/*************************************************************************
 * Function Name: TouchScrInit
 * Parameters: none
 *
 * Return: none
 *
 * Description: Init Touch screen
 *
 *************************************************************************/
void TouchScrInit (void)
{
  // Init variable
  Touch_temp = Touch = FALSE;
  X = Y = 0;
  State = TS_INTR_SETUP_DLY;

  // Init GPIOs
  TS_X1_SEL   = 1;   // ADC0 Ch1
  TS_X1_MODE  = 2;   // disable pulls
  TS_X2_SEL   = 0;   // general IO
  TS_X2_MODE  = 3;   // enable pull-down

  TS_Y1_SEL   = 0;   // general IO
  TS_Y1_MODE  = 2;   // disable pulls
  TS_Y2_SEL   = 0;   // general IO
  TS_Y2_MODE  = 2;   // disable pulls

  TS_X1_FDIR &= ~TS_X1_MASK;
  TS_X2_FDIR &= ~TS_X2_MASK;
  TS_Y1_FDIR |=  TS_Y1_MASK;
  TS_Y2_FDIR |=  TS_Y2_MASK;

  TS_Y1_FSET  =  TS_Y1_MASK;
  TS_Y2_FSET  =  TS_Y2_MASK;

  // Init Port interrupt
  TS_X2_INTR_R  &= ~TS_X2_MASK; // disable X2 rising edge interrupt
  TS_X2_INTR_CLR =  TS_X2_MASK;
  EXTINT = 1UL<<3;
  VIC_SetVectoredIRQ(OnTouchIntr_Handler,TS_INTR_PRIORITY,VIC_EINT3);
  VICINTENABLE |= 1UL << VIC_EINT3;

  // Init ADC
  PCONP_bit.PCAD = 1;         // Enable ADC clocks
  AD0CR_bit.PDN  = 1;         // converter is operational
  AD0CR_bit.START = 0;
  AD0CR_bit.SEL  = 1UL<<1;    // select Ch1
  AD0CR_bit.CLKDIV = SYS_GetFpclk(ADC_PCLK_OFFSET)/ 500000;
  AD0CR_bit.BURST  = 0;       // disable burst
  AD0CR_bit.CLKS   = 0;       // 10 bits resolution

  // clear all pending interrupts
  while(ADSTAT_bit.ADINT)
  {
    volatile Int32U Dummy = AD0GDR;
  }

  ADINTEN_bit.ADGINTEN = 1;   // Enable global interrupt
  VIC_SetVectoredIRQ(ADC_Intr_Handler,TS_INTR_PRIORITY,VIC_AD0);
  VICINTENABLE |= 1UL << VIC_AD0;

#if 0
  // Init delay timer
  PCONP_bit.PCTIM0 = 1; // Enable TIM0 clocks
  T0TCR = 2;            // stop and reset timer 0
  T0CTCR_bit.CTM = 0;   // Timer Mode: every rising PCLK edge
  T0MCR_bit.MR0S = 1;   // stop timer if MR0 matches the TC
  T0MCR_bit.MR0R = 1;   // enable timer reset if MR0 matches the TC
  T0MCR_bit.MR0I = 1;   // Enable Interrupt on MR0
  T0PR = (SYS_GetFpclk(TIMER0_PCLK_OFFSET)/ 1000000) - 1; // 1us resolution
  T0MR0 = TS_SETUP_DLY;
  T0IR_bit.MR0INT = 1;  // clear pending interrupt
  VIC_SetVectoredIRQ(TimerIntr_Handler,TS_INTR_PRIORITY,VIC_TIMER0);
  VICINTENABLE |= 1UL << VIC_TIMER0;
  T0TCR = 1;            // start timer 0
#else
  // Init delay timer
  PCONP_bit.PCTIM3 = 1; // Enable TIM3 clocks
  T3TCR = 2;            // stop and reset timer 3
  T3CTCR_bit.CTM = 0;   // Timer Mode: every rising PCLK edge
  T3MCR_bit.MR0S = 1;   // stop timer if MR0 matches the TC
  T3MCR_bit.MR0R = 1;   // enable timer reset if MR0 matches the TC
  T3MCR_bit.MR0I = 1;   // Enable Interrupt on MR0
  T3PR = (SYS_GetFpclk(TIMER3_PCLK_OFFSET)/ 1000000) - 1; // 1us resolution
  T3MR0 = TS_SETUP_DLY;
  T3IR_bit.MR0INT = 1;  // clear pending interrupt
  VIC_SetVectoredIRQ(TimerIntr_Handler,TS_INTR_PRIORITY,VIC_TIMER3);
  VICINTENABLE |= 1UL << VIC_TIMER3;
  T3TCR = 1;            // start timer 0

