Beispiel #1
0
void Light::SHProject(const PbrtPoint &p, float pEpsilon, int lmax,
        const Scene *scene, bool computeLightVisibility, float time,
        RNG &rng, Spectrum *coeffs) const {
    for (int i = 0; i < SHTerms(lmax); ++i)
        coeffs[i] = 0.f;
    uint32_t ns = RoundUpPow2(nSamples);
    uint32_t scramble1D = rng.RandomUInt();
    uint32_t scramble2D[2] = { rng.RandomUInt(), rng.RandomUInt() };
    float *Ylm = ALLOCA(float, SHTerms(lmax));
    for (uint32_t i = 0; i < ns; ++i) {
        // Compute incident radiance sample from _light_, update SH _coeffs_
        float u[2], pdf;
        Sample02(i, scramble2D, u);
        LightSample lightSample(u[0], u[1], VanDerCorput(i, scramble1D));
        Vector wi;
        VisibilityTester vis;
        Spectrum Li = Sample_L(p, pEpsilon, lightSample, time, &wi, &pdf, &vis);
        if (!Li.IsBlack() && pdf > 0.f &&
            (!computeLightVisibility || vis.Unoccluded(scene))) {
            // Add light sample contribution to MC estimate of SH coefficients
            SHEvaluate(wi, lmax, Ylm);
            for (int j = 0; j < SHTerms(lmax); ++j)
                coeffs[j] += Li * Ylm[j] / (pdf * ns);
        }
    }
}
Beispiel #2
0
Spectrum IrradianceCacheIntegrator::indirectLo(const Point &p,
        const Normal &ng, float pixelSpacing, const Vector &wo,
        float rayEpsilon, BSDF *bsdf, BxDFType flags, RNG &rng,
        const Scene *scene, const Renderer *renderer,
        MemoryArena &arena) const {
    if (bsdf->NumComponents(flags) == 0)
        return Spectrum(0.);
    Spectrum E;
    Vector wi;
    // Get irradiance _E_ and average incident direction _wi_ at point _p_
    if (!interpolateE(scene, p, ng, &E, &wi)) {
        // Compute irradiance at current point
        PBRT_IRRADIANCE_CACHE_STARTED_COMPUTING_IRRADIANCE(const_cast<Point *>(&p), const_cast<Normal *>(&ng));
        uint32_t scramble[2] = { rng.RandomUInt(), rng.RandomUInt() };
        float minHitDistance = INFINITY;
        Vector wAvg(0,0,0);
        Spectrum LiSum = 0.f;
        for (int i = 0; i < nSamples; ++i) {
            // Sample direction for irradiance estimate ray
            float u[2];
            Sample02(i, scramble, u);
            Vector w = CosineSampleHemisphere(u[0], u[1]);
            RayDifferential r(p, bsdf->LocalToWorld(w), rayEpsilon);
            r.d = Faceforward(r.d, ng);

            // Trace ray to sample radiance for irradiance estimate
            PBRT_IRRADIANCE_CACHE_STARTED_RAY(&r);
            Spectrum L = pathL(r, scene, renderer, rng, arena);
            LiSum += L;
            wAvg += r.d * L.y();
            minHitDistance = min(minHitDistance, r.maxt);
            PBRT_IRRADIANCE_CACHE_FINISHED_RAY(&r, r.maxt, &L);
        }
        E = (M_PI / float(nSamples)) * LiSum;
        PBRT_IRRADIANCE_CACHE_FINISHED_COMPUTING_IRRADIANCE(const_cast<Point *>(&p), const_cast<Normal *>(&ng));

        // Add computed irradiance value to cache

        // Compute irradiance sample's contribution extent and bounding box
        float maxDist = maxSamplePixelSpacing * pixelSpacing;
        float minDist = minSamplePixelSpacing * pixelSpacing;
        float contribExtent = Clamp(minHitDistance / 2.f, minDist, maxDist);
        BBox sampleExtent(p);
        sampleExtent.Expand(contribExtent);
        PBRT_IRRADIANCE_CACHE_ADDED_NEW_SAMPLE(const_cast<Point *>(&p), const_cast<Normal *>(&ng), contribExtent, &E, &wAvg, pixelSpacing);

        // Allocate _IrradianceSample_, get write lock, add to octree
        IrradianceSample *sample = new IrradianceSample(E, p, ng, wAvg,
                                                        contribExtent);
        RWMutexLock lock(*mutex, WRITE);
        octree->Add(sample, sampleExtent);
        wi = wAvg;
    }

