Beispiel #1
0
/**
 * Initializes remaining bits of the KVM provider.
 *
 * This is called after initializing HM and almost all other VMM components.
 *
 * @returns VBox status code.
 * @param   pVM     Pointer to the VM.
 */
VMMR3_INT_DECL(int) gimR3KvmInitCompleted(PVM pVM)
{
    PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
    pKvm->cTscTicksPerSecond = TMCpuTicksPerSecond(pVM);

    if (TMR3CpuTickIsFixedRateMonotonic(pVM, true /* fWithParavirtEnabled */))
    {
        /** @todo We might want to consider just enabling this bit *always*. As far
         *        as I can see in the Linux guest, the "TSC_STABLE" bit is only
         *        translated as a "monotonic" bit which even in Async systems we
         *        -should- be reporting a strictly monotonic TSC to the guest.  */
        pKvm->uBaseFeat |= GIM_KVM_BASE_FEAT_TSC_STABLE;

        CPUMCPUIDLEAF HyperLeaf;
        RT_ZERO(HyperLeaf);
        HyperLeaf.uLeaf        = UINT32_C(0x40000001);
        HyperLeaf.uEax         = pKvm->uBaseFeat;
        HyperLeaf.uEbx         = 0;
        HyperLeaf.uEcx         = 0;
        HyperLeaf.uEdx         = 0;
        int rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
        AssertLogRelRCReturn(rc, rc);
    }
    return VINF_SUCCESS;
}
/**
 * Initializes remaining bits of the Minimal provider.
 * This is called after initializing HM and almost all other VMM components.
 *
 * @returns VBox status code.
 * @param   pVM     Pointer to the VM.
 */
VMMR3_INT_DECL(int) gimR3MinimalInitCompleted(PVM pVM)
{
    /*
     * Expose a generic hypervisor-agnostic leaf (originally defined VMware).
     * The leaves range from  0x40000010 to 0x400000FF.
     *
     * This is done in the init. completed routine as we need PDM to be
     * initialized (otherwise PDMApicGetTimerFreq() would fail).
     */
    CPUMCPUIDLEAF HyperLeaf;
    int rc = CPUMR3CpuIdGetLeaf(pVM, &HyperLeaf, 0x40000000, 0 /* uSubLeaf */);
    if (RT_SUCCESS(rc))
    {
        HyperLeaf.uEax         = UINT32_C(0x40000010);  /* Maximum leaf we implement. */
        rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
        AssertLogRelRCReturn(rc, rc);

        /*
         * Insert missing zero leaves (you never know what missing leaves are
         * going to return when read).
         */
        for (uint32_t uLeaf = UINT32_C(0x40000001); uLeaf < UINT32_C(0x40000010); uLeaf++)
        {
            rc = CPUMR3CpuIdGetLeaf(pVM, &HyperLeaf, uLeaf, 0 /* uSubLeaf */);
            if (RT_FAILURE(rc))
            {
                RT_ZERO(HyperLeaf);
                HyperLeaf.uLeaf = uLeaf;
                rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
                AssertLogRelRCReturn(rc, rc);
            }
        }

        /*
         * Add the timing information hypervisor leaf.
         * MacOS X uses this to determine the TSC, bus frequency. See @bugref{7270}.
         *
         * EAX - TSC frequency in KHz.
         * EBX - APIC frequency in KHz.
         * ECX, EDX - Reserved.
         */
        uint64_t uApicFreq;
        rc = PDMApicGetTimerFreq(pVM, &uApicFreq);
        AssertLogRelRCReturn(rc, rc);

        RT_ZERO(HyperLeaf);
        HyperLeaf.uLeaf        = UINT32_C(0x40000010);
        HyperLeaf.uEax         = TMCpuTicksPerSecond(pVM) / UINT64_C(1000);
        HyperLeaf.uEbx         = (uApicFreq + 500) / UINT64_C(1000);
        rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
        AssertLogRelRCReturn(rc, rc);
    }
    else
        LogRel(("GIM: Minimal: failed to get hypervisor leaf 0x40000000.\n"));

    return VINF_SUCCESS;
}
Beispiel #3
0
/**
 * KVM state-load operation, final pass.
 *
 * @returns VBox status code.
 * @param   pVM             Pointer to the VM.
 * @param   pSSM            Pointer to the SSM handle.
 * @param   uSSMVersion     The GIM saved-state version.
 */
VMMR3_INT_DECL(int) gimR3KvmLoad(PVM pVM, PSSMHANDLE pSSM, uint32_t uSSMVersion)
{
    /*
     * Load the KVM SSM version first.
     */
    uint32_t uKvmSavedStatVersion;
    int rc = SSMR3GetU32(pSSM, &uKvmSavedStatVersion);
    AssertRCReturn(rc, rc);
    if (uKvmSavedStatVersion != GIM_KVM_SAVED_STATE_VERSION)
        return SSMR3SetLoadError(pSSM, VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION, RT_SRC_POS,
                                 N_("Unsupported KVM saved-state version %u (expected %u)."), uKvmSavedStatVersion,
                                 GIM_KVM_SAVED_STATE_VERSION);

    /*
     * Update the TSC frequency from TM.
     */
    PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
    pKvm->cTscTicksPerSecond = TMCpuTicksPerSecond(pVM);