#endif
}
/*************************************************************************
 * Function Name: TIMER_Init
 * Parameters:  LPC_TimerChanel_t DevNum
 *	        unsigned int precision -- the timer precision (Unit: us), general setting is 10 us
 * Return: int
 *              0: success
 *	 non-zero: error number
 * Description: Initialize Timer, Set the PR register that represent the precision of timer.
 *
 *************************************************************************/
int TIMER_Init(LPC_TimerChanel_t DevNum, unsigned long precision)
{
int i;
  //all registers are set to 0;
  switch (DevNum)
  {
  case TIMER0:
    // Set globe variable
    Timer0Config.Precision = precision;
    // PR = Precision(us) * Pclk
    Timer0Config.Prescaler = (precision * SYS_GetFpclk()) / 1000000;
    for (i=0; i<CH_MAXNUM; ++i)
    {
      Timer0Config.MatchCH[i].Enable = false;
      Timer0Config.MatchCH[i].Action = 0;
      Timer0Config.MatchCH[i].TimeValue =0;
      Timer0Config.MatchCH[i].Fnpr = NULL;
      Timer0Config.MatchCH[i].FnprArg = (void *)0;

      Timer0Config.CaptureCH[i].Enable = false;
      Timer0Config.CaptureCH[i].TriggerType= 0;
      Timer0Config.CaptureCH[i].EnableInt = 0;
      Timer0Config.CaptureCH[i].Fnpr = NULL;
      Timer0Config.CaptureCH[i].FnprArg = (void *)0;
      Timer0Config.CaptureCH[i].CPValue= 0;

      Timer0Config.ExtAction[i]= DONOTHING;
      Timer0Config.ExtBitValue[i]= 0;
    }
    // Clear interrupts flags	
    T0IR=0xFF;
    // Disable counting
    T0TCR=0;
    // Clear timer counter
    T0TC=0;
    // PR = Presclare - 1
    T0PR= Timer0Config.Prescaler - 1;
    // Clear prescaler timer counter
    T0PC=0;
    // Reset Compare modules
    T0MCR=0;
    T0MR0=0;
    T0MR1=0;
    T0MR2=0;
    T0MR3=0;
    // Reset Capture modules
    T0CCR=0;
    // Reset External Compare module
    T0EMR=0;
    break;
  case TIMER1:
    // Set globe variable
    Timer1Config.Precision = precision;
    // PR = Precision(us) * Pclk
    Timer1Config.Prescaler = (precision * SYS_GetFpclk()) / 1000000;
    for (i=0; i<CH_MAXNUM; ++i)
    {
      Timer1Config.MatchCH[i].Enable = false;
      Timer1Config.MatchCH[i].Action = 0;
      Timer1Config.MatchCH[i].TimeValue =0;
      Timer1Config.MatchCH[i].Fnpr = NULL;
      Timer1Config.MatchCH[i].FnprArg = (void *)0;

      Timer1Config.CaptureCH[i].Enable = false;
      Timer1Config.CaptureCH[i].TriggerType= 0;
      Timer1Config.CaptureCH[i].EnableInt = 0;
      Timer1Config.CaptureCH[i].Fnpr = NULL;
      Timer1Config.CaptureCH[i].FnprArg = (void *)0;
      Timer1Config.CaptureCH[i].CPValue= 0;

      Timer1Config.ExtAction[i]= DONOTHING;
      Timer1Config.ExtBitValue[i]= 0;
    }
    // Clear interrupts flags	
    T1IR=0xFF;
    // Disable counting
    T1TCR=0;
    // Clear timer counter
    T1TC=0;
    // PR = Prescaler - 1
    T1PR=Timer1Config.Prescaler - 1;
    // Clear prescaler timer counter
    T1PC=0;
    // Reset Compare modules
    T1MCR=0;
    T1MR0=0;
    T1MR1=0;
    T1MR2=0;
    T1MR3=0;
    // Reset Capture modules
    T1CCR=0;
    // Reset External Compare module
    T1EMR=0;
    break;
  default:
    return 1;
  }
  return 0;
}
Beispiel #3
0
/*************************************************************************
 * Function Name: main
 * Parameters: none
 *
 * Return: none
 *
 * Description: main
 *
 *************************************************************************/
int main(void)
{
typedef Int32U ram_unit;
// int cursor_x = (C_GLCD_H_SIZE - CURSOR_H_SIZE)/2, cursor_y = (C_GLCD_V_SIZE - CURSOR_V_SIZE)/2;
// unsigned long int deltaT;
static float freq_aveg;
int LCD_updatecount;
LCD_updatecount = 0;


