBLEND, fail );
         EMIT_RS( svga, curr->rt[0].dstblend, DSTBLEND, fail );
         EMIT_RS( svga, curr->rt[0].blendeq, BLENDEQUATION, fail );

         EMIT_RS( svga, curr->rt[0].separate_alpha_blend_enable, 
                  SEPARATEALPHABLENDENABLE, fail );

         if (curr->rt[0].separate_alpha_blend_enable) {
            EMIT_RS( svga, curr->rt[0].srcblend_alpha, SRCBLENDALPHA, fail );
            EMIT_RS( svga, curr->rt[0].dstblend_alpha, DSTBLENDALPHA, fail );
            EMIT_RS( svga, curr->rt[0].blendeq_alpha, BLENDEQUATIONALPHA, fail );
         }
      }
   }

   if (dirty & SVGA_NEW_BLEND_COLOR) {
      uint32 color;
      uint32 r = float_to_ubyte(svga->curr.blend_color.color[0]);
      uint32 g = float_to_ubyte(svga->curr.blend_color.color[1]);
      uint32 b = float_to_ubyte(svga->curr.blend_color.color[2]);
      uint32 a = float_to_ubyte(svga->curr.blend_color.color[3]);

      color = (a << 24) | (r << 16) | (g << 8) | b;

      EMIT_RS( svga, color, BLENDCOLOR, fail );
   }

   if (dirty & (SVGA_NEW_DEPTH_STENCIL | SVGA_NEW_RAST)) {
      const struct svga_depth_stencil_state *curr = svga->curr.depth; 
      const struct svga_rasterizer_state *rast = svga->curr.rast; 

      if (!curr->stencil[0].enabled) 
      {
         /* Stencil disabled
          */
         EMIT_RS( svga, FALSE, STENCILENABLE, fail );
         EMIT_RS( svga, FALSE, STENCILENABLE2SIDED, fail );
      }
      else if (curr->stencil[0].enabled && !curr->stencil[1].enabled)
      {
         /* Regular stencil
          */
         EMIT_RS( svga, TRUE, STENCILENABLE, fail );
         EMIT_RS( svga, FALSE, STENCILENABLE2SIDED, fail );

         EMIT_RS( svga, curr->stencil[0].func,  STENCILFUNC, fail );
         EMIT_RS( svga, curr->stencil[0].fail,  STENCILFAIL, fail );
         EMIT_RS( svga, curr->stencil[0].zfail, STENCILZFAIL, fail );
         EMIT_RS( svga, curr->stencil[0].pass,  STENCILPASS, fail );

         EMIT_RS( svga, curr->stencil_mask, STENCILMASK, fail );
         EMIT_RS( svga, curr->stencil_writemask, STENCILWRITEMASK, fail );
      }
      else 
      {
         int cw, ccw;

         /* Hardware frontwinding is always CW, so if ours is also CW,
          * then our definition of front face agrees with hardware.
          * Otherwise need to flip.
          */
         if (rast->templ.front_ccw) {
            ccw = 0;
            cw = 1;
         }
         else {
            ccw = 1;
            cw = 0;
         }

         /* Twoside stencil
          */
         EMIT_RS( svga, TRUE, STENCILENABLE, fail );
         EMIT_RS( svga, TRUE, STENCILENABLE2SIDED, fail );

         EMIT_RS( svga, curr->stencil[cw].func,  STENCILFUNC, fail );
         EMIT_RS( svga, curr->stencil[cw].fail,  STENCILFAIL, fail );
         EMIT_RS( svga, curr->stencil[cw].zfail, STENCILZFAIL, fail );
         EMIT_RS( svga, curr->stencil[cw].pass,  STENCILPASS, fail );

         EMIT_RS( svga, curr->stencil[ccw].func,  CCWSTENCILFUNC, fail );
         EMIT_RS( svga, curr->stencil[ccw].fail,  CCWSTENCILFAIL, fail );
         EMIT_RS( svga, curr->stencil[ccw].zfail, CCWSTENCILZFAIL, fail );
         EMIT_RS( svga, curr->stencil[ccw].pass,  CCWSTENCILPASS, fail );

         EMIT_RS( svga, curr->stencil_mask, STENCILMASK, fail );
         EMIT_RS( svga, curr->stencil_writemask, STENCILWRITEMASK, fail );
      }