    // Compute reflected radiance due to irradiance and BSDF
    if (wi.LengthSquared() == 0.f) return Spectrum(0.);
    return bsdf->f(wo, Normalize(wi), flags) * E;
}
// AmbientOcclusionIntegrator Method Definitions
Spectrum AmbientOcclusionIntegrator::Li(const Scene *scene, const Renderer *renderer,
        const RayDifferential &ray, const Intersection &isect,
        const Sample *sample, RNG &rng, MemoryArena &arena, int wavelength) const {

    BSDF *bsdf = isect.GetBSDF(ray, arena, wavelength);
    const Point &p = bsdf->dgShading.p;
    Normal n = Faceforward(isect.dg.nn, -ray.d);

    uint32_t scramble[2] = { rng.RandomUInt(), rng.RandomUInt() };
    float u[2];
    int nClear = 0;
    for (int i = 0; i < nSamples; ++i) {
        Sample02(i, scramble, u);
        Vector w = UniformSampleSphere(u[0], u[1]);
        if (Dot(w, n) < 0.) w = -w;
        Ray r(p, w, .01f, maxDist);
        if (!scene->IntersectP(r)) ++nClear;
    }
    return Spectrum(float(nClear) / float(nSamples));
}
Beispiel #4
0
Spectrum IrradianceCache::IndirectLo(const Point &p,
		const Normal &n, const Vector &wo, BSDF *bsdf,
		BxDFType flags, const Sample *sample,
		const Scene *scene) const {
	if (bsdf->NumComponents(flags) == 0)
		return Spectrum(0.);
	Spectrum E;
	if (!InterpolateIrradiance(scene, p, n, &E)) {
		// Compute irradiance at current point
		u_int scramble[2] = { RandomUInt(), RandomUInt() };
		float sumInvDists = 0.;
		for (int i = 0; i < nSamples; ++i) {
			// Trace ray to sample radiance for irradiance estimate
			// Update irradiance statistics for rays traced
			static StatsCounter nIrradiancePaths("Irradiance Cache",
				"Paths followed for irradiance estimates");
			++nIrradiancePaths;
			float u[2];
			Sample02(i, scramble, u);
			Vector w = CosineSampleHemisphere(u[0], u[1]);
			RayDifferential r(p, bsdf->LocalToWorld(w));
			if (Dot(r.d, n) < 0) r.d = -r.d;
			Spectrum L(0.);
			// Do path tracing to compute radiance along ray for estimate
			{
			// Declare common path integration variables
			Spectrum pathThroughput = 1.;
			RayDifferential ray(r);
			bool specularBounce = false;
			for (int pathLength = 0; ; ++pathLength) {
				// Find next vertex of path
				Intersection isect;
				if (!scene->Intersect(ray, &isect))
					break;
				if (pathLength == 0)
					r.maxt = ray.maxt;
				pathThroughput *= scene->Transmittance(ray);
				// Possibly add emitted light at path vertex
				if (specularBounce)
					L += pathThroughput * isect.Le(-ray.d);
				// Evaluate BSDF at hit point
				BSDF *bsdf = isect.GetBSDF(ray);
				// Sample illumination from lights to find path contribution
				const Point &p = bsdf->dgShading.p;
				const Normal &n = bsdf->dgShading.nn;
				Vector wo = -ray.d;
				L += pathThroughput *
					UniformSampleOneLight(scene, p, n, wo, bsdf, sample);
				if (pathLength+1 == maxIndirectDepth) break;
				// Sample BSDF to get new path direction
				// Get random numbers for sampling new direction, \mono{bs1}, \mono{bs2}, and \mono{bcs}
				float bs1 = RandomFloat(), bs2 = RandomFloat(), bcs = RandomFloat();
				Vector wi;
				float pdf;
				BxDFType flags;
				Spectrum f = bsdf->Sample_f(wo, &wi, bs1, bs2, bcs,
					&pdf, BSDF_ALL, &flags);
				if (f.Black() || pdf == 0.)
					break;
				specularBounce = (flags & BSDF_SPECULAR) != 0;
				pathThroughput *= f * AbsDot(wi, n) / pdf;
				ray = RayDifferential(p, wi);
				// Possibly terminate the path
				if (pathLength > 3) {
					float continueProbability = .5f;
					if (RandomFloat() > continueProbability)
						break;
					pathThroughput /= continueProbability;
				}
			}
			}
			E += L;
			float dist = r.maxt * r.d.Length();
			sumInvDists += 1.f / dist;
		}
		E *= M_PI / float(nSamples);
		// Add computed irradiance value to cache
		// Update statistics for new irradiance sample
		static StatsCounter nSamplesComputed("Irradiance Cache",
			"Irradiance estimates computed");
		++nSamplesComputed;
		// Compute bounding box of irradiance sample's contribution region
		static float minMaxDist =
			.001f * powf(scene->WorldBound().Volume(), 1.f/3.f);
		static float maxMaxDist =
			.125f * powf(scene->WorldBound().Volume(), 1.f/3.f);
		float maxDist = nSamples / sumInvDists;
		if (minMaxDist > 0.f)
			maxDist = Clamp(maxDist, minMaxDist, maxMaxDist);
		maxDist *= maxError;
		BBox sampleExtent(p);
		sampleExtent.Expand(maxDist);
		octree->Add(IrradianceSample(E, p, n, maxDist),
			sampleExtent);
	}
	return .5f * bsdf->rho(wo, flags) * E;
}
void DipoleSubsurfaceIntegrator::Preprocess(const Scene *scene,
        const Camera *camera, const Renderer *renderer) {
    if (scene->lights.size() == 0) return;
    vector<SurfacePoint> pts;
    // Get _SurfacePoint_s for translucent objects in scene
    if (filename != "") {
        // Initialize _SurfacePoint_s from file
        vector<float> fpts;
        if (ReadFloatFile(filename.c_str(), &fpts)) {
            if ((fpts.size() % 8) != 0)
                Error("Excess values (%d) in points file \"%s\"", int(fpts.size() % 8),
                      filename.c_str());
            for (u_int i = 0; i < fpts.size(); i += 8)
                pts.push_back(SurfacePoint(Point(fpts[i], fpts[i+1], fpts[i+2]),
                                           Normal(fpts[i+3], fpts[i+4], fpts[i+5]),
                                           fpts[i+6], fpts[i+7]));
        }
    }
    if (pts.size() == 0) {
        Point pCamera = camera->CameraToWorld(camera->shutterOpen,
                                              Point(0, 0, 0));
        FindPoissonPointDistribution(pCamera, camera->shutterOpen,
                                     minSampleDist, scene, &pts);
    }