//From uip start
unsigned int i;
uip_ipaddr_t ipaddr;
struct timer periodic_timer, arp_timer;
//From uip end
  /*** COMPARE FIX POINT 523235 ***/
  /*** COMPARE FIX POINT 523235 ***/
  GLCD_Ctrl (FALSE);
  // Init GPIO
  GpioInit();
#ifndef SDRAM_DEBUG
  // MAM init
  MAMCR_bit.MODECTRL = 0;
  MAMTIM_bit.CYCLES  = 3;   // FCLK > 40 MHz
  MAMCR_bit.MODECTRL = 2;   // MAM functions fully enabled
  // Init clock
  InitClock();
  // SDRAM Init
  SDRAM_Init();
#endif // SDRAM_DEBUG
  // Init VIC
  VIC_Init();
  // GLCD init
  // GLCD_Init (IarLogoPic.pPicStream, NULL); // Can be removed, remember to remove the h and c file as well
  // GLCD_Init (LogoPic.pPicStream, NULL);  // Can be removed, remember to remove the h and c file as well
  GLCD_Init (what_is_a_blissPic.pPicStream, NULL);
  GLCD_Cursor_Dis(0); //From uip
  // GLCD_Cursor_Dis(0);

  // GLCD_Copy_Cursor ((Int32U *)Cursor, 0, sizeof(Cursor)/sizeof(Int32U));
  /*** COMPARE FIX POINT 534252 ***/
  /*** COMPARE FIX POINT 534252 ***/
  GLCD_Cursor_Cfg(CRSR_FRAME_SYNC | CRSR_PIX_32); //From uip
  // GLCD_Cursor_Cfg(CRSR_FRAME_SYNC | CRSR_PIX_64);
  // GLCD_Move_Cursor(cursor_x, cursor_y);
  // GLCD_Cursor_En(0);

  //From uip start
  // Sys timer init 1/100 sec tick
  clock_init(2);

  timer_set(&periodic_timer, CLOCK_SECOND / 2);
  timer_set(&arp_timer, CLOCK_SECOND * 10);
  //From uip end


  // Init USB Link  LED
  USB_D_LINK_LED_SEL = 0; // GPIO
  USB_D_LINK_LED_FSET = USB_D_LINK_LED_MASK;
  USB_D_LINK_LED_FDIR |= USB_D_LINK_LED_MASK;
  
  USB_H_LINK_LED_SEL = 0; // GPIO
  USB_H_LINK_LED_FSET = USB_H_LINK_LED_MASK;
  USB_H_LINK_LED_FDIR |= USB_H_LINK_LED_MASK;

  
  /*-----------------------------------------------------------------*/
  
  // Init AD0[3] for current meassurement
  PINSEL1_bit.P0_26 = 1; // Assign P26 to AD0[3], page 180
  PINMODE1_bit.P0_26 = 2; // //Neither pull-up or pull-down
  // PCONP_bit.PCAD = 1;     // Note: Clear the PDN bit in the AD0CR before clearing this bit and set this before PDN
  // Other initial parameters are already set
  // AD0CR_bit.SEL  = 8;     // select Ch3 [1111]
  current_amp = 0;
  
  
  /*-----------------------------------------------------------------*/
  // Init the DAC converter
  //Clock: In the PCLK_SEL0 register (Table 4�), select PCLK_DAC
    //PCLKSEL0_bit.PCLK_DAC = 3UL;// **HAS Desided for values yet!** // '11' at bit 23 and 22  (which is CCLK/8)  //or use 0x3 for 3UL instead  
  //Pins: Select the DAC pin and pin mode in registers PINSEL1 and PINMODE1 (see Section 9�.
  //PINSEL1 |= (2UL<<20); //  PINSEL1_bit.P0_26 = 1; //??        
    //PINSEL1_bit.P0_26 = 2UL; 
  //"PINMODE registers control the on-chip pull-up/pull-down resistor feature for all GPIO ports." - page 178
  //PINMODE1 |= ________; // See table 128 for values. Write to bit 21:20
    //PINMODE1_bit.P0_26 = 2UL;  //P0.26MODE = 2UL; //Neither pull-up or pull-down


