void TestAsymmetricCipher(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); member_ptr<PK_Encryptor> encryptor(ObjectFactoryRegistry<PK_Encryptor>::Registry().CreateObject(name.c_str())); member_ptr<PK_Decryptor> decryptor(ObjectFactoryRegistry<PK_Decryptor>::Registry().CreateObject(name.c_str())); std::string keyFormat = GetRequiredDatum(v, "KeyFormat"); if (keyFormat == "DER") { decryptor->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PrivateKey")).Ref()); encryptor->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PublicKey")).Ref()); } else if (keyFormat == "Component") { TestDataNameValuePairs pairs(v); decryptor->AccessMaterial().AssignFrom(pairs); encryptor->AccessMaterial().AssignFrom(pairs); } if (test == "DecryptMatch") { std::string decrypted, expected = GetDecodedDatum(v, "Plaintext"); StringSource ss(GetDecodedDatum(v, "Ciphertext"), true, new PK_DecryptorFilter(GlobalRNG(), *decryptor, new StringSink(decrypted))); if (decrypted != expected) SignalTestFailure(); } else if (test == "KeyPairValidAndConsistent") { TestKeyPairValidAndConsistent(encryptor->AccessMaterial(), decryptor->GetMaterial()); } else { SignalTestError(); assert(false); } }
void TestSymmetricCipher(TestData &v, const NameValuePairs &overrideParameters) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::string key = GetDecodedDatum(v, "Key"); std::string plaintext = GetDecodedDatum(v, "Plaintext"); TestDataNameValuePairs testDataPairs(v); CombinedNameValuePairs pairs(overrideParameters, testDataPairs); if (test == "Encrypt" || test == "EncryptXorDigest" || test == "Resync" || test == "EncryptionMCT" || test == "DecryptionMCT") { static member_ptr<SymmetricCipher> encryptor, decryptor; static std::string lastName; if (name != lastName) { encryptor.reset(ObjectFactoryRegistry<SymmetricCipher, ENCRYPTION>::Registry().CreateObject(name.c_str())); decryptor.reset(ObjectFactoryRegistry<SymmetricCipher, DECRYPTION>::Registry().CreateObject(name.c_str())); lastName = name; } ConstByteArrayParameter iv; if (pairs.GetValue(Name::IV(), iv) && iv.size() != encryptor->IVSize()) SignalTestFailure(); if (test == "Resync") { encryptor->Resynchronize(iv.begin(), (int)iv.size()); decryptor->Resynchronize(iv.begin(), (int)iv.size()); } else { encryptor->SetKey((const byte *)key.data(), key.size(), pairs); decryptor->SetKey((const byte *)key.data(), key.size(), pairs); } int seek = pairs.GetIntValueWithDefault("Seek", 0); if (seek) { encryptor->Seek(seek); decryptor->Seek(seek); } std::string encrypted, xorDigest, ciphertext, ciphertextXorDigest; if (test == "EncryptionMCT" || test == "DecryptionMCT") { SymmetricCipher *cipher = encryptor.get(); SecByteBlock buf((byte *)plaintext.data(), plaintext.size()), keybuf((byte *)key.data(), key.size()); if (test == "DecryptionMCT") { cipher = decryptor.get(); ciphertext = GetDecodedDatum(v, "Ciphertext"); buf.Assign((byte *)ciphertext.data(), ciphertext.size()); } for (int i=0; i<400; i++) { encrypted.reserve(10000 * plaintext.size()); for (int j=0; j<10000; j++) { cipher->ProcessString(buf.begin(), buf.size()); encrypted.append((char *)buf.begin(), buf.size()); } encrypted.erase(0, encrypted.size() - keybuf.size()); xorbuf(keybuf.begin(), (const byte *)encrypted.data(), keybuf.size()); cipher->SetKey(keybuf, keybuf.size()); } encrypted.assign((char *)buf.begin(), buf.size()); ciphertext = GetDecodedDatum(v, test == "EncryptionMCT" ? "Ciphertext" : "Plaintext"); if (encrypted != ciphertext) { std::cout << "incorrectly encrypted: "; StringSource xx(encrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } return; } StreamTransformationFilter