    // Compute irradiance values at sample points
    RNG rng;
    MemoryArena arena;
    PBRT_SUBSURFACE_STARTED_COMPUTING_IRRADIANCE_VALUES();
    ProgressReporter progress(pts.size(), "Computing Irradiances");
    for (uint32_t i = 0; i < pts.size(); ++i) {
        SurfacePoint &sp = pts[i];
        Spectrum E(0.f);
        for (uint32_t j = 0; j < scene->lights.size(); ++j) {
            // Add irradiance from light at point
            const Light *light = scene->lights[j];
            Spectrum Elight = 0.f;
            int nSamples = RoundUpPow2(light->nSamples);
            uint32_t scramble[2] = { rng.RandomUInt(), rng.RandomUInt() };
            uint32_t compScramble = rng.RandomUInt();
            for (int s = 0; s < nSamples; ++s) {
                float lpos[2];
                Sample02(s, scramble, lpos);
                float lcomp = VanDerCorput(s, compScramble);
                LightSample ls(lpos[0], lpos[1], lcomp);
                Vector wi;
                float lightPdf;
                VisibilityTester visibility;
                Spectrum Li = light->Sample_L(sp.p, sp.rayEpsilon,
                    ls, camera->shutterOpen, &wi, &lightPdf, &visibility);
                if (Dot(wi, sp.n) <= 0.) continue;
                if (Li.IsBlack() || lightPdf == 0.f) continue;
                Li *= visibility.Transmittance(scene, renderer, NULL, rng, arena);
                if (visibility.Unoccluded(scene))
                    Elight += Li * AbsDot(wi, sp.n) / lightPdf;
            }
            E += Elight / nSamples;
        }
        if (E.y() > 0.f)
        {
            irradiancePoints.push_back(IrradiancePoint(sp, E));
            PBRT_SUBSURFACE_COMPUTED_IRRADIANCE_AT_POINT(&sp, &E);
        }
        arena.FreeAll();
        progress.Update();
    }
    progress.Done();
    PBRT_SUBSURFACE_FINISHED_COMPUTING_IRRADIANCE_VALUES();

    // Create octree of clustered irradiance samples
    octree = octreeArena.Alloc<SubsurfaceOctreeNode>();
    for (uint32_t i = 0; i < irradiancePoints.size(); ++i)
        octreeBounds = Union(octreeBounds, irradiancePoints[i].p);
    for (uint32_t i = 0; i < irradiancePoints.size(); ++i)
        octree->Insert(octreeBounds, &irradiancePoints[i], octreeArena);
    octree->InitHierarchy();
}
void MetropolisRenderer::Render(const Scene *scene) {
    PBRT_MLT_STARTED_RENDERING();
    if (scene->lights.size() > 0) {
        int x0, x1, y0, y1;
        camera->film->GetPixelExtent(&x0, &x1, &y0, &y1);
        float t0 = camera->shutterOpen, t1 = camera->shutterClose;
        Distribution1D *lightDistribution = ComputeLightSamplingCDF(scene);