    /*
     * Load per-VCPU data.
     */
    for (uint32_t i = 0; i < pVM->cCpus; i++)
    {
        PVMCPU     pVCpu   = &pVM->aCpus[i];
        PGIMKVMCPU pKvmCpu = &pVCpu->gim.s.u.KvmCpu;

        uint8_t fSystemTimeFlags = 0;
        SSMR3GetU64(pSSM, &pKvmCpu->u64SystemTimeMsr);
        SSMR3GetU64(pSSM, &pKvmCpu->uTsc);
        SSMR3GetU64(pSSM, &pKvmCpu->uVirtNanoTS);
        SSMR3GetGCPhys(pSSM, &pKvmCpu->GCPhysSystemTime);
        SSMR3GetU32(pSSM, &pKvmCpu->u32SystemTimeVersion);
        rc = SSMR3GetU8(pSSM, &pKvmCpu->fSystemTimeFlags);
        AssertRCReturn(rc, rc);

        /* Enable the system-time struct. if necessary. */
        /** @todo update guest struct only if cTscTicksPerSecond doesn't match host
         *        anymore. */
        if (MSR_GIM_KVM_SYSTEM_TIME_IS_ENABLED(pKvmCpu->u64SystemTimeMsr))
        {
            Assert(!TMVirtualIsTicking(pVM));       /* paranoia. */
            Assert(!TMCpuTickIsTicking(pVCpu));
            rc = gimR3KvmEnableSystemTime(pVM, pVCpu);
            AssertRCReturn(rc, rc);
        }
    }

    /*
     * Load per-VM data.
     */
    SSMR3GetU64(pSSM, &pKvm->u64WallClockMsr);
    rc = SSMR3GetU32(pSSM, &pKvm->uBaseFeat);
    AssertRCReturn(rc, rc);

    return VINF_SUCCESS;
}
/**
 * Updates Hyper-V's reference TSC page.
 *
 * @returns VBox status code.
 * @param   pVM         Pointer to the VM.
 * @param   u64Offset   The computed TSC offset.
 * @thread  EMT.
 */
VMM_INT_DECL(int) gimR0HvUpdateParavirtTsc(PVM pVM, uint64_t u64Offset)
{
    Assert(GIMIsEnabled(pVM));
    bool fHvTscEnabled = MSR_GIM_HV_REF_TSC_IS_ENABLED(pVM->gim.s.u.Hv.u64TscPageMsr);
    if (RT_UNLIKELY(!fHvTscEnabled))
        return VERR_GIM_PVTSC_NOT_ENABLED;

    PCGIMHV          pcHv     = &pVM->gim.s.u.Hv;
    PCGIMMMIO2REGION pcRegion = &pcHv->aMmio2Regions[GIM_HV_REF_TSC_PAGE_REGION_IDX];
    PGIMHVREFTSC     pRefTsc  = (PGIMHVREFTSC)pcRegion->CTX_SUFF(pvPage);
    Assert(pRefTsc);

    /*
     * Hyper-V reports the reference time in 100 nanosecond units.
     */
    uint64_t u64Tsc100Ns = TMCpuTicksPerSecond(pVM) / RT_NS_10MS;
    int64_t i64TscOffset = (int64_t)u64Offset / u64Tsc100Ns;

    /*
     * The TSC page can be simulatenously read by other VCPUs in the guest. The
     * spinlock is only for protecting simultaneous hypervisor writes from other
     * EMTs.
     */
    RTSpinlockAcquire(pcHv->hSpinlockR0);
    if (pRefTsc->i64TscOffset != i64TscOffset)
    {
        if (pRefTsc->u32TscSequence < UINT32_C(0xfffffffe))
            ASMAtomicIncU32(&pRefTsc->u32TscSequence);
        else
            ASMAtomicWriteU32(&pRefTsc->u32TscSequence, 1);
        ASMAtomicWriteS64(&pRefTsc->i64TscOffset, i64TscOffset);
    }
    RTSpinlockRelease(pcHv->hSpinlockR0);

    Assert(pRefTsc->u32TscSequence != 0);
    Assert(pRefTsc->u32TscSequence != UINT32_C(0xffffffff));
    return VINF_SUCCESS;
}
/**
 * Enables the Hyper-V TSC page.
 *
 * @returns VBox status code.
 * @param   pVM                Pointer to the VM.
 * @param   GCPhysTscPage      Where to map the TSC page.
 * @param   fUseThisTscSeq     Whether to set the TSC sequence number to the one
 *                             specified in @a uTscSeq.
 * @param   uTscSeq            The TSC sequence value to use. Ignored if
 *                             @a fUseThisTscSeq is false.
 */
VMMR3_INT_DECL(int) gimR3HvEnableTscPage(PVM pVM, RTGCPHYS GCPhysTscPage, bool fUseThisTscSeq, uint32_t uTscSeq)
{
    PPDMDEVINSR3    pDevIns = pVM->gim.s.pDevInsR3;
    PGIMMMIO2REGION pRegion = &pVM->gim.s.u.Hv.aMmio2Regions[GIM_HV_REF_TSC_PAGE_REGION_IDX];
    AssertPtrReturn(pDevIns, VERR_GIM_DEVICE_NOT_REGISTERED);

    int rc;
    if (pRegion->fMapped)
    {
        /*
         * Is it already enabled at the given guest-address?
         */
        if (pRegion->GCPhysPage == GCPhysTscPage)
            return VINF_SUCCESS;