encFilter(*encryptor, new StringSink(encrypted), StreamTransformationFilter::NO_PADDING); RandomizedTransfer(StringStore(plaintext).Ref(), encFilter, true); encFilter.MessageEnd(); /*{ std::string z; encryptor->Seek(seek); StringSource ss(plaintext, false, new StreamTransformationFilter(*encryptor, new StringSink(z), StreamTransformationFilter::NO_PADDING)); while (ss.Pump(64)) {} ss.PumpAll(); for (int i=0; i<z.length(); i++) assert(encrypted[i] == z[i]); }*/ if (test != "EncryptXorDigest") ciphertext = GetDecodedDatum(v, "Ciphertext"); else { ciphertextXorDigest = GetDecodedDatum(v, "CiphertextXorDigest"); xorDigest.append(encrypted, 0, 64); for (size_t i=64; i<encrypted.size(); i++) xorDigest[i%64] ^= encrypted[i]; } if (test != "EncryptXorDigest" ? encrypted != ciphertext : xorDigest != ciphertextXorDigest) { std::cout << "incorrectly encrypted: "; StringSource xx(encrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(2048); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } std::string decrypted; StreamTransformationFilter decFilter(*decryptor, new StringSink(decrypted), StreamTransformationFilter::NO_PADDING); RandomizedTransfer(StringStore(encrypted).Ref(), decFilter, true); decFilter.MessageEnd(); if (decrypted != plaintext) { std::cout << "incorrectly decrypted: "; StringSource xx(decrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } } else { std::cout << "unexpected test name\n"; SignalTestError(); } }
void TestSignatureScheme(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::auto_ptr<PK_Signer> signer(ObjectFactoryRegistry<PK_Signer>::Registry().CreateObject(name.c_str())); std::auto_ptr<PK_Verifier> verifier(ObjectFactoryRegistry<PK_Verifier>::Registry().CreateObject(name.c_str())); TestDataNameValuePairs pairs(v); std::string keyFormat = GetRequiredDatum(v, "KeyFormat"); if (keyFormat == "DER") verifier->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PublicKey")).Ref()); else if (keyFormat == "Component") verifier->AccessMaterial().AssignFrom(pairs); if (test == "Verify" || test == "NotVerify") { VerifierFilter verifierFilter(*verifier, NULL, VerifierFilter::SIGNATURE_AT_BEGIN); PutDecodedDatumInto(v, "Signature", verifierFilter); PutDecodedDatumInto(v, "Message", verifierFilter); verifierFilter.MessageEnd(); if (verifierFilter.GetLastResult() == (test == "NotVerify")) SignalTestFailure(); } else if (test == "PublicKeyValid") { if (!verifier->GetMaterial().Validate(GlobalRNG(), 3)) SignalTestFailure(); } else goto privateKeyTests; return; privateKeyTests: if (keyFormat == "DER") signer->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PrivateKey")).Ref()); else if (keyFormat == "Component") signer->AccessMaterial().AssignFrom(pairs); if (test == "KeyPairValidAndConsistent") { TestKeyPairValidAndConsistent(verifier->AccessMaterial(), signer->GetMaterial()); } else if (test == "Sign") { SignerFilter f(GlobalRNG(), *signer, new HexEncoder(new FileSink(cout))); StringSource ss(GetDecodedDatum(v, "Message"), true, new Redirector(f)); SignalTestFailure(); } else if (test == "DeterministicSign") { SignalTestError(); assert(false); // TODO: implement } else if (test == "RandomSign") { SignalTestError(); assert(false); // TODO: implement } else if (test == "GenerateKey") { SignalTestError(); assert(false); } else { SignalTestError(); assert(false); } }