      EMIT_RS( svga, curr->zenable, ZENABLE, fail );
      if (curr->zenable) {
         EMIT_RS( svga, curr->zfunc, ZFUNC, fail );
         EMIT_RS( svga, curr->zwriteenable, ZWRITEENABLE, fail );
      }

      EMIT_RS( svga, curr->alphatestenable, ALPHATESTENABLE, fail );
      if (curr->alphatestenable) {
         EMIT_RS( svga, curr->alphafunc, ALPHAFUNC, fail );
         EMIT_RS_FLOAT( svga, curr->alpharef, ALPHAREF, fail );
      }
   }

   if (dirty & SVGA_NEW_STENCIL_REF) {
      EMIT_RS( svga, svga->curr.stencil_ref.ref_value[0], STENCILREF, fail );
   }

   if (dirty & (SVGA_NEW_RAST | SVGA_NEW_NEED_PIPELINE))
   {
      const struct svga_rasterizer_state *curr = svga->curr.rast; 
      unsigned cullmode = curr->cullmode;

      /* Shademode: still need to rearrange index list to move
       * flat-shading PV first vertex.
       */
      EMIT_RS( svga, curr->shademode, SHADEMODE, fail );

      /* Don't do culling while the software pipeline is active.  It
       * does it for us, and additionally introduces potentially
       * back-facing triangles.
       */
      if (svga->state.sw.need_pipeline)
         cullmode = SVGA3D_FACE_NONE;

      point_size_min = util_get_min_point_size(&curr->templ);

      EMIT_RS( svga, cullmode, CULLMODE, fail );
      EMIT_RS( svga, curr->scissortestenable, SCISSORTESTENABLE, fail );
      EMIT_RS( svga, curr->multisampleantialias, MULTISAMPLEANTIALIAS, fail );
      EMIT_RS( svga, curr->lastpixel, LASTPIXEL, fail );
      EMIT_RS( svga, curr->linepattern, LINEPATTERN, fail );
      EMIT_RS_FLOAT( svga, curr->pointsize, POINTSIZE, fail );
      EMIT_RS_FLOAT( svga, point_size_min, POINTSIZEMIN, fail );
      EMIT_RS_FLOAT( svga, screen->maxPointSize, POINTSIZEMAX, fail );
      EMIT_RS( svga, curr->pointsprite, POINTSPRITEENABLE, fail);
   }

   if (dirty & (SVGA_NEW_RAST | SVGA_NEW_FRAME_BUFFER | SVGA_NEW_NEED_PIPELINE))
   {
      const struct svga_rasterizer_state *curr = svga->curr.rast; 
      float slope = 0.0;
      float bias  = 0.0;

      /* Need to modify depth bias according to bound depthbuffer
       * format.  Don't do hardware depthbias while the software
       * pipeline is active.
       */
      if (!svga->state.sw.need_pipeline &&
          svga->curr.framebuffer.zsbuf)
      {
         slope = curr->slopescaledepthbias;
         bias  = svga->curr.depthscale * curr->depthbias;
      }

      EMIT_RS_FLOAT( svga, slope, SLOPESCALEDEPTHBIAS, fail );
      EMIT_RS_FLOAT( svga, bias, DEPTHBIAS, fail );
   }

   if (dirty & SVGA_NEW_FRAME_BUFFER) {
      /* XXX: we only look at the first color buffer's sRGB state */
      float gamma = 1.0f;
      if (svga->curr.framebuffer.cbufs[0] &&
          util_format_is_srgb(svga->curr.framebuffer.cbufs[0]->format)) {
         gamma = 2.2f;
      }
      EMIT_RS_FLOAT(svga, gamma, OUTPUTGAMMA, fail);
   }

   if (dirty & SVGA_NEW_RAST) {
      /* bitmask of the enabled clip planes */
      unsigned enabled = svga->curr.rast->templ.clip_plane_enable;
      EMIT_RS( svga, enabled, CLIPPLANEENABLE, fail );
   }

   if (queue.rs_count) {
      SVGA3dRenderState *rs;

      if (SVGA3D_BeginSetRenderState( svga->swc,
                                      &rs,
                                      queue.rs_count ) != PIPE_OK)
         goto fail;

      memcpy( rs,
              queue.rs,
              queue.rs_count * sizeof queue.rs[0]);