        /*
         * If it's mapped at a different address, unmap the previous address.
         */
        rc = gimR3HvDisableTscPage(pVM);
        AssertRC(rc);
    }

    /*
     * Map the TSC-page at the specified address.
     */
    Assert(!pRegion->fMapped);
    rc = GIMR3Mmio2Map(pVM, pRegion, GCPhysTscPage);
    if (RT_SUCCESS(rc))
    {
        Assert(pRegion->GCPhysPage == GCPhysTscPage);

        /*
         * Update the TSC scale. Windows guests expect a non-zero TSC sequence, otherwise
         * they fallback to using the reference count MSR which is not ideal in terms of VM-exits.
         *
         * Also, Hyper-V normalizes the time in 10 MHz, see:
         * http://technet.microsoft.com/it-it/sysinternals/dn553408%28v=vs.110%29
         */
        PGIMHVREFTSC pRefTsc = (PGIMHVREFTSC)pRegion->pvPageR3;
        Assert(pRefTsc);

        uint64_t const u64TscKHz = TMCpuTicksPerSecond(pVM) / UINT64_C(1000);
        uint32_t       u32TscSeq = 1;
        if (   fUseThisTscSeq
            && uTscSeq < UINT32_C(0xfffffffe))
            u32TscSeq = uTscSeq + 1;
        pRefTsc->u32TscSequence  = u32TscSeq;
        pRefTsc->u64TscScale     = ((INT64_C(10000) << 32) / u64TscKHz) << 32;
        pRefTsc->i64TscOffset    = 0;

        LogRel(("GIM: HyperV: Enabled TSC page at %#RGp - u64TscScale=%#RX64 u64TscKHz=%#RX64 (%'RU64) Seq=%#RU32\n",
                GCPhysTscPage, pRefTsc->u64TscScale, u64TscKHz, u64TscKHz, pRefTsc->u32TscSequence));

        TMR3CpuTickParavirtEnable(pVM);
        return VINF_SUCCESS;
    }
    else
        LogRelFunc(("GIMR3Mmio2Map failed. rc=%Rrc\n", rc));

    return VERR_GIM_OPERATION_FAILED;
}
/**
 * Construct the DMI table.
 *
 * @returns VBox status code.
 * @param   pDevIns             The device instance.
 * @param   pTable              Where to create the DMI table.
 * @param   cbMax               The maximum size of the DMI table.
 * @param   pUuid               Pointer to the UUID to use if the DmiUuid
 *                              configuration string isn't present.
 * @param   pCfg                The handle to our config node.
 * @param   cCpus               Number of VCPUs.
 * @param   pcbDmiTables        Size of DMI data in bytes.
 * @param   pcNumDmiTables      Number of DMI tables.
 */
int FwCommonPlantDMITable(PPDMDEVINS pDevIns, uint8_t *pTable, unsigned cbMax, PCRTUUID pUuid, PCFGMNODE pCfg, uint16_t cCpus, uint16_t *pcbDmiTables, uint16_t *pcNumDmiTables)
{
#define CHECKSIZE(cbWant) \
    { \
        size_t cbNeed = (size_t)(pszStr + cbWant - (char *)pTable) + 5; /* +1 for strtab terminator +4 for end-of-table entry */ \
        if (cbNeed > cbMax) \
        { \
            if (fHideErrors) \
            { \
                LogRel(("One of the DMI strings is too long -- using default DMI data!\n")); \
                continue; \
            } \
            return PDMDevHlpVMSetError(pDevIns, VERR_TOO_MUCH_DATA, RT_SRC_POS, \
                                       N_("One of the DMI strings is too long. Check all bios/Dmi* configuration entries. At least %zu bytes are needed but there is no space for more than %d bytes"), cbNeed, cbMax); \
        } \
    }

#define READCFGSTRDEF(variable, name, default_value) \
    { \
        if (fForceDefault) \
            pszTmp = default_value; \
        else \
        { \
            rc = CFGMR3QueryStringDef(pCfg, name, szBuf, sizeof(szBuf), default_value); \
            if (RT_FAILURE(rc)) \
            { \
                if (fHideErrors) \
                { \
                    LogRel(("Configuration error: Querying \"" name "\" as a string failed -- using default DMI data!\n")); \
                    continue; \
                } \
                return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, \
                                           N_("Configuration error: Querying \"" name "\" as a string failed")); \
            } \
            else if (!strcmp(szBuf, "<EMPTY>")) \
                pszTmp = ""; \
            else \
                pszTmp = szBuf; \
        } \
        if (!pszTmp[0]) \
            variable = 0; /* empty string */ \
        else \
        { \
            variable = iStrNr++; \
            size_t cStr = strlen(pszTmp) + 1; \
            CHECKSIZE(cStr); \
            memcpy(pszStr, pszTmp, cStr); \
            pszStr += cStr ; \
        } \
    }

#define READCFGSTR(variable, name) \
    READCFGSTRDEF(variable, # name, s_szDef ## name)

#define READCFGINT(variable, name) \
    { \
        if (fForceDefault) \
            variable = s_iDef ## name; \
        else \
        { \
            rc = CFGMR3QueryS32Def(pCfg, # name, & variable, s_iDef ## name); \
            if (RT_FAILURE(rc)) \
            { \
                if (fHideErrors) \
                { \
                    LogRel(("Configuration error: Querying \"" # name "\" as an int failed -- using default DMI data!\n")); \
                    continue; \
                } \
                return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS, \
                                           N_("Configuration error: Querying \"" # name "\" as an int failed")); \
            } \
        } \
    }