void TestSignatureScheme(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); member_ptr<PK_Signer> signer(ObjectFactoryRegistry<PK_Signer>::Registry().CreateObject(name.c_str())); member_ptr<PK_Verifier> verifier(ObjectFactoryRegistry<PK_Verifier>::Registry().CreateObject(name.c_str())); TestDataNameValuePairs pairs(v); if (test == "GenerateKey") { signer->AccessPrivateKey().GenerateRandom(GlobalRNG(), pairs); verifier->AccessPublicKey().AssignFrom(signer->AccessPrivateKey()); } else { std::string keyFormat = GetRequiredDatum(v, "KeyFormat"); if (keyFormat == "DER") verifier->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PublicKey")).Ref()); else if (keyFormat == "Component") verifier->AccessMaterial().AssignFrom(pairs); if (test == "Verify" || test == "NotVerify") { VerifierFilter verifierFilter(*verifier, NULL, VerifierFilter::SIGNATURE_AT_BEGIN); PutDecodedDatumInto(v, "Signature", verifierFilter); PutDecodedDatumInto(v, "Message", verifierFilter); verifierFilter.MessageEnd(); if (verifierFilter.GetLastResult() == (test == "NotVerify")) SignalTestFailure(); return; } else if (test == "PublicKeyValid") { if (!verifier->GetMaterial().Validate(GlobalRNG(), 3)) SignalTestFailure(); return; } if (keyFormat == "DER") signer->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PrivateKey")).Ref()); else if (keyFormat == "Component") signer->AccessMaterial().AssignFrom(pairs); } if (test == "GenerateKey" || test == "KeyPairValidAndConsistent") { TestKeyPairValidAndConsistent(verifier->AccessMaterial(), signer->GetMaterial()); VerifierFilter verifierFilter(*verifier, NULL, VerifierFilter::THROW_EXCEPTION); verifierFilter.Put((const byte *)"abc", 3); StringSource ss("abc", true, new SignerFilter(GlobalRNG(), *signer, new Redirector(verifierFilter))); } else if (test == "Sign") { SignerFilter f(GlobalRNG(), *signer, new HexEncoder(new FileSink(cout))); StringSource ss(GetDecodedDatum(v, "Message"), true, new Redirector(f)); SignalTestFailure(); } else if (test == "DeterministicSign") { // This test is specialized for RFC 6979. The RFC is a drop-in replacement // for DSA and ECDSA, and access to the seed or secret is not needed. If // additional determinsitic signatures are added, then the test harness will // likely need to be extended. string signature; SignerFilter f(GlobalRNG(), *signer, new HexEncoder(new StringSink(signature))); StringSource ss(GetDecodedDatum(v, "Message"), true, new Redirector(f)); if (GetDecodedDatum(v, "Signature") != signature) SignalTestFailure(); return; } else if (test == "RandomSign") { SignalTestError(); assert(false); // TODO: implement } else { SignalTestError(); assert(false); } }
void FIPS140_SampleApplication() { if (!FIPS_140_2_ComplianceEnabled()) { cerr << "FIPS 140-2 compliance was turned off at compile time.\n"; abort(); } // check self test status if (GetPowerUpSelfTestStatus() != POWER_UP_SELF_TEST_PASSED) { cerr << "Automatic power-up self test failed.\n"; abort(); } cout << "0. Automatic power-up self test passed.\n"; // simulate a power-up self test error SimulatePowerUpSelfTestFailure(); try { // trying to use a crypto algorithm after power-up self test error will result in an exception AES::Encryption aes; // should not be here cerr << "Use of AES failed to cause an exception after power-up self test error.\n"; abort(); } catch (SelfTestFailure &e) { cout << "1. Caught expected exception when simulating self test failure. Exception message follows: "; cout << e.what() << endl; } // clear the self test error state and redo power-up self test DoDllPowerUpSelfTest(); if (GetPowerUpSelfTestStatus() != POWER_UP_SELF_TEST_PASSED) { cerr << "Re-do power-up self test failed.\n"; abort(); } cout << "2. Re-do power-up self test passed.