      SVGA_FIFOCommitAll( svga->swc );
   }

   return PIPE_OK;

fail:
   /* XXX: need to poison cached hardware state on failure to ensure
    * dirty state gets re-emitted.  Fix this by re-instating partial
    * FIFOCommit command and only updating cached hw state once the
    * initial allocation has succeeded.
    */
   memset(svga->state.hw_draw.rs, 0xcd, sizeof(svga->state.hw_draw.rs));

   return PIPE_ERROR_OUT_OF_MEMORY;
}
Beispiel #6
0
void
renderCube(float x,
           float y,
           Bool useShaders,
           Bool useHalf)
{
   SVGA3dTextureState *ts;
   SVGA3dRenderState *rs;
   SVGA3dVertexDecl *decls;
   SVGA3dPrimitiveRange *ranges;
   static Matrix view;

   Matrix_Copy(view, gIdentityMatrix);
   Matrix_RotateX(view, 30.0 * M_PI / 180.0);
   Matrix_RotateY(view, gFPS.frame * 0.01f);
   Matrix_Translate(view, x, y, 15);

   if (useShaders) {
      SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_VS, MY_VSHADER_ID);
      SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_PS, MY_PSHADER_ID);

      SVGA3DUtil_SetShaderConstMatrix(CID, CONST_MAT_PROJ,
                                      SVGA3D_SHADERTYPE_VS, perspectiveMat);
      SVGA3DUtil_SetShaderConstMatrix(CID, CONST_MAT_VIEW,
                                      SVGA3D_SHADERTYPE_VS, view);
   } else {
      SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_VS, SVGA3D_INVALID_ID);
      SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_PS, SVGA3D_INVALID_ID);

      SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_VIEW, view);
      SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_WORLD, gIdentityMatrix);
      SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_PROJECTION, perspectiveMat);
   }

   SVGA3D_BeginSetRenderState(CID, &rs, 4);
   {
      rs[0].state     = SVGA3D_RS_BLENDENABLE;
      rs[0].uintValue = FALSE;

      rs[1].state     = SVGA3D_RS_ZENABLE;
      rs[1].uintValue = TRUE;

      rs[2].state     = SVGA3D_RS_ZWRITEENABLE;
      rs[2].uintValue = TRUE;

      rs[3].state     = SVGA3D_RS_ZFUNC;
      rs[3].uintValue = SVGA3D_CMP_LESS;
   }
   SVGA_FIFOCommitAll();

   SVGA3D_BeginSetTextureState(CID, &ts, 4);
   {
      ts[0].stage = 0;
      ts[0].name  = SVGA3D_TS_BIND_TEXTURE;
      ts[0].value = SVGA3D_INVALID_ID;

      ts[1].stage = 0;
      ts[1].name  = SVGA3D_TS_COLOROP;
      ts[1].value = SVGA3D_TC_SELECTARG1;

      ts[2].stage = 0;
      ts[2].name  = SVGA3D_TS_COLORARG1;
      ts[2].value = SVGA3D_TA_DIFFUSE;

      ts[3].stage = 0;
      ts[3].name  = SVGA3D_TS_ALPHAARG1;
      ts[3].value = SVGA3D_TA_DIFFUSE;
   }
   SVGA_FIFOCommitAll();

   SVGA3D_BeginDrawPrimitives(CID, &decls, 2, &ranges, 1);
   {
      decls[0].identity.usage = SVGA3D_DECLUSAGE_POSITION;
      decls[0].array.surfaceId = vertexSid;
      decls[0].array.stride = sizeof(MyVertex);
      if (useHalf) {
         decls[0].identity.type = SVGA3D_DECLTYPE_FLOAT16_4;
         decls[0].array.offset = offsetof(MyVertex, position16);
      } else {
         decls[0].identity.type = SVGA3D_DECLTYPE_FLOAT3;
         decls[0].array.offset = offsetof(MyVertex, position32);
      }

      decls[1].identity.type = SVGA3D_DECLTYPE_D3DCOLOR;
      decls[1].identity.usage = SVGA3D_DECLUSAGE_COLOR;
      decls[1].array.surfaceId = vertexSid;
      decls[1].array.stride = sizeof(MyVertex);
      decls[1].array.offset = offsetof(MyVertex, color);

      ranges[0].primType = SVGA3D_PRIMITIVE_TRIANGLELIST;
      ranges[0].primitiveCount = numTriangles;
      ranges[0].indexArray.surfaceId = indexSid;
      ranges[0].indexArray.stride = sizeof(uint16);
      ranges[0].indexWidth = sizeof(uint16);
   }
   SVGA_FIFOCommitAll();

   SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_VS, SVGA3D_INVALID_ID);
   SVGA3D_SetShader(CID, SVGA3D_SHADERTYPE_PS, SVGA3D_INVALID_ID);
}
Beispiel #7
0
void
render(void)
{
   SVGA3dTextureState *ts;
   SVGA3dRenderState *rs;
   SVGA3dVertexDecl *decls;
   SVGA3dPrimitiveRange *ranges;
   static Matrix view;

   Matrix_Copy(view, gIdentityMatrix);
   Matrix_Scale(view, 0.5, 0.5, 0.5, 1.0);

   if (lastMouseState.buttons & VMMOUSE_LEFT_BUTTON) {
      Matrix_RotateX(view, lastMouseState.y *  0.0001);
      Matrix_RotateY(view, lastMouseState.x * -0.0001);
   } else {
      Matrix_RotateX(view, 30.0 * M_PI / 180.0);
      Matrix_RotateY(view, gFPS.frame * 0.01f);
   }

   Matrix_Translate(view, 0, 0, 3);

   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_VIEW, view);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_WORLD, gIdentityMatrix);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_PROJECTION, perspectiveMat);

   SVGA3D_BeginSetRenderState(CID, &rs, 4);
   {
      rs[0].state     = SVGA3D_RS_BLENDENABLE;
      rs[0].uintValue = FALSE;

      rs[1].state     = SVGA3D_RS_ZENABLE;
      rs[1].uintValue = TRUE;

      rs[2].state     = SVGA3D_RS_ZWRITEENABLE;
      rs[2].uintValue = TRUE;

      rs[3].state     = SVGA3D_RS_ZFUNC;
      rs[3].uintValue = SVGA3D_CMP_LESS;
   }
   SVGA_FIFOCommitAll();

   SVGA3D_BeginSetTextureState(CID, &ts, 4);
   {
      ts[0].stage = 0;
      ts[0].name  = SVGA3D_TS_BIND_TEXTURE;
      ts[0].value = SVGA3D_INVALID_ID;

      ts[1].stage = 0;
      ts[1].name  = SVGA3D_TS_COLOROP;
      ts[1].value = SVGA3D_TC_SELECTARG1;

      ts[2].stage = 0;
      ts[2].name  = SVGA3D_TS_COLORARG1;
      ts[2].value = SVGA3D_TA_DIFFUSE;

      ts[3].stage = 0;
      ts[3].name  = SVGA3D_TS_ALPHAARG1;
      ts[3].value = SVGA3D_TA_DIFFUSE;
   }
   SVGA_FIFOCommitAll();

   SVGA3D_BeginDrawPrimitives(CID, &decls, 2, &ranges, 1);
   {
      decls[0].identity.type = SVGA3D_DECLTYPE_FLOAT3;
      decls[0].identity.usage = SVGA3D_DECLUSAGE_POSITION;
      decls[0].array.surfaceId = vertexSid;
      decls[0].array.stride = sizeof(MyVertex);
      decls[0].array.offset = offsetof(MyVertex, position);

      decls[1].identity.type = SVGA3D_DECLTYPE_D3DCOLOR;
      decls[1].identity.usage = SVGA3D_DECLUSAGE_COLOR;
      decls[1].array.surfaceId = vertexSid;
      decls[1].array.stride = sizeof(MyVertex);
      decls[1].array.offset = offsetof(MyVertex, color);

      ranges[0].primType = SVGA3D_PRIMITIVE_TRIANGLELIST;
      ranges[0].primitiveCount = numTriangles;
      ranges[0].indexArray.surfaceId = indexSid;
      ranges[0].indexArray.stride = sizeof(uint16);
      ranges[0].indexWidth = sizeof(uint16);
   }
   SVGA_FIFOCommitAll();
}
Beispiel #8
0
/* Compare old and new render states and emit differences between them
 * to hardware.  Simplest implementation would be to emit the whole of
 * the "to" state.
 */
static int emit_rss( struct svga_context *svga,
                     unsigned dirty )
{
   struct rs_queue queue;

   queue.rs_count = 0;

   if (dirty & SVGA_NEW_BLEND) {
      const struct svga_blend_state *curr = svga->curr.blend;