#define START_STRUCT(tbl)                                       \
        pszStr                       = (char *)(tbl + 1);       \
        iStrNr                       = 1;

#define TERM_STRUCT \
    { \
        *pszStr++                    = '\0'; /* terminate set of text strings */ \
        if (iStrNr == 1) \
            *pszStr++                = '\0'; /* terminate a structure without strings */ \
    }

    bool fForceDefault = false;
#ifdef VBOX_BIOS_DMI_FALLBACK
    /*
     * There will be two passes. If an error occurs during the first pass, a
     * message will be written to the release log and we fall back to default
     * DMI data and start a second pass.
     */
    bool fHideErrors = true;
#else
    /*
     * There will be one pass, every error is fatal and will prevent the VM
     * from starting.
     */
    bool fHideErrors = false;
#endif

    uint8_t fDmiUseHostInfo;
    int rc = CFGMR3QueryU8Def(pCfg, "DmiUseHostInfo", &fDmiUseHostInfo, 0);
    if (RT_FAILURE (rc))
        return PDMDEV_SET_ERROR(pDevIns, rc,
                                N_("Configuration error: Failed to read \"DmiUseHostInfo\""));

    /* Sync up with host default DMI values */
    if (fDmiUseHostInfo)
        fwCommonUseHostDMIStrings();

    uint8_t fDmiExposeMemoryTable;
    rc = CFGMR3QueryU8Def(pCfg, "DmiExposeMemoryTable", &fDmiExposeMemoryTable, 0);
    if (RT_FAILURE (rc))
        return PDMDEV_SET_ERROR(pDevIns, rc,
                                N_("Configuration error: Failed to read \"DmiExposeMemoryTable\""));
    uint8_t fDmiExposeProcessorInf;
    rc = CFGMR3QueryU8Def(pCfg, "DmiExposeProcInf", &fDmiExposeProcessorInf, 0);
    if (RT_FAILURE (rc))
        return PDMDEV_SET_ERROR(pDevIns, rc,
                                N_("Configuration error: Failed to read \"DmiExposeProcInf\""));

    for  (;; fForceDefault = true, fHideErrors = false)
    {
        int  iStrNr;
        char szBuf[256];
        char *pszStr = (char *)pTable;
        char szDmiSystemUuid[64];
        char *pszDmiSystemUuid;
        const char *pszTmp;

        if (fForceDefault)
            pszDmiSystemUuid = NULL;
        else
        {
            rc = CFGMR3QueryString(pCfg, "DmiSystemUuid", szDmiSystemUuid, sizeof(szDmiSystemUuid));
            if (rc == VERR_CFGM_VALUE_NOT_FOUND)
                pszDmiSystemUuid = NULL;
            else if (RT_FAILURE(rc))
            {
                if (fHideErrors)
                {
                    LogRel(("Configuration error: Querying \"DmiSystemUuid\" as a string failed, using default DMI data\n"));
                    continue;
                }
                return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS,
                                           N_("Configuration error: Querying \"DmiSystemUuid\" as a string failed"));
            }
            else
                pszDmiSystemUuid = szDmiSystemUuid;
        }

        /*********************************
         * DMI BIOS information (Type 0) *
         *********************************/
        PDMIBIOSINF pBIOSInf         = (PDMIBIOSINF)pszStr;
        CHECKSIZE(sizeof(*pBIOSInf));

        pszStr                       = (char *)&pBIOSInf->u8ReleaseMajor;
        pBIOSInf->header.u8Length    = RT_OFFSETOF(DMIBIOSINF, u8ReleaseMajor);

        /* don't set these fields by default for legacy compatibility */
        int iDmiBIOSReleaseMajor, iDmiBIOSReleaseMinor;
        READCFGINT(iDmiBIOSReleaseMajor, DmiBIOSReleaseMajor);
        READCFGINT(iDmiBIOSReleaseMinor, DmiBIOSReleaseMinor);
        if (iDmiBIOSReleaseMajor != 0 || iDmiBIOSReleaseMinor != 0)
        {
            pszStr = (char *)&pBIOSInf->u8FirmwareMajor;
            pBIOSInf->header.u8Length = RT_OFFSETOF(DMIBIOSINF, u8FirmwareMajor);
            pBIOSInf->u8ReleaseMajor  = iDmiBIOSReleaseMajor;
            pBIOSInf->u8ReleaseMinor  = iDmiBIOSReleaseMinor;

            int iDmiBIOSFirmwareMajor, iDmiBIOSFirmwareMinor;
            READCFGINT(iDmiBIOSFirmwareMajor, DmiBIOSFirmwareMajor);
            READCFGINT(iDmiBIOSFirmwareMinor, DmiBIOSFirmwareMinor);
            if (iDmiBIOSFirmwareMajor != 0 || iDmiBIOSFirmwareMinor != 0)
            {
                pszStr = (char *)(pBIOSInf + 1);
                pBIOSInf->header.u8Length = sizeof(DMIBIOSINF);
                pBIOSInf->u8FirmwareMajor = iDmiBIOSFirmwareMajor;
                pBIOSInf->u8FirmwareMinor = iDmiBIOSFirmwareMinor;
            }
        }

