void CModelOutputVariableDef::SetMember(size_t i, const string& str) { ASSERT(i >= 0 && i < NB_MEMBERS); switch (i) { case NAME: m_name = str; break; case TITLE: m_title = str; break; case UNITS: m_units = str; break; case DESCRIPTION: m_description = str; break; case TIME_MODE: m_TM = to_CTM(str); break; case PRECISION: m_precision = ToShort(str); break; case EQUATION: m_equation = str; break; case CLIMATIC_VARIABLE: m_climaticVariable = ToSizeT(str); break; default: ASSERT(false); } }
void ADIS16448_IMU::Calculate() { { std::lock_guard<priority_mutex> sync(m_mutex); m_last_sample_time = Timer::GetFPGATimestamp(); } while (!m_freed) { if (m_interrupt->WaitForInterrupt(kTimeout) == InterruptableSensorBase::WaitResult::kTimeout) continue; double sample_time = m_interrupt->ReadFallingTimestamp(); double dt; { std::lock_guard<priority_mutex> sync(m_mutex); dt = sample_time - m_last_sample_time; m_last_sample_time = sample_time; } m_spi.Transaction(m_cmd, m_resp, 26); double gyro_x = ToShort(&m_resp[4]) * kDegreePerSecondPerLSB; double gyro_y = ToShort(&m_resp[6]) * kDegreePerSecondPerLSB; double gyro_z = ToShort(&m_resp[8]) * kDegreePerSecondPerLSB; double accel_x = ToShort(&m_resp[10]) * kGPerLSB; double accel_y = ToShort(&m_resp[12]) * kGPerLSB; double accel_z = ToShort(&m_resp[14]) * kGPerLSB; double mag_x = ToShort(&m_resp[16]) * kMilligaussPerLSB; double mag_y = ToShort(&m_resp[18]) * kMilligaussPerLSB; double mag_z = ToShort(&m_resp[20]) * kMilligaussPerLSB; // Make local copy of quaternion and angle global state double q1, q2, q3, q4; { std::lock_guard<priority_mutex> sync(m_mutex); q1 = m_ahrs_q1; q2 = m_ahrs_q2; q3 = m_ahrs_q3; q4 = m_ahrs_q4; } // Kalman calculation // Code originated from: https://decibel.ni.com/content/docs/DOC-18964 do { // If true, only use gyros and magnetos for updating the filter. bool excludeAccel = false; // Convert accelerometer units to m/sec/sec double ax = accel_x * kAccelScale; double ay = accel_y * kAccelScale; double az = accel_z * kAccelScale; // Normalize accelerometer measurement double norm = std::sqrt(ax * ax + ay * ay + az * az); if (norm > 0.3 && !excludeAccel) { // normal larger than the sensor noise floor during freefall norm = 1.0 / norm; ax *= norm; ay *= norm; az *= norm; } else { ax = 0; ay = 0; az = 0; } // Convert magnetometer units to uTesla double mx = mag_x * kMagScale; double my = mag_y * kMagScale; double mz = mag_z * kMagScale; // Normalize magnetometer measurement norm = std::sqrt(mx * mx + my * my + mz * mz); if (norm > 0.0) { norm = 1.0 / norm; mx *= norm; my *= norm; mz *= norm; } else { break; // something is wrong with the magneto readouts } double _2q1 = 2.0 * q1; double _2q2 = 2.0 * q2; double _2q3 = 2.0 * q3; double _2q4 = 2.0 * q4; double _2q1q3 = 2.0 * q1 * q3; double _2q3q4 = 2.0 * q3 * q4; double q1q1 = q1 * q1; double q1q2 = q1 * q2; double q1q3 = q1 * q3; double q1q4 = q1 * q4; double q2q2 = q2 * q2; double q2q3 = q2 * q3; double q2q4 = q2 * q4; double q3q3 = q3 * q3; double q3q4 = q3 * q4; double q4q4 = q4 * q4; // Reference direction of Earth's magnetic field double _2q1mx = 2 * q1 * mx; double _2q1my = 2 * q1 * my; double _2q1mz = 2 * q1 * mz; double _2q2mx = 2 * q2 * mx; double hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; double hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; double _2bx = std::sqrt(hx * hx + hy * hy); double _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; double _4bx = 2.0 * _2bx; double _4bz = 2.0 * _2bz; double _8bx = 2.0 * _4bx; double _8bz = 2.0 * _4bz; // Gradient descent algorithm corrective step double s1 = - _2q3 * (2.0 * q2q4 - _2q1q3 - ax) + _2q2 * (2.0 * q1q2 + _2q3q4 - ay) - _4bz * q3 * (_4bx * (0.5 - q3q3 - q4q4) + _4bz * (q2q4 - q1q3) - mx) + (-_4bx * q4 + _4bz * q2) * (_4bx * (q2q3 - q1q4) + _4bz * (q1q2 + q3q4) - my) + _4bx * q3 * (_4bx * (q1q3 + q2q4) + _4bz * (0.5 - q2q2 - q3q3) - mz); double s2 = _2q4 * (2.0 * q2q4 - _2q1q3 - ax) + _2q1 * (2.0 * q1q2 + _2q3q4 - ay) - 4.0 * q2 * (1.0 - 2.0 * q2q2 - 2.0 * q3q3 - az) + _4bz * q4 * (_4bx * (0.5 - q3q3 - q4q4) + _4bz * (q2q4 - q1q3) - mx) + (_4bx * q3 + _4bz * q1) * (_4bx * (q2q3 - q1q4) + _4bz * (q1q2 + q3q4) - my) + (_4bx * q4 - _8bz * q2) * (_4bx * (q1q3 + q2q4) + _4bz * (0.5 - q2q2 - q3q3) - mz); double s3 = - _2q1 * (2.0 * q2q4 - _2q1q3 - ax) + _2q4 * (2.0 * q1q2 + _2q3q4 - ay) - 4.0 * q3 * (1.0 - 2.0 * q2q2 - 2.0 * q3q3 - az) + (-_8bx * q3 - _4bz * q1) * (_4bx * (0.5 - q3q3 - q4q4) + _4bz * (q2q4 - q1q3) - mx) + (_4bx * q2 + _4bz * q4) * (_4bx * (q2q3 - q1q4) + _4bz * (q1q2 + q3q4) - my) + (_4bx * q1 - _8bz * q3) * (_4bx * (q1q3 + q2q4) + _4bz * (0.5 - q2q2 - q3q3) - mz); double s4 = _2q2 * (2.0 * q2q4 - _2q1q3 - ax) + _2q3 * (2.0 * q1q2 + _2q3q4 - ay) + (-_8bx * q4 + _4bz * q2) * (_4bx * (0.5 - q3q3 - q4q4) + _4bz * (q2q4 - q1q3) - mx) + (-_4bx * q1 + _4bz * q3) * (_4bx * (q2q3 - q1q4) + _4bz * (q1q2 + q3q4) - my) + _4bx * q2 * (_4bx * (q1q3 + q2q4) + _4bz * (0.5 - q2q2 - q3q3) - mz); norm = std::sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); if (norm > 0.0) { norm = 1.0 / norm; //normalise gradient step s1 *= norm; s2 *= norm; s3 *= norm; s4 *= norm; } else { break; } // Convert gyro units to rad/sec double gx = gyro_x * kGyroScale; double gy = gyro_y * kGyroScale; double gz = gyro_z * kGyroScale; // Compute rate of change of quaternion double qDot1 = 0.5 * (-q2 * gx - q3 * gy - q4 * gz) - kBeta * s1; double qDot2 = 0.5 * ( q1 * gx + q3 * gz - q4 * gy) - kBeta * s2; double qDot3 = 0.5 * ( q1 * gy - q2 * gz + q4 * gx) - kBeta * s3; double qDot4 = 0.5 * ( q1 * gz + q2 * gy - q3 * gx) - kBeta * s4; // Integrate to yield quaternion q1 += qDot1 * dt; q2 += qDot2 * dt; q3 += qDot3 * dt; q4 += qDot4 * dt; norm = std::sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); if (norm > 0.0) { norm = 1.0 / norm; // normalise quaternion q1 = q1 * norm; q2 = q2 * norm; q3 = q3 * norm; q4 = q4 * norm; } } while (false); // Convert quaternion to angles of rotation double xi = -std::atan2(2*q2*q3 - 2*q1*q4, 2*(q1*q1) + 2*(q2*q2) - 1); double theta = -std::asin(2*q2*q4 + 2*q1*q3); double rho = std::atan2(2*q3*q4 - 2*q1*q2, 2*(q1*q1) + 2*(q4*q4) - 1); // Convert angles from radians to degrees xi = xi / M_PI * 180.0; theta = theta / M_PI * 180.0; rho = rho / M_PI * 180.0; // Adjust angles for inverted mount of MXP sensor theta = -theta; if (rho < 0) rho = 180 - std::abs(rho); else rho = std::abs(rho) - 180; // Update global state { std::lock_guard<priority_mutex> sync(m_mutex); m_gyro_x = gyro_x; m_gyro_y = gyro_y; m_gyro_z = gyro_z; m_accel_x = accel_x; m_accel_y = accel_y; m_accel_z = accel_z; m_mag_x = mag_x; m_mag_y = mag_y; m_mag_z = mag_z; m_baro = ToUShort(&m_resp[22]) * kMillibarPerLSB; m_temp = ToShort(&m_resp[24]) * kDegCPerLSB + kDegCOffset; m_accum_count += 1; m_accum_gyro_x += gyro_x; m_accum_gyro_y += gyro_y; m_accum_gyro_z += gyro_z; m_integ_gyro_x += (gyro_x - m_gyro_center_x) * dt; m_integ_gyro_y += (gyro_y - m_gyro_center_y) * dt; m_integ_gyro_z += (gyro_z - m_gyro_center_z) * dt; m_ahrs_q1 = q1; m_ahrs_q2 = q2; m_ahrs_q3 = q3; m_ahrs_q4 = q4; m_yaw = xi; m_roll = theta; m_pitch = rho; } } }
//simulated annaling void CClimaticModel::AddSAResult(const StringVector& header, const StringVector& data) { if (header.size() == 12) { std::vector<double> obs(4); CTRef TRef(ToShort(data[2]), ToShort(data[3]) - 1, ToShort(data[4]) - 1, ToShort(data[5])); for (int i = 0; i < 4; i++) obs[i] = ToDouble(data[i + 6]); ASSERT(obs.size() == 4); m_SAResult.push_back(CSAResult(TRef, obs)); } /*if( header.size()==26) { std::vector<double> obs(24); for(int h=0; h<24; h++) obs[h] = data[h+2].ToDouble(); ASSERT( obs.size() == 24 ); m_SAResult.push_back( CSAResult(CTRef(), obs ) ); } else if( header.size()==13) { std::vector<double> obs(7); CTRef TRef(data[2].ToShort(),data[3].ToShort()-1,data[4].ToShort()-1,data[5].ToShort()); for(int c=0; c<7; c++) obs[c] = data[c+6].ToDouble(); ASSERT( obs.size() == 7 ); m_SAResult.push_back( CSAResult(TRef, obs ) ); } else if( header.size()==12) { std::vector<double> obs(7); CTRef TRef(data[2].ToShort(),data[3].ToShort()-1,data[4].ToShort()-1); for(int c=0; c<7; c++) obs[c] = data[c+5].ToDouble(); ASSERT( obs.size() == 7 ); m_SAResult.push_back( CSAResult(TRef, obs ) ); } else if( header.size()==11) { std::vector<double> obs(7); CTRef TRef(data[2].ToShort(),data[3].ToShort()-1); for(int c=0; c<7; c++) obs[c] = data[c+4].ToDouble(); ASSERT( obs.size() == 7 ); m_SAResult.push_back( CSAResult(TRef, obs ) ); }*/ }
// Iterate two bytes through input stream GLshort Image::ReadShort(std::ifstream& input) { char buffer[2]; input.read(buffer, 2); return ToShort(buffer); }