 /* ------------------------------------------------------------------*/
  // Init ADC converter
  // Power the ADC converter
  PINSEL1_bit.P0_25 = 1; // Assign Pin 25 to ADO[2]
  PINMODE1_bit.P0_25 = 1; // Neither pull-up or pull-dow
  PCONP_bit.PCAD = 1;     // Note: Clear the PDN bit in the AD0CR before clearing this bit and set this before PDN
  AD0CR_bit.PDN = 1;      // A/D converter is operational
  AD0CR_bit.START = 0;    // Conversion not started
  AD0CR_bit.BURST  = 0;   // disable burst
  // AD0CR_bit.SEL  = 4;     // select Ch2 [11]
  
  // Select number of clocks for each conversion
  AD0CR_bit.CLKS = 0; // [000] 11 clocks / 10 bits
  AD0CR_bit.CLKDIV = SYS_GetFpclk(ADC_PCLK_OFFSET)/ 10000; // 4500000;  // Should be equal to 10K samplingrate
  ADINTEN_bit.ADGINTEN = 1; // Global A/D channels enabled by ADINTEN 7:0
  // Since only on channel is used at the moment the global flag is enabled
  
  VIC_SetVectoredIRQ(AD0IntrHandler,1,VIC_AD0); // Set the interrupt call
  VICINTENABLE |= 1UL << VIC_AD0;
  


  // Setting parameters for the low-pass filter
  DACR_previous = 0; // Initialize DACR_temp which is y(i-1)
  deltaT = 1.0/TIMER0_TICK_PER_SEC; // Set the sample rate
  // Calculate the R*C for cut-off frequency of the low pass filter
  alpha = deltaT/(1./(2.*3.1416*100.) + deltaT); // Cut-off = 100 Hz
  done = 0; // Channel stage
/* ------------------------------------------------------------------*/
  
  // Setting the port to P0[11] and P0[19]
  PINSEL1_bit.P0_19 = 0; // GPIO to P0[19]
  PINSEL0_bit.P0_11 = 0; // GPIO to P0[11]
  PINMODE1_bit.P0_19 = 2; // Pin has neither pull up or down
  PINMODE0_bit.P0_11 = 2; // Pin has neither pull up or down
  FIO0DIR_bit.P0_19  = 1; 
  FIO0CLR  = (1UL<<19);
  FIO0DIR_bit.P0_11 = 1;
  FIO0CLR  = (1UL<<11);
  
  FIO0PIN_bit.P0_19 = 1;
  FIO0PIN_bit.P0_11 = 1;
/* ------------------------------------------------------------------*/  
  // Enable TIM0 clocks
  PCONP_bit.PCTIM0 = 1; // enable clock

  // Init Time0
  T0TCR_bit.CE = 0;     // counting  disable
  T0TCR_bit.CR = 1;     // set reset
  T0TCR_bit.CR = 0;     // release reset
  T0CTCR_bit.CTM = 0;   // Timer Mode: every rising PCLK edge
  T0MCR_bit.MR0I = 1;   // Enable Interrupt on MR0
  T0MCR_bit.MR0R = 1;   // Enable reset on MR0
  T0MCR_bit.MR0S = 0;   // Disable stop on MR0
  // set timer 0 period
  T0PR = 0;
  T0MR0 = SYS_GetFpclk(TIMER0_PCLK_OFFSET)/(TIMER0_TICK_PER_SEC);
  // init timer 0 interrupt
  T0IR_bit.MR0INT = 1;  // clear pending interrupt
  VIC_SetVectoredIRQ(Timer0IntrHandler,0,VIC_TIMER0);
  VICINTENABLE |= 1UL << VIC_TIMER0;
  T0TCR_bit.CE = 1;     // counting Enable
  __enable_interrupt();
  GLCD_Ctrl (TRUE);

#if 0
  SDRAM_Test();
#endif

  /*
  //
  SMB380_Init();

  SMB380_GetID(&Smb380Id, &Smb380Ver);

  SMB380_Data_t XYZT;
  */

  /*** COMPARE FIX POINT 856364 ***/
  /*** COMPARE FIX POINT 856364 ***/
  /*** COMPARE FIX POINT 856364 ***/
  /*** COMPARE FIX POINT 856364 ***/

  //From uip start
  GLCD_SetFont(&Terminal_18_24_12,0x000000,0x000cd4ff);
  GLCD_SetWindow(85,10,255,33);
  GLCD_TextSetPos(0,0);
  GLCD_print("\f Room Station");
  
  
  //From uip start

  /*** COMPARE FIX POINT 458923 ***/
  /*** COMPARE FIX POINT 458923 ***/

  // GLCD_SetWindow(5,200,319,239);
  // GLCD_SetFont(&Terminal_6_8_6,0x0000FF,0x000cd4ff);

  // Initialize the ethernet device driver
  do
  {
    GLCD_TextSetPos(0,0);
  }
  while(!tapdev_init());
  GLCD_TextSetPos(0,0);