        iStrNr                       = 1;
        pBIOSInf->header.u8Type      = 0; /* BIOS Information */
        pBIOSInf->header.u16Handle   = 0x0000;
        READCFGSTR(pBIOSInf->u8Vendor,  DmiBIOSVendor);
        READCFGSTR(pBIOSInf->u8Version, DmiBIOSVersion);
        pBIOSInf->u16Start           = 0xE000;
        READCFGSTR(pBIOSInf->u8Release, DmiBIOSReleaseDate);
        pBIOSInf->u8ROMSize          = 1; /* 128K */
        pBIOSInf->u64Characteristics = RT_BIT(4)   /* ISA is supported */
                                     | RT_BIT(7)   /* PCI is supported */
                                     | RT_BIT(15)  /* Boot from CD is supported */
                                     | RT_BIT(16)  /* Selectable Boot is supported */
                                     | RT_BIT(27)  /* Int 9h, 8042 Keyboard services supported */
                                     | RT_BIT(30)  /* Int 10h, CGA/Mono Video Services supported */
                                     /* any more?? */
                                     ;
        pBIOSInf->u8CharacteristicsByte1 = RT_BIT(0)   /* ACPI is supported */
                                         /* any more?? */
                                         ;
        pBIOSInf->u8CharacteristicsByte2 = 0
                                         /* any more?? */
                                         ;
        TERM_STRUCT;

        /***********************************
         * DMI system information (Type 1) *
         ***********************************/
        PDMISYSTEMINF pSystemInf     = (PDMISYSTEMINF)pszStr;
        CHECKSIZE(sizeof(*pSystemInf));
        START_STRUCT(pSystemInf);
        pSystemInf->header.u8Type    = 1; /* System Information */
        pSystemInf->header.u8Length  = sizeof(*pSystemInf);
        pSystemInf->header.u16Handle = 0x0001;
        READCFGSTR(pSystemInf->u8Manufacturer, DmiSystemVendor);
        READCFGSTR(pSystemInf->u8ProductName,  DmiSystemProduct);
        READCFGSTR(pSystemInf->u8Version,      DmiSystemVersion);
        READCFGSTR(pSystemInf->u8SerialNumber, DmiSystemSerial);

        RTUUID uuid;
        if (pszDmiSystemUuid)
        {
            rc = RTUuidFromStr(&uuid, pszDmiSystemUuid);
            if (RT_FAILURE(rc))
            {
                if (fHideErrors)
                {
                    LogRel(("Configuration error: Invalid UUID for DMI tables specified, using default DMI data\n"));
                    continue;
                }
                return PDMDevHlpVMSetError(pDevIns, rc, RT_SRC_POS,
                                           N_("Configuration error: Invalid UUID for DMI tables specified"));
            }
            uuid.Gen.u32TimeLow = RT_H2BE_U32(uuid.Gen.u32TimeLow);
            uuid.Gen.u16TimeMid = RT_H2BE_U16(uuid.Gen.u16TimeMid);
            uuid.Gen.u16TimeHiAndVersion = RT_H2BE_U16(uuid.Gen.u16TimeHiAndVersion);
            pUuid = &uuid;
        }
        memcpy(pSystemInf->au8Uuid, pUuid, sizeof(RTUUID));

        pSystemInf->u8WakeupType     = 6; /* Power Switch */
        READCFGSTR(pSystemInf->u8SKUNumber, DmiSystemSKU);
        READCFGSTR(pSystemInf->u8Family, DmiSystemFamily);
        TERM_STRUCT;

        /**********************************
         * DMI board information (Type 2) *
         **********************************/
        PDMIBOARDINF pBoardInf       = (PDMIBOARDINF)pszStr;
        CHECKSIZE(sizeof(*pBoardInf));
        START_STRUCT(pBoardInf);
        int iDmiBoardBoardType;
        pBoardInf->header.u8Type     = 2; /* Board Information */
        pBoardInf->header.u8Length   = sizeof(*pBoardInf);
        pBoardInf->header.u16Handle  = 0x0008;
        READCFGSTR(pBoardInf->u8Manufacturer, DmiBoardVendor);
        READCFGSTR(pBoardInf->u8Product,      DmiBoardProduct);
        READCFGSTR(pBoardInf->u8Version,      DmiBoardVersion);
        READCFGSTR(pBoardInf->u8SerialNumber, DmiBoardSerial);
        READCFGSTR(pBoardInf->u8AssetTag,     DmiBoardAssetTag);
        pBoardInf->u8FeatureFlags    = RT_BIT(0) /* hosting board, e.g. motherboard */
                                     ;
        READCFGSTR(pBoardInf->u8LocationInChass, DmiBoardLocInChass);
        pBoardInf->u16ChassisHandle  = 0x0003; /* see type 3 */
        READCFGINT(iDmiBoardBoardType, DmiBoardBoardType);
        pBoardInf->u8BoardType = iDmiBoardBoardType;
        pBoardInf->u8cObjectHandles  = 0;

        TERM_STRUCT;