      EMIT_RS( svga, curr->rt[0].writemask, COLORWRITEENABLE, fail );
      EMIT_RS( svga, curr->rt[0].blend_enable, BLENDENABLE, fail );

      if (curr->rt[0].blend_enable) {
         EMIT_RS( svga, curr->rt[0].srcblend, SRCBLEND, fail );
         EMIT_RS( svga, curr->rt[0].dstblend, DSTBLEND, fail );
         EMIT_RS( svga, curr->rt[0].blendeq, BLENDEQUATION, fail );

         EMIT_RS( svga, curr->rt[0].separate_alpha_blend_enable, 
                  SEPARATEALPHABLENDENABLE, fail );

         if (curr->rt[0].separate_alpha_blend_enable) {
            EMIT_RS( svga, curr->rt[0].srcblend_alpha, SRCBLENDALPHA, fail );
            EMIT_RS( svga, curr->rt[0].dstblend_alpha, DSTBLENDALPHA, fail );
            EMIT_RS( svga, curr->rt[0].blendeq_alpha, BLENDEQUATIONALPHA, fail );
         }
      }
   }


   if (dirty & (SVGA_NEW_DEPTH_STENCIL | SVGA_NEW_RAST)) {
      const struct svga_depth_stencil_state *curr = svga->curr.depth; 
      const struct svga_rasterizer_state *rast = svga->curr.rast; 

      if (!curr->stencil[0].enabled) 
      {
         /* Stencil disabled
          */
         EMIT_RS( svga, FALSE, STENCILENABLE, fail );
         EMIT_RS( svga, FALSE, STENCILENABLE2SIDED, fail );
      }
      else if (curr->stencil[0].enabled && !curr->stencil[1].enabled)
      {
         /* Regular stencil
          */
         EMIT_RS( svga, TRUE, STENCILENABLE, fail );
         EMIT_RS( svga, FALSE, STENCILENABLE2SIDED, fail );

         EMIT_RS( svga, curr->stencil[0].func,  STENCILFUNC, fail );
         EMIT_RS( svga, curr->stencil[0].fail,  STENCILFAIL, fail );
         EMIT_RS( svga, curr->stencil[0].zfail, STENCILZFAIL, fail );
         EMIT_RS( svga, curr->stencil[0].pass,  STENCILPASS, fail );
         
         EMIT_RS( svga, curr->stencil_ref, STENCILREF, fail );
         EMIT_RS( svga, curr->stencil_mask, STENCILMASK, fail );
         EMIT_RS( svga, curr->stencil_writemask, STENCILWRITEMASK, fail );
      }
      else 
      {
         int cw, ccw;

         /* Hardware frontwinding is always CW, so if ours is also CW,
          * then our definition of front face agrees with hardware.
          * Otherwise need to flip.
          */
         if (rast->templ.front_winding == PIPE_WINDING_CW) {
            cw = 0;
            ccw = 1;
         }
         else {
            cw = 1;
            ccw = 0;
         }

         /* Twoside stencil
          */
         EMIT_RS( svga, TRUE, STENCILENABLE, fail );
         EMIT_RS( svga, TRUE, STENCILENABLE2SIDED, fail );

         EMIT_RS( svga, curr->stencil[cw].func,  STENCILFUNC, fail );
         EMIT_RS( svga, curr->stencil[cw].fail,  STENCILFAIL, fail );
         EMIT_RS( svga, curr->stencil[cw].zfail, STENCILZFAIL, fail );
         EMIT_RS( svga, curr->stencil[cw].pass,  STENCILPASS, fail );

         EMIT_RS( svga, curr->stencil[ccw].func,  CCWSTENCILFUNC, fail );
         EMIT_RS( svga, curr->stencil[ccw].fail,  CCWSTENCILFAIL, fail );
         EMIT_RS( svga, curr->stencil[ccw].zfail, CCWSTENCILZFAIL, fail );
         EMIT_RS( svga, curr->stencil[ccw].pass,  CCWSTENCILPASS, fail );