\n"; // encrypt and decrypt const byte key[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef}; const byte iv[] = {0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef}; const byte plaintext[] = { // "Now is the time for all " without tailing 0 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20}; byte ciphertext[24]; byte decrypted[24]; CFB_FIPS_Mode<DES_EDE3>::Encryption encryption_DES_EDE3_CFB; encryption_DES_EDE3_CFB.SetKeyWithIV(key, sizeof(key), iv); encryption_DES_EDE3_CFB.ProcessString(ciphertext, plaintext, 23); CFB_FIPS_Mode<DES_EDE3>::Decryption decryption_DES_EDE3_CFB; decryption_DES_EDE3_CFB.SetKeyWithIV(key, sizeof(key), iv); decryption_DES_EDE3_CFB.ProcessString(decrypted, ciphertext, 24); if (memcmp(plaintext, decrypted, 24) != 0) { cerr << "DES-EDE3-CFB Encryption/decryption failed.\n"; abort(); } cout << "3. DES-EDE3-CFB Encryption/decryption succeeded.\n"; // hash const byte message[] = {'a', 'b', 'c'}; const byte expectedDigest[] = {0xA9,0x99,0x3E,0x36,0x47,0x06,0x81,0x6A,0xBA,0x3E,0x25,0x71,0x78,0x50,0xC2,0x6C,0x9C,0xD0,0xD8,0x9D}; byte digest[20]; SHA1 sha; sha.Update(message, 3); sha.Final(digest); if (memcmp(digest, expectedDigest, 20) != 0) { cerr << "SHA-1 hash failed.\n"; abort(); } cout << "4. SHA-1 hash succeeded.\n"; // create auto-seeded X9.17 RNG object, if available #ifdef OS_RNG_AVAILABLE AutoSeededX917RNG<DES_EDE3> rng; #else // this is used to allow this function to compile on platforms that don't have auto-seeded RNGs RandomNumberGenerator &rng(NullRNG()); #endif // generate DSA key DSA::PrivateKey dsaPrivateKey; dsaPrivateKey.GenerateRandomWithKeySize(rng, 1024); DSA::PublicKey dsaPublicKey; dsaPublicKey.AssignFrom(dsaPrivateKey); if (!dsaPrivateKey.Validate(rng, 3) || !dsaPublicKey.Validate(rng, 3)) { cerr << "DSA key generation failed.\n"; abort(); } cout << "5. DSA key generation succeeded.\n"; // encode DSA key std::string encodedDsaPublicKey, encodedDsaPrivateKey; dsaPublicKey.DEREncode(StringSink(encodedDsaPublicKey).Ref()); dsaPrivateKey.DEREncode(StringSink(encodedDsaPrivateKey).Ref()); // decode DSA key DSA::PrivateKey decodedDsaPrivateKey; decodedDsaPrivateKey.BERDecode(StringStore(encodedDsaPrivateKey).Ref()); DSA::PublicKey decodedDsaPublicKey; decodedDsaPublicKey.BERDecode(StringStore(encodedDsaPublicKey).Ref()); if (!decodedDsaPrivateKey.Validate(rng, 3) || !decodedDsaPublicKey.Validate(rng, 3)) { cerr << "DSA key encode/decode failed.\n"; abort(); } cout << "6. DSA key encode/decode succeeded.\n"; // sign and verify byte signature[40]; DSA::Signer signer(dsaPrivateKey); assert(signer.SignatureLength() == 40); signer.SignMessage(rng, message, 3, signature); DSA::Verifier verifier(dsaPublicKey); if (!verifier.VerifyMessage(message, 3, signature, sizeof(signature))) { cerr << "DSA signature and verification failed.\n"; abort(); } cout << "7. DSA signature and verification succeeded.\n"; // try to verify an invalid signature signature[0] ^= 1; if (verifier.VerifyMessage(message, 3, signature, sizeof(signature))) { cerr << "DSA signature verification failed to detect bad signature.\n"; abort(); } cout << "8. DSA signature verification successfully detected bad signature.\n"; // try to use an invalid key length try { ECB_Mode<DES_EDE3>::Encryption encryption_DES_EDE3_ECB; encryption_DES_EDE3_ECB.SetKey(key, 5); // should not be here cerr << "DES-EDE3 implementation did not detect use of invalid key length.\n"; abort(); } catch (InvalidArgument &e) { cout << "9. Caught expected exception when using invalid key length. Exception message follows: "; cout << e.what() << endl; } cout << "\nFIPS 140-2 Sample Application completed normally.\n"; }