        /********************************************
         * DMI System Enclosure or Chassis (Type 3) *
         ********************************************/
        PDMICHASSIS pChassis         = (PDMICHASSIS)pszStr;
        CHECKSIZE(sizeof(*pChassis));
        pszStr                       = (char*)&pChassis->u32OEMdefined;
        iStrNr                       = 1;
#ifdef VBOX_WITH_DMI_CHASSIS
        pChassis->header.u8Type      = 3; /* System Enclosure or Chassis */
#else
        pChassis->header.u8Type      = 0x7e; /* inactive */
#endif
        pChassis->header.u8Length    = RT_OFFSETOF(DMICHASSIS, u32OEMdefined);
        pChassis->header.u16Handle   = 0x0003;
        READCFGSTR(pChassis->u8Manufacturer, DmiChassisVendor);
        int iDmiChassisType;
        READCFGINT(iDmiChassisType, DmiChassisType);
        pChassis->u8Type             = iDmiChassisType;
        READCFGSTR(pChassis->u8Version, DmiChassisVersion);
        READCFGSTR(pChassis->u8SerialNumber, DmiChassisSerial);
        READCFGSTR(pChassis->u8AssetTag, DmiChassisAssetTag);
        pChassis->u8BootupState      = 0x03; /* safe */
        pChassis->u8PowerSupplyState = 0x03; /* safe */
        pChassis->u8ThermalState     = 0x03; /* safe */
        pChassis->u8SecurityStatus   = 0x03; /* none XXX */
# if 0
        /* v2.3+, currently not supported */
        pChassis->u32OEMdefined      = 0;
        pChassis->u8Height           = 0; /* unspecified */
        pChassis->u8NumPowerChords   = 0; /* unspecified */
        pChassis->u8ContElems        = 0; /* no contained elements */
        pChassis->u8ContElemRecLen   = 0; /* no contained elements */
# endif
        TERM_STRUCT;

        /**************************************
         * DMI Processor Information (Type 4) *
         **************************************/

        /*
         * This is just a dummy processor. Should we expose the real guest CPU features
         * here? Accessing this information at this point is difficult.
         */
        char szSocket[32];
        PDMIPROCESSORINF pProcessorInf = (PDMIPROCESSORINF)pszStr;
        CHECKSIZE(sizeof(*pProcessorInf));
        START_STRUCT(pProcessorInf);
        if (fDmiExposeProcessorInf)
            pProcessorInf->header.u8Type   = 4; /* Processor Information */
        else
            pProcessorInf->header.u8Type   = 126; /* inactive structure */
        pProcessorInf->header.u8Length     = sizeof(*pProcessorInf);
        pProcessorInf->header.u16Handle    = 0x0007;
        RTStrPrintf(szSocket, sizeof(szSocket), "Socket #%u", 0);
        pProcessorInf->u8SocketDesignation = iStrNr++;
        {
            size_t cStr = strlen(szSocket) + 1;
            CHECKSIZE(cStr);
            memcpy(pszStr, szSocket, cStr);
            pszStr += cStr;
        }
        pProcessorInf->u8ProcessorType     = 0x03; /* Central Processor */
        pProcessorInf->u8ProcessorFamily   = 0xB1; /* Pentium III with Intel SpeedStep(TM) */
        READCFGSTR(pProcessorInf->u8ProcessorManufacturer, DmiProcManufacturer);

        pProcessorInf->u64ProcessorID      = UINT64_C(0x0FEBFBFF00010676);
                                             /* Ext Family ID  = 0
                                              * Ext Model ID   = 2
                                              * Processor Type = 0
                                              * Family ID      = 6
                                              * Model          = 7
                                              * Stepping       = 6
                                              * Features: FPU, VME, DE, PSE, TSC, MSR, PAE, MCE, CX8,
                                              *           APIC, SEP, MTRR, PGE, MCA, CMOV, PAT, PSE-36,
                                              *           CFLSH, DS, ACPI, MMX, FXSR, SSE, SSE2, SS */
        READCFGSTR(pProcessorInf->u8ProcessorVersion, DmiProcVersion);
        pProcessorInf->u8Voltage           = 0x02;   /* 3.3V */
        pProcessorInf->u16ExternalClock    = 0x00;   /* unknown */
        pProcessorInf->u16MaxSpeed         = 3000;   /* 3GHz */
        pProcessorInf->u16CurrentSpeed     = 3000;   /* 3GHz */
        pProcessorInf->u8Status            = RT_BIT(6)  /* CPU socket populated */
                                           | RT_BIT(0)  /* CPU enabled */
                                           ;
        pProcessorInf->u8ProcessorUpgrade  = 0x04;   /* ZIF Socket */
        pProcessorInf->u16L1CacheHandle    = 0xFFFF; /* not specified */
        pProcessorInf->u16L2CacheHandle    = 0xFFFF; /* not specified */
        pProcessorInf->u16L3CacheHandle    = 0xFFFF; /* not specified */
        pProcessorInf->u8SerialNumber      = 0;      /* not specified */
        pProcessorInf->u8AssetTag          = 0;      /* not specified */
        pProcessorInf->u8PartNumber        = 0;      /* not specified */
        pProcessorInf->u8CoreCount         = cCpus;  /*  */
        pProcessorInf->u8CoreEnabled       = cCpus;
        pProcessorInf->u8ThreadCount       = 1;
        pProcessorInf->u16ProcessorCharacteristics 
                                           = RT_BIT(2); /* 64-bit capable */
        pProcessorInf->u16ProcessorFamily2 = 0;
        TERM_STRUCT;

        /***************************************
         * DMI Physical Memory Array (Type 16) *
         ***************************************/
        uint64_t u64RamSize;
        rc = CFGMR3QueryU64(pCfg, "RamSize", &u64RamSize);
        if (RT_FAILURE (rc))
            return PDMDEV_SET_ERROR(pDevIns, rc,
                                    N_("Configuration error: Failed to read \"RamSize\""));