         EMIT_RS( svga, curr->stencil_ref, STENCILREF, fail );
         EMIT_RS( svga, curr->stencil_mask, STENCILMASK, fail );
         EMIT_RS( svga, curr->stencil_writemask, STENCILWRITEMASK, fail );
      }

      EMIT_RS( svga, curr->zenable, ZENABLE, fail );
      if (curr->zenable) {
         EMIT_RS( svga, curr->zfunc, ZFUNC, fail );
         EMIT_RS( svga, curr->zwriteenable, ZWRITEENABLE, fail );
      }

      EMIT_RS( svga, curr->alphatestenable, ALPHATESTENABLE, fail );
      if (curr->alphatestenable) {
         EMIT_RS( svga, curr->alphafunc, ALPHAFUNC, fail );
         EMIT_RS_FLOAT( svga, curr->alpharef, ALPHAREF, fail );
      }
   }


   if (dirty & SVGA_NEW_RAST)
   {
      const struct svga_rasterizer_state *curr = svga->curr.rast; 

      /* Shademode: still need to rearrange index list to move
       * flat-shading PV first vertex.
       */
      EMIT_RS( svga, curr->shademode, SHADEMODE, fail );
      EMIT_RS( svga, curr->cullmode, CULLMODE, fail );
      EMIT_RS( svga, curr->scissortestenable, SCISSORTESTENABLE, fail );
      EMIT_RS( svga, curr->multisampleantialias, MULTISAMPLEANTIALIAS, fail );
      EMIT_RS( svga, curr->lastpixel, LASTPIXEL, fail );
      EMIT_RS( svga, curr->linepattern, LINEPATTERN, fail );
      EMIT_RS_FLOAT( svga, curr->pointsize, POINTSIZE, fail );
      EMIT_RS_FLOAT( svga, curr->pointsize_min, POINTSIZEMIN, fail );
      EMIT_RS_FLOAT( svga, curr->pointsize_max, POINTSIZEMAX, fail );
   }

   if (dirty & (SVGA_NEW_RAST | SVGA_NEW_FRAME_BUFFER | SVGA_NEW_NEED_PIPELINE))
   {
      const struct svga_rasterizer_state *curr = svga->curr.rast; 
      float slope = 0.0;
      float bias  = 0.0;

      /* Need to modify depth bias according to bound depthbuffer
       * format.  Don't do hardware depthbias while the software
       * pipeline is active.
       */
      if (!svga->state.sw.need_pipeline &&
          svga->curr.framebuffer.zsbuf)
      {
         slope = curr->slopescaledepthbias;
         bias  = svga->curr.depthscale * curr->depthbias;
      }

      EMIT_RS_FLOAT( svga, slope, SLOPESCALEDEPTHBIAS, fail );
      EMIT_RS_FLOAT( svga, bias, DEPTHBIAS, fail );
   }


   if (queue.rs_count) {
      SVGA3dRenderState *rs;

      if (SVGA3D_BeginSetRenderState( svga->swc,
                                      &rs,
                                      queue.rs_count ) != PIPE_OK)
         goto fail;

      memcpy( rs,
              queue.rs,
              queue.rs_count * sizeof queue.rs[0]);
      
      SVGA_FIFOCommitAll( svga->swc );
   }

   /* Also blend color:
    */

   return 0;

fail:
   /* XXX: need to poison cached hardware state on failure to ensure
    * dirty state gets re-emitted.  Fix this by re-instating partial
    * FIFOCommit command and only updating cached hw state once the
    * initial allocation has succeeded.
    */
   memset(svga->state.hw_draw.rs, 0xcd, sizeof(svga->state.hw_draw.rs));

   return PIPE_ERROR_OUT_OF_MEMORY;
}
Beispiel #9
0
static void
drawCube(void)
{
   static float angle = 0.5f;
   SVGA3dRect *rect;
   Matrix perspectiveMat;
   SVGA3dTextureState *ts;
   SVGA3dRenderState *rs;
   SVGA3dRect viewport = { 0, 0, surfWidth, surfHeight };

   SVGA3D_SetRenderTarget(CID, SVGA3D_RT_COLOR0, &colorImage);
   SVGA3D_SetRenderTarget(CID, SVGA3D_RT_DEPTH, &depthImage);

   SVGA3D_SetViewport(CID, &viewport);
   SVGA3D_SetZRange(CID, 0.0f, 1.0f);