  // uIP web server
  // Initialize the uIP TCP/IP stack.
  uip_init();

  uip_ipaddr(ipaddr, 192,168,0,100);
  uip_sethostaddr(ipaddr);
  uip_ipaddr(ipaddr, 192,168,0,1);
  uip_setdraddr(ipaddr);
  uip_ipaddr(ipaddr, 255,255,255,0);
  uip_setnetmask(ipaddr);

  // Initialize the HTTP server.
  httpd_init();

  /*** COMPARE FIX POINT 4572742 ***/
  /*** COMPARE FIX POINT 4572742 ***/
  /*** COMPARE FIX POINT 4572742 ***/
  /*** COMPARE FIX POINT 4572742 ***/


/*** WHILE LOOP START ***/
  while(1)
  {

  /*** COMPARE FIX POINT 938194 ***/
  /*** COMPARE FIX POINT 938194 ***/
  /*** COMPARE FIX POINT 938194 ***/
  /*** COMPARE FIX POINT 938194 ***/
  /*** COMPARE FIX POINT 938194 ***/

    uip_len = tapdev_read(uip_buf);
    if(uip_len > 0)
    {
      if(BUF->type == htons(UIP_ETHTYPE_IP))
      {
	      uip_arp_ipin();
	      uip_input();
	      /* If the above function invocation resulted in data that
	         should be sent out on the network, the global variable
	         uip_len is set to a value > 0. */
	      if(uip_len > 0)
        {
	        uip_arp_out();
	        tapdev_send(uip_buf,uip_len);
	      }
      }
      else if(BUF->type == htons(UIP_ETHTYPE_ARP))
      {
        uip_arp_arpin();
	      /* If the above function invocation resulted in data that
	         should be sent out on the network, the global variable
	         uip_len is set to a value > 0. */
	      if(uip_len > 0)
        {
	        tapdev_send(uip_buf,uip_len);
	      }
      }
    }
    else if(timer_expired(&periodic_timer))
    {
      timer_reset(&periodic_timer);
      for(i = 0; i < UIP_CONNS; i++)
      {
      	uip_periodic(i);
        /* If the above function invocation resulted in data that
           should be sent out on the network, the global variable
           uip_len is set to a value > 0. */
        if(uip_len > 0)
        {
          uip_arp_out();
          tapdev_send(uip_buf,uip_len);
        }
      }
#if UIP_UDP
      for(i = 0; i < UIP_UDP_CONNS; i++) {
        uip_udp_periodic(i);
        /* If the above function invocation resulted in data that
           should be sent out on the network, the global variable
           uip_len is set to a value > 0. */
        if(uip_len > 0) {
          uip_arp_out();
          tapdev_send();
        }
      }
#endif /* UIP_UDP */
      /* Call the ARP timer function every 10 seconds. */
      if(timer_expired(&arp_timer))
      {
        timer_reset(&arp_timer);
        uip_arp_timer();
      }
    }

    #define AVERAGECOUNT 100000
    if(LCD_updatecount <= AVERAGECOUNT) {
      ++LCD_updatecount;
      freq_aveg += freq;
    }
    else { 
      freq_aveg = freq_aveg/AVERAGECOUNT;

      updateFreqHistory(freq_aveg); //Must be kept together with freq calculation!

      GLCD_SetWindow(20,55,150,80);
      GLCD_SetFont(&Terminal_18_24_12,0x000000,0x009fee00);
      GLCD_TextSetPos(0,5);
      GLCD_print("\f Hz %3.3f", freq_aveg);
      freq_aveg = 0;
      
      GLCD_SetWindow(20,90,150,115);
      GLCD_SetFont(&Terminal_18_24_12,0x000000,0x009fee00);
      GLCD_TextSetPos(0,5);
      GLCD_print("\f  V  %3.3f", sqrtf(vol_rms_result));

      updateVoltageHistory(sqrtf(vol_rms_result));
      
      GLCD_SetWindow(20,125,150,150);
      GLCD_SetFont(&Terminal_18_24_12,0x000000,0x009fee00);
      GLCD_TextSetPos(0,5);
      GLCD_print("\f uA  %3.3f", sqrtf(current_amp));
      
      GLCD_SetWindow(20,160,150,185);
      GLCD_SetFont(&Terminal_18_24_12,0x000000,0x009fee00);
      GLCD_TextSetPos(0,5);
      GLCD_print("\f uP  %3.3f", sqrtf(vol_rms_result)*sqrtf(current_amp));
      LCD_updatecount = 0;
    }
    
    
  }//while(1) loop

}//main function