        PDMIRAMARRAY pMemArray = (PDMIRAMARRAY)pszStr;
        CHECKSIZE(sizeof(*pMemArray));
        START_STRUCT(pMemArray);
        if (fDmiExposeMemoryTable)
            pMemArray->header.u8Type     = 16;     /* Physical Memory Array */
        else
            pMemArray->header.u8Type     = 126;    /* inactive structure */
        pMemArray->header.u8Length       = sizeof(*pMemArray);
        pMemArray->header.u16Handle      = 0x0005;
        pMemArray->u8Location            = 0x03;   /* Motherboard */
        pMemArray->u8Use                 = 0x03;   /* System memory */
        pMemArray->u8MemErrorCorrection  = 0x01;   /* Other */
        pMemArray->u32MaxCapacity        = (uint32_t)(u64RamSize / _1K); /* RAM size in K */
        pMemArray->u16MemErrorHandle     = 0xfffe; /* No error info structure */
        pMemArray->u16NumberOfMemDevices = 1;
        TERM_STRUCT;

        /***************************************
         * DMI Memory Device (Type 17)         *
         ***************************************/
        PDMIMEMORYDEV pMemDev = (PDMIMEMORYDEV)pszStr;
        CHECKSIZE(sizeof(*pMemDev));
        START_STRUCT(pMemDev);
        if (fDmiExposeMemoryTable)
            pMemDev->header.u8Type       = 17;     /* Memory Device */
        else
            pMemDev->header.u8Type       = 126;    /* inactive structure */
        pMemDev->header.u8Length         = sizeof(*pMemDev);
        pMemDev->header.u16Handle        = 0x0006;
        pMemDev->u16PhysMemArrayHandle   = 0x0005; /* handle of array we belong to */
        pMemDev->u16MemErrHandle         = 0xfffe; /* system doesn't provide this information */
        pMemDev->u16TotalWidth           = 0xffff; /* Unknown */
        pMemDev->u16DataWidth            = 0xffff; /* Unknown */
        int16_t u16RamSizeM = (uint16_t)(u64RamSize / _1M);
        if (u16RamSizeM == 0)
            u16RamSizeM = 0x400; /* 1G */
        pMemDev->u16Size                 = u16RamSizeM; /* RAM size */
        pMemDev->u8FormFactor            = 0x09; /* DIMM */
        pMemDev->u8DeviceSet             = 0x00; /* Not part of a device set */
        READCFGSTRDEF(pMemDev->u8DeviceLocator, " ", "DIMM 0");
        READCFGSTRDEF(pMemDev->u8BankLocator, " ", "Bank 0");
        pMemDev->u8MemoryType            = 0x03; /* DRAM */
        pMemDev->u16TypeDetail           = 0;    /* Nothing special */
        pMemDev->u16Speed                = 1600; /* Unknown, shall be speed in MHz */
        READCFGSTR(pMemDev->u8Manufacturer, DmiSystemVendor);
        READCFGSTRDEF(pMemDev->u8SerialNumber, " ", "00000000");
        READCFGSTRDEF(pMemDev->u8AssetTag, " ", "00000000");
        READCFGSTRDEF(pMemDev->u8PartNumber, " ", "00000000");
        pMemDev->u8Attributes            = 0; /* Unknown */
        TERM_STRUCT;

        /*****************************
         * DMI OEM strings (Type 11) *
         *****************************/
        PDMIOEMSTRINGS pOEMStrings    = (PDMIOEMSTRINGS)pszStr;
        CHECKSIZE(sizeof(*pOEMStrings));
        START_STRUCT(pOEMStrings);
#ifdef VBOX_WITH_DMI_OEMSTRINGS
        pOEMStrings->header.u8Type    = 0xb; /* OEM Strings */
#else
        pOEMStrings->header.u8Type    = 126; /* inactive structure */
#endif
        pOEMStrings->header.u8Length  = sizeof(*pOEMStrings);
        pOEMStrings->header.u16Handle = 0x0002;
        pOEMStrings->u8Count          = 2;

        char szTmp[64];
        RTStrPrintf(szTmp, sizeof(szTmp), "vboxVer_%u.%u.%u",
                    RTBldCfgVersionMajor(), RTBldCfgVersionMinor(), RTBldCfgVersionBuild());
        READCFGSTRDEF(pOEMStrings->u8VBoxVersion, "DmiOEMVBoxVer", szTmp);
        RTStrPrintf(szTmp, sizeof(szTmp), "vboxRev_%u", RTBldCfgRevision());
        READCFGSTRDEF(pOEMStrings->u8VBoxRevision, "DmiOEMVBoxRev", szTmp);
        TERM_STRUCT;

        /*************************************
         * DMI OEM specific table (Type 128) *
         ************************************/
        PDMIOEMSPECIFIC pOEMSpecific = (PDMIOEMSPECIFIC)pszStr;
        CHECKSIZE(sizeof(*pOEMSpecific));
        START_STRUCT(pOEMSpecific);
        pOEMSpecific->header.u8Type    = 0x80; /* OEM specific */
        pOEMSpecific->header.u8Length  = sizeof(*pOEMSpecific);
        pOEMSpecific->header.u16Handle = 0x0008; /* Just next free handle */
        pOEMSpecific->u32CpuFreqKHz    = RT_H2LE_U32((uint32_t)((uint64_t)TMCpuTicksPerSecond(PDMDevHlpGetVM(pDevIns)) / 1000));
        TERM_STRUCT;