   SVGA3D_BeginSetRenderState(CID, &rs, 5);
   {
      rs[0].state     = SVGA3D_RS_BLENDENABLE;
      rs[0].uintValue = FALSE;

      rs[1].state     = SVGA3D_RS_ZENABLE;
      rs[1].uintValue = TRUE;

      rs[2].state     = SVGA3D_RS_ZWRITEENABLE;
      rs[2].uintValue = TRUE;

      rs[3].state     = SVGA3D_RS_ZFUNC;
      rs[3].uintValue = SVGA3D_CMP_LESS;

      rs[4].state     = SVGA3D_RS_LIGHTINGENABLE;
      rs[4].uintValue = FALSE;
   }
   SVGA_FIFOCommitAll();

   SVGA3D_BeginSetTextureState(CID, &ts, 4);
   {
      ts[0].stage = 0;
      ts[0].name  = SVGA3D_TS_BIND_TEXTURE;
      ts[0].value = SVGA3D_INVALID_ID;

      ts[1].stage = 0;
      ts[1].name  = SVGA3D_TS_COLOROP;
      ts[1].value = SVGA3D_TC_SELECTARG1;

      ts[2].stage = 0;
      ts[2].name  = SVGA3D_TS_COLORARG1;
      ts[2].value = SVGA3D_TA_DIFFUSE;

      ts[3].stage = 0;
      ts[3].name  = SVGA3D_TS_ALPHAARG1;
      ts[3].value = SVGA3D_TA_DIFFUSE;
   }
   SVGA_FIFOCommitAll();

   /*
    * Draw a red border around the render target, to test edge
    * accuracy in Present.
    */
   SVGA3D_BeginClear(CID, SVGA3D_CLEAR_COLOR | SVGA3D_CLEAR_DEPTH,
                     0xFF0000, 1.0f, 0, &rect, 1);
   *rect = viewport;
   SVGA_FIFOCommitAll();

   /*
    * Draw the background color
    */
   SVGA3D_BeginClear(CID, SVGA3D_CLEAR_COLOR | SVGA3D_CLEAR_DEPTH,
                     0x336699, 1.0f, 0, &rect, 1);
   rect->x = viewport.x + 1;
   rect->y = viewport.y + 1;
   rect->w = viewport.w - 2;
   rect->h = viewport.h - 2;
   SVGA_FIFOCommitAll();

   SVGA3dVertexDecl *decls;
   SVGA3dPrimitiveRange *ranges;
   Matrix view;

   Matrix_Copy(view, gIdentityMatrix);
   Matrix_Scale(view, 0.5, 0.5, 0.5, 1.0);
   Matrix_RotateX(view, 30.0 * M_PI / 180.0);
   Matrix_RotateY(view, angle);
   Matrix_Translate(view, 0, 0, 2.2);

   angle += 0.02;

   Matrix_Perspective(perspectiveMat, 45.0f, 4.0f / 3.0f, 0.1f, 100.0f);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_WORLD, gIdentityMatrix);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_PROJECTION, perspectiveMat);
   SVGA3D_SetTransform(CID, SVGA3D_TRANSFORM_VIEW, view);

   SVGA3D_BeginDrawPrimitives(CID, &decls, 2, &ranges, 1);
   {
      decls[0].identity.type = SVGA3D_DECLTYPE_FLOAT3;
      decls[0].identity.usage = SVGA3D_DECLUSAGE_POSITION;
      decls[0].array.surfaceId = vertexSid;
      decls[0].array.stride = sizeof(MyVertex);
      decls[0].array.offset = offsetof(MyVertex, position);

      decls[1].identity.type = SVGA3D_DECLTYPE_D3DCOLOR;
      decls[1].identity.usage = SVGA3D_DECLUSAGE_COLOR;
      decls[1].array.surfaceId = vertexSid;
      decls[1].array.stride = sizeof(MyVertex);
      decls[1].array.offset = offsetof(MyVertex, color);

      ranges[0].primType = SVGA3D_PRIMITIVE_LINELIST;
      ranges[0].primitiveCount = numLines;
      ranges[0].indexArray.surfaceId = indexSid;
      ranges[0].indexArray.stride = sizeof(uint16);
      ranges[0].indexWidth = sizeof(uint16);
   }
   SVGA_FIFOCommitAll();
}