        if (directLighting != NULL) {
            PBRT_MLT_STARTED_DIRECTLIGHTING();
            // Compute direct lighting before Metropolis light transport
            if (nDirectPixelSamples > 0) {
                LDSampler sampler(x0, x1, y0, y1, nDirectPixelSamples, t0, t1);
                Sample *sample = new Sample(&sampler, directLighting, NULL, scene);
                vector<Task *> directTasks;
                int nDirectTasks = max(32 * NumSystemCores(),
                                 (camera->film->xResolution * camera->film->yResolution) / (16*16));
                nDirectTasks = RoundUpPow2(nDirectTasks);
                ProgressReporter directProgress(nDirectTasks, "Direct Lighting");
                for (int i = 0; i < nDirectTasks; ++i)
                    directTasks.push_back(new SamplerRendererTask(scene, this, camera, directProgress,
                                                                  &sampler, sample, false, i, nDirectTasks));
                std::reverse(directTasks.begin(), directTasks.end());
                EnqueueTasks(directTasks);
                WaitForAllTasks();
                for (uint32_t i = 0; i < directTasks.size(); ++i)
                    delete directTasks[i];
                delete sample;
                directProgress.Done();
            }
            camera->film->WriteImage();
            PBRT_MLT_FINISHED_DIRECTLIGHTING();
        }
        // Take initial set of samples to compute $b$
        PBRT_MLT_STARTED_BOOTSTRAPPING(nBootstrap);
        RNG rng(0);
        MemoryArena arena;
        vector<float> bootstrapI;
        vector<PathVertex> cameraPath(maxDepth, PathVertex());
        vector<PathVertex> lightPath(maxDepth, PathVertex());
        float sumI = 0.f;
        bootstrapI.reserve(nBootstrap);
        MLTSample sample(maxDepth);
        for (uint32_t i = 0; i < nBootstrap; ++i) {
            // Generate random sample and path radiance for MLT bootstrapping
            float x = Lerp(rng.RandomFloat(), x0, x1);
            float y = Lerp(rng.RandomFloat(), y0, y1);
            LargeStep(rng, &sample, maxDepth, x, y, t0, t1, bidirectional);
            Spectrum L = PathL(sample, scene, arena, camera, lightDistribution,
                               &cameraPath[0], &lightPath[0], rng);

            // Compute contribution for random sample for MLT bootstrapping
            float I = ::I(L);
            sumI += I;
            bootstrapI.push_back(I);
            arena.FreeAll();
        }
        float b = sumI / nBootstrap;
        PBRT_MLT_FINISHED_BOOTSTRAPPING(b);
        Info("MLT computed b = %f", b);

        // Select initial sample from bootstrap samples
        float contribOffset = rng.RandomFloat() * sumI;
        rng.Seed(0);
        sumI = 0.f;
        MLTSample initialSample(maxDepth);
        for (uint32_t i = 0; i < nBootstrap; ++i) {
            float x = Lerp(rng.RandomFloat(), x0, x1);
            float y = Lerp(rng.RandomFloat(), y0, y1);
            LargeStep(rng, &initialSample, maxDepth, x, y, t0, t1,
                      bidirectional);
            sumI += bootstrapI[i];
            if (sumI > contribOffset)
                break;
        }

        // Launch tasks to generate Metropolis samples
        uint32_t nTasks = largeStepsPerPixel;
        uint32_t largeStepRate = nPixelSamples / largeStepsPerPixel;
        Info("MLT running %d tasks, large step rate %d", nTasks, largeStepRate);
        ProgressReporter progress(nTasks * largeStepRate, "Metropolis");
        vector<Task *> tasks;
        Mutex *filmMutex = Mutex::Create();
        Assert(IsPowerOf2(nTasks));
        uint32_t scramble[2] = { rng.RandomUInt(), rng.RandomUInt() };
        uint32_t pfreq = (x1-x0) * (y1-y0);
        for (uint32_t i = 0; i < nTasks; ++i) {
            float d[2];
            Sample02(i, scramble, d);
            tasks.push_back(new MLTTask(progress, pfreq, i,
                d[0], d[1], x0, x1, y0, y1, t0, t1, b, initialSample,
                scene, camera, this, filmMutex, lightDistribution));
        }
        EnqueueTasks(tasks);
        WaitForAllTasks();
        for (uint32_t i = 0; i < tasks.size(); ++i)
            delete tasks[i];
        progress.Done();
        Mutex::Destroy(filmMutex);
        delete lightDistribution;
    }
    camera->film->WriteImage();
    PBRT_MLT_FINISHED_RENDERING();
}