        /* End-of-table marker - includes padding to account for fixed table size. */
        PDMIHDR pEndOfTable          = (PDMIHDR)pszStr;
        pszStr                       = (char *)(pEndOfTable + 1);
        pEndOfTable->u8Type          = 0x7f;

        pEndOfTable->u8Length        = sizeof(*pEndOfTable);
        pEndOfTable->u16Handle       = 0xFEFF;
        *pcbDmiTables = ((uintptr_t)pszStr - (uintptr_t)pTable) + 2;

        /* We currently plant 10 DMI tables. Update this if tables number changed. */
        *pcNumDmiTables = 10;

        /* If more fields are added here, fix the size check in READCFGSTR */

        /* Success! */
        break;
    }

#undef READCFGSTR
#undef READCFGINT
#undef CHECKSIZE
    return VINF_SUCCESS;
}
Beispiel #7
0
/**
 * MSR read handler for Hyper-V.
 *
 * @returns Strict VBox status code like CPUMQueryGuestMsr().
 * @retval  VINF_CPUM_R3_MSR_READ
 * @retval  VERR_CPUM_RAISE_GP_0
 *
 * @param   pVCpu       Pointer to the VMCPU.
 * @param   idMsr       The MSR being read.
 * @param   pRange      The range this MSR belongs to.
 * @param   puValue     Where to store the MSR value read.
 */
VMM_INT_DECL(VBOXSTRICTRC) gimHvReadMsr(PVMCPU pVCpu, uint32_t idMsr, PCCPUMMSRRANGE pRange, uint64_t *puValue)
{
    NOREF(pRange);
    PVM    pVM = pVCpu->CTX_SUFF(pVM);
    PGIMHV pHv = &pVM->gim.s.u.Hv;

    switch (idMsr)
    {
        case MSR_GIM_HV_TIME_REF_COUNT:
        {
            /* Hyper-V reports the time in 100 ns units (10 MHz). */
            uint64_t u64Tsc      = TMCpuTickGet(pVCpu);
            uint64_t u64TscHz    = pHv->cTscTicksPerSecond;
            uint64_t u64Tsc100Ns = u64TscHz / UINT64_C(10000000); /* 100 ns */
            *puValue = (u64Tsc / u64Tsc100Ns);
            return VINF_SUCCESS;
        }

        case MSR_GIM_HV_VP_INDEX:
            *puValue = pVCpu->idCpu;
            return VINF_SUCCESS;

        case MSR_GIM_HV_TPR:
            PDMApicReadMSR(pVM, pVCpu->idCpu, 0x80, puValue);
            return VINF_SUCCESS;

        case MSR_GIM_HV_EOI:
            PDMApicReadMSR(pVM, pVCpu->idCpu, 0x0B, puValue);
            return VINF_SUCCESS;

        case MSR_GIM_HV_ICR:
            PDMApicReadMSR(pVM, pVCpu->idCpu, 0x30, puValue);
            return VINF_SUCCESS;

        case MSR_GIM_HV_GUEST_OS_ID:
            *puValue = pHv->u64GuestOsIdMsr;
            return VINF_SUCCESS;

        case MSR_GIM_HV_HYPERCALL:
            *puValue = pHv->u64HypercallMsr;
            return VINF_SUCCESS;

        case MSR_GIM_HV_REF_TSC:
            *puValue = pHv->u64TscPageMsr;
            return VINF_SUCCESS;

        case MSR_GIM_HV_TSC_FREQ:
            *puValue = TMCpuTicksPerSecond(pVM);
            return VINF_SUCCESS;

        case MSR_GIM_HV_APIC_FREQ:
        {
            int rc = PDMApicGetTimerFreq(pVM, puValue);
            if (RT_FAILURE(rc))
                return VERR_CPUM_RAISE_GP_0;
            return VINF_SUCCESS;
        }

        case MSR_GIM_HV_RESET:
            *puValue = 0;
            return VINF_SUCCESS;

        case MSR_GIM_HV_CRASH_CTL:
            *puValue = pHv->uCrashCtl;
            return VINF_SUCCESS;

        case MSR_GIM_HV_CRASH_P0: *puValue = pHv->uCrashP0;   return VINF_SUCCESS;
        case MSR_GIM_HV_CRASH_P1: *puValue = pHv->uCrashP1;   return VINF_SUCCESS;
        case MSR_GIM_HV_CRASH_P2: *puValue = pHv->uCrashP2;   return VINF_SUCCESS;
        case MSR_GIM_HV_CRASH_P3: *puValue = pHv->uCrashP3;   return VINF_SUCCESS;
        case MSR_GIM_HV_CRASH_P4: *puValue = pHv->uCrashP4;   return VINF_SUCCESS;

        default:
        {
#ifdef IN_RING3
            static uint32_t s_cTimes = 0;
            if (s_cTimes++ < 20)
                LogRel(("GIM: HyperV: Unknown/invalid RdMsr (%#x) -> #GP(0)\n", idMsr));
#endif
            LogFunc(("Unknown/invalid RdMsr (%#RX32) -> #GP(0)\n", idMsr));
            break;
        }
    }

    return VERR_CPUM_RAISE_